Analysis Seminar

Title: Refined Weyl law for the perturbed harmonic oscillator
Speaker: Moritz Doll
Speaker Info: Hannover
Brief Description:
Special Note:

Abstract: We consider the quantum harmonic oscillator $H_0 = 1/2 (\Delta + |x|^2)$. The underlying classical flow is periodic with period $2\pi$. By an explicit calculation one can see that the Schrödinger propagator of $H_0$ is the identity (modulo a sign) at $2\pi \mathbb{Z}$ and smoothing otherwise.

The first part of the talk will discuss propagation of singularities for potential perturbations of the harmonic oscillator. If the potential is a 1-symbol then the singularities reappear at $t = 2\pi$, but possibly at different locations. In the case of an arbitrary second order isotropic pseudodifferential operator, we obtain a similar description.

In the second part we consider the spectral theory of the perturbed harmonic oscillator. There we will show that for perturbations in a certain class of isotropic 1-symbols we obtain an improved remainder term in the Weyl law. This is based on joint work with Oran Gannot and Jared Wunsch.

Date: Monday, February 19, 2018
Time: 4:10pm
Where: Lunt 105
Contact Person: Prof. Jared Wunsch
Contact email: jwunsch@math.northwestern.edu
Contact Phone: 847-491-5580
Copyright © 1997-2024 Department of Mathematics, Northwestern University.