Étale Homotopy Theory

and

Simplicial Schemes

David A. Cox

Amherst College
Cohomology and K-Theory

<table>
<thead>
<tr>
<th>Singular Cohomology</th>
<th>and</th>
<th>Topological K-Theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Étale Cohomology</td>
<td>and</td>
<td>Étale K-Theory</td>
</tr>
<tr>
<td>Motivic Cohomology</td>
<td>and</td>
<td>Algebraic K-Theory</td>
</tr>
</tbody>
</table>

The last row will play an important role in this conference.

I will discuss the second row.
Étale Cohomology

Let X be a scheme of finite type over a field k and let ℓ be a prime \neq the characteristic of k.

The étale cohomology groups

$$H^p_{\text{ét}}(X, \mathbb{Z}/\ell\mathbb{Z})$$

can be defined “topologically” via the Čech construction. Let $\mathcal{U} = \{U_i \to X\}$ be an étale cover of X and set

$$U_{i_0, \ldots, i_p} = U_{i_0} \times_X \cdots \times_X U_{i_p}.$$

Then the étale p-chains are given by

$$C^p(\mathcal{U}, \mathbb{Z}/\ell\mathbb{Z}) = \prod H^0(U_{i_0, \ldots, i_p}, \mathbb{Z}/\ell\mathbb{Z}).$$
If we define

\[H^p(\mathcal{U}, \mathbb{Z}/\ell\mathbb{Z}) = H^p(C^*(\mathcal{U}, \mathbb{Z}/\ell\mathbb{Z})) , \]

then the \(p \)th étale cohomology group of \(X \) is the direct limit

\[H^p_\text{ét}(X, \mathbb{Z}/\ell\mathbb{Z}) = \lim_{\mathcal{U}} H^p(\mathcal{U}, \mathbb{Z}/\ell\mathbb{Z}) \]

over the directed set of all étale covers \(\mathcal{U} \) of \(X \).

Key Observation: The global sections \(H^0(U_{i_0,\ldots,i_p}, \mathbb{Z}/\ell\mathbb{Z}) \) are determined by the set of connected components

\[\pi_0(U_{i_0,\ldots,i_p}) . \]

As we vary over all \(i_0, \ldots, i_p \), we get a simplicial set.
Simplicial Sets and Schemes

Let Δ be the category with objects $[n] = \{0, 1, \ldots, n\}$ and morphisms monotone maps $[n] \to [m]$.

A simplicial object in a category C is a contravariant functor

$$X_\bullet : \Delta \to C.$$

The maps $[1] \to [0]$ and $[0] \implies [1]$ give

$$X_0 \Leftrightarrow X_1 \cdots$$

$C = \text{Sets}$ gives SSets and $C = \text{Sch}/k$ gives SSch/k. We also have a connected component functor

$$\pi_0 : \text{SSch}/k \longrightarrow \text{SSets}.$$
Étale Homotopy Theory

Due to Artin and Mazur, using ideas of Verdier and Lubkin. \mathcal{H} is the homotopy category of SSets (ignore base points).

Given a scheme X, $X_{\text{ét}}$ is the category with objects étale maps $Y \to X$ and morphisms commutative diagrams

\[
\begin{array}{ccc}
Y & \to & Y' \\
& \searrow & \swarrow \\
& & X
\end{array}
\]

where $Y \to Y'$ is also étale. By the Čech construction, an étale cover $\{U_i \to X\}$ gives a simplicial object U. in $SX_{\text{ét}}$. This is an example of a hypercovering.
The étale homotopy type of X

$$(X)_{\text{ét}} = \{\pi_0(U)\} \in \text{Pro-} \mathcal{H}$$

given by the connected components of the inverse system of all hypercoverings of X.

