Algebra Seminar

Title: Character Rigidity for Lattices and Commensurators
Speaker: Darren Creutz
Speaker Info:
Brief Description:
Special Note:

Characters on groups (positive definite conjugation-invariant functions) arise naturally both from probability-preserving actions (the measure of the set of fixed points) and unitary representations on finite factors (the trace). I will present joint work with J. Peterson showing that for lattices in semisimple groups (and their commensurators) the only characters are the trivial character and the weakly almost periodic characters (arising from finite-dimensional representations).

This amounts to an operator algebraic superrigidity theorem for such lattices--any homomorphism from a lattice into the unitary group of a finite factor is either precompact or extends to a homomorphism of the group von Neumann algebra, answering a question of Connes. Consequently, any nonatomic probability-preserving action of such a lattice is essentially free.

Date: Wednesday, December 4, 2013
Time: 12:00pm
Where: Linguistics Department Seminar Room (2016 Sheridan Road)
Contact Person: Nir Avni
Contact email:
Contact Phone:
Copyright © 1997-2024 Department of Mathematics, Northwestern University.