Topology Seminar

Title: Factorization homology of topological manifolds
Speaker: John Francis
Speaker Info: Northwestern University
Brief Description:
Special Note:

Factorization homology, or the topological chiral homology of Lurie, is a homology theory for manifolds conceived as a topological analogue of Beilinson & Drinfeld's algebraic theory of factorization algebras. I'll describe an axiomatic characterization of factorization homology, à la Eilenberg-Steenrod. The excision property of factorization homology allows one to see factorization homology as a simultaneous generalization of singular homology, the cohomology of mapping spaces, and Hochschild homology. Excision for factorization homology also facilitates a short proof of the nonabelian Poincare duality of Salvatore and Lurie; this proof generalizes to give a nonabelian Poincare duality for stratified manifolds, joint work with David Ayala & Hiro Tanaka. Finally, I'll outline work in progress with Kevin Costello, expressing quantum invariants of knots and 3-manifolds in terms of factorization homology.
Date: Tuesday, January 10, 2012
Time: 4:10pm
Where: Lunt 104
Contact Person: Prof. Paul Goerss
Contact email: pgoerss@math.northwestern.edu
Contact Phone: 847-491-8544
Copyright © 1997-2024 Department of Mathematics, Northwestern University.