If X is a simplicial scheme, one also has

$$(X_\cdot)_{\text{ét}} = \{\pi_0(\Delta U_\cdot)\} \in \text{Pro-} \mathcal{H}.$$

Furthermore, if U is a hypercovering of X, then the natural map

$$(U_\cdot)_{\text{ét}} \to (X)_{\text{ét}}$$

is a weak equivalence in $\text{Pro-} \mathcal{H}$.
Applications

Étale homotopy theory has many applications, including:

- Comparison Theorems
- The Adams Conjecture
- Tubular Neighborhoods
- Poincaré Duality
- Finite Chevalley Groups
- Étale K-Theory
Comparison Theorems

When X is a scheme of finite type over \mathbb{C}, the most basic comparison theorem asserts

$$H^p_{\text{ét}}(X, \mathbb{Z}/\ell\mathbb{Z}) \simeq H^p(X(\mathbb{C}), \mathbb{Z}/\ell\mathbb{Z})$$

for any prime ℓ. This generalizes:

- For X geometrically unibranch over \mathbb{C},
 $$(X)_{\text{ét}} \simeq X(\mathbb{C})^{\wedge}$$
 in $\text{Pro-}\mathcal{H}$ ($^{\wedge}$ is pro-finite completion).

- For $X.$ over \mathbb{C}, we have
 $$(X.)_{\text{ét}}^{\wedge} \simeq_{\text{weak}} X.(\mathbb{C})^{\wedge}.$$

- For $f : X \to Y$ smooth and proper,
 $$H^p(\text{fib}(f_{\text{ét}}), \mathbb{Z}/\ell\mathbb{Z}) \simeq H^p_{\text{ét}}(f^{-1}(y), \mathbb{Z}/\ell\mathbb{Z}).$$
Tubular Neighborhoods

Topologically, a tubular neighborhood $T_{X/Y}$ of $Y \subset X$ is easy to picture:

\begin{center}
\begin{tikzpicture}
\draw[fill=gray!30] (0,0) -- (6,0) -- (6,3) -- (0,3) -- cycle;
\draw[fill=gray!50] (1,0.5) rectangle (5,2.5);
\node at (3,1) {Y};
\node at (3,3) {X};
\end{tikzpicture}
\end{center}

Some nice properties of $T_{X/Y}$:

- $Y \subset T_{X/Y}$ is a homotopy equivalence.
- For X, Y smooth, $\partial T_{X/Y} \to Y$ is a spherical fibration that carries the Thom class. Up to homotopy, this fibration is $T_{X/Y} - Y \hookrightarrow T_{X/Y}$.
Tubular Neighborhoods in Algebraic Geometry

Zariski: A Zariski neighborhood of \(Y \subset X \) is too big. Except in trivial cases, it can’t be a tubular neighborhood.

Étale: An étale neighborhood is an étale map \(V \to X \) such that \(V \times_{X} Y \cong Y \). These are also too big:

Example. One can prove that the only étale neighborhoods of \(\mathbb{P}^1 \subset \mathbb{P}^2 \) are Zariski neighborhoods of \(\mathbb{P}^1 \) in \(\mathbb{P}^2 \).
Ringed Space: Given $Y \subset X$, one can construct:

- its *henselization* $Y \subset X^h_Y \to X$.
- its *formal completion* $Y \subset \hat{X}_Y \to X$.

These are ringed spaces supported on Y with some nice properties. But we can’t remove Y to get a spherical fibration. So these aren’t geometric enough.

Simplicial: Let $t_{X/Y}$ be the category of simplical objects $V. \in SX_{\text{ét}}$ such that $V. \times_X Y \to Y$ is a hypercovering. Then:

The *tubular neighborhood* of Y in X is

$$T_{X/Y} = \{V. \mid V. \in t_{X/Y}\}.$$
Here is a glimpse of life before TeX:

In 1974, I paid $3 to have this page typed.
Properties of $T_{X/Y}$

- $(Y)_{\text{ét}} \simeq (T_{X/Y})_{\text{ét}}$ is a homotopy equivalence.
- $H^*_{\text{ét},Y}(X, \mathbb{Z}/\ell \mathbb{Z})$ is isomorphic to $H^*(T_{X/Y}, T_{X/Y} - Y, \mathbb{Z}/\ell \mathbb{Z})$.
- When Y and X are smooth, there is an algebraic exponential map
 \[(N_{X/Y} - Y)_{\text{ét}} \simeq (T_{X/Y} - Y)_{\text{ét}}\]
 where $N_{X/Y}$ is the normal bundle of Y in X.
- Friedlander used $T_{X/Y}$ to give a “topological” proof of Poincaré duality for étale cohomology.
Twisted Chevalley Groups

