Number Theory

Title: An invariant bilinear form on the space of automorphic forms
Speaker: Jonathan Wang
Speaker Info: University of Chicago
Brief Description:
Special Note:

Let F be a function field and G a reductive group over F. We define a bilinear form B on the space of K-finite smooth compactly supported functions on G(A)/G(F). For G = SL(2), the definition of B generalizes to the case where F is a number field (and this is expected to be true for any G). The definition of B relies on the constant term operator and the standard intertwining operator. This form is natural from the viewpoint of the geometric Langlands program via the functions-sheaves dictionary. To see this, we show the relation between B and S. Schieder's geometric Bernstein asymptotics.
Date: Monday, October 10, 2016
Time: 4:00PM
Where: Lunt 107
Contact Person: Yifeng Liu
Contact email: liuyf@math.northwestern.edu
Contact Phone:
Copyright © 1997-2024 Department of Mathematics, Northwestern University.