Number Theory

Title: Simple supercuspidal representations and simple wild parameters
Speaker: Professor Mark Reeder
Speaker Info: Boston College
Brief Description:
Special Note:

This talk is about the interaction between Lie groups and local Galois theory. The local Langlands conjecture predicts that irreducible square-integrable representations of a reductive group G over a p-adic field k should be parametrized by certain homomorphisms from the absolute Galois group of k into a complex Lie group LG which is in some sense dual to G. A recent conjecture of Hiraga-Ichino-Ikeda enhances this conjecture to predict the formal degree of the representation in terms of gamma factors of the parameter. A refinement of the H-I-I prediction leads to the simplest examples of the local Langlands conjecture, which (surprisingly) seem to have gone unnoticed until now. This is joint work with Benedict Gross.
Date: Monday, November 3, 2008
Time: 3:00PM
Where: Lunt 107
Contact Person: Florian Herzig
Contact email: herzig@math.northwestern.edu
Contact Phone: 847-467-1898
Copyright © 1997-2024 Department of Mathematics, Northwestern University.