Let H be a “twisted” group of Chevalley, Steinberg, or Suzuki-Rees type. Then there is a simple algebraic group G over $\overline{\mathbb{F}}_p$ such that $H = \text{the fixed point set of}$ an algebraic endomorphism

$$\phi : G \longrightarrow G.$$

In 1953, Lang showed that $\Phi(g) = g\phi(g)^{-1}$ is onto. This gives a fibration

$$H \longrightarrow G \overset{\Phi}{\longrightarrow} G.$$

In 1970 Quillen suggested that this would be relevant to étale homotopy theory. Friedlander pursued this in the 1970s. His results compute the $\mathbb{Z}/\ell\mathbb{Z}$ cohomology of H in terms of $H^*(BG, \mathbb{Z}/\ell\mathbb{Z})$ for $\ell \neq p$.

15
Classifying spaces were originally constructed topologically and are not algebraic varieties.

Working simplicially, we have the simplicial scheme BG such that BG_n is the cartesian product

$$G \times_k \cdots \times_k G.$$ \(n\) times

Boundary and degeneracy maps are built from the identity $\text{Spec}(k) \to G$ and multiplication $G \times_k G \to G$.

By the comparison theorem, the étale homotopy type of BG is the same as $BG(\mathbb{C})$, up to pro-finite completion. This brings topology into algebraic geometry.
Étale K-Theory

For a CW complex T, ordinary K-theory with coefficients in $\mathbb{Z}/m\mathbb{Z}$ is defined by

$$K^0(T, \mathbb{Z}/m\mathbb{Z}) = [C(m) \wedge T, BU]$$
$$K^1(T, \mathbb{Z}/m\mathbb{Z}) = [\Sigma C(m) \wedge T, BU]$$

where $C(m)$ comes from the cofiber triple

$$S^1 \xrightarrow{m} S^1 \longrightarrow C(m).$$

Using étale homotopy theory, we get the following definition of Friedlander:

The étale K-theory of a scheme X is

$$K^0_{\text{ét}}(X, \mathbb{Z}/m\mathbb{Z}) = [C(m) \wedge (X)_{\text{ét}}, \#BU]$$
$$K^1_{\text{ét}}(X, \mathbb{Z}/m\mathbb{Z}) = [\Sigma C(m) \wedge (X)_{\text{ét}}, \#BU]$$
Properties

\begin{itemize}
\item $K^\ast_\text{ét}(X, \mathbb{Z}/\ell\mathbb{Z}) \simeq K^\ast(X(\mathbb{C}), \mathbb{Z}/\ell\mathbb{Z})$.
\item $\text{Gal}(\overline{k}/k)$ acts on $K^\ast_\text{ét}(X \times_k \overline{k}, \mathbb{Z}/\ell\mathbb{Z})$.
\item There is a spectral sequence relating $H^\ast_\text{ét}(X, \mathbb{Z}/\ell\mathbb{Z})$ to $K^\ast_\text{ét}(X, \mathbb{Z}/\ell\mathbb{Z})$.
\item The map $K^0_\text{alg}(X) \to K^0(X(\mathbb{C})) \otimes \mathbb{Z}_\ell$ factors through $K^\ast_\text{ét}(X, \mathbb{Z}_\ell)$.
\end{itemize}

A more sophisticated definition of étale K-theory was given in 1985 by Dwyer and Friedlander. Most cohomology theories can be represented by spectra. Just as we brought the topological BG into the category of simplicial schemes, the idea here is to bring spectra into SSch/k.
First: Given a k-algebra A,

$$K_A = \text{Sp}(\text{Hom}_g(A, B\overline{G\ell}_*)_k),$$

where “g” means scheme-theoretic maps. Then

$$\pi_i(K_A) = \text{Quillen } K\text{-theory of } A.$$

Second: Given a scheme X over k,

$$\hat{K}_X^{\text{ét}} = \text{Sp}(\text{Hom}_l(X, B\overline{G\ell}_*)_k),$$

where “ℓ” means maps between the ℓ-adic completions of the étale homotopy types. Then

$$\pi_i(\hat{K}_X^{\text{ét}} \wedge \mathcal{M}(\nu)) = \hat{K}_i^{\text{ét}}(X, \mathbb{Z}/\ell^\nu\mathbb{Z}).$$