Interdisciplinary Seminar in Nonlinear Science

Title: Euclidean extensions of dynamical systems
Speaker: Matt Nicol
Speaker Info: Surrey
Brief Description:
Special Note: More current information may be available at Plan-it Purple

Recently there has been substantial progress in understanding the ergodic and mixing properties of generic group extensions of dynamical systems. Such models occur frequently in applications, especially physical systems modelled by PDEs with Euclidean symmetry. A group (G) extension of a base dynamical system consists of a map or flow on a manifold X, a skewing function g: X -> G and a skew- product map or flow on the product space X x G . We investigate the behaviour of E(n) (the Euclidean group of rotations, reflections and translation in n-dimensional space) extensions of various types of base dynamics on X. In particular we consider the topological and statistical properties of S E(n) extensions of periodic, quasiperiodic and chaotic dynamical systems.
Date: Friday, March 8, 2002
Time: 2:00PM
Where: Tech M416
Contact Person: Paul Umbanhowar
Contact email: umbanhowar@northwestern.edu
Contact Phone: 467-7291
Copyright © 1997-2024 Department of Mathematics, Northwestern University.