**Title:** The Threshold Theorem for the hyperbolic Yang-Mills equation

**Speaker:** Sung-Jin Oh

**Speaker Info:** KIAS

**Brief Description:**

**Special Note**:

**Abstract:**

In this lecture, I will present the recent proof (joint with D. Tataru) of the Threshold Theorem for the energy critical hyperbolic Yang-Mills equation in (4+1) dimensions. This theorem provides a sharp criterion for global existence and scattering in terms of the energy of the initial data. Moreover, we prove that failure of global existence/scattering is characterized by "bubbling" of a solution to the harmonic Yang-Mills equation.Our proof lies at the intersection of many recent developments, such as null form estimates and function spaces; parametrix construction via pseudodifferential gauge renormalization; induction on energy; monotonicity formulae arising from the normalized scaling vector field etc. Also of note is the use of the associated parabolic flow, namely the Yang-Mills heat flow, to construct a high quality global gauge (called the caloric gauge), extending the idea of Tao for the harmonic map heat flow.

Copyright © 1997-2024 Department of Mathematics, Northwestern University.