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Abstract. This paper is a continuation of [?] where we reviewed results on
the Gauss-Manin connection in noncommutative geometry, mostly from [13],
[9], [27], [33]. The Gauss-Manin connection in periodic cyclic homology was
introduced by Ezra Getzler in 1991, then generalized to a superconnection by
the author in a joint work with Dolgushev and Tamarkin. The key to these
constructions is the Cartan calculus in noncommutative geometry. In this
paper, we prove explicit formulas for the Gauss-Manin connection which seem
to be of interest because they strongly evoke physical formulas such as WKB
expansion (where the role of the Planck constant ~ is played by the formal
parameter u of degree two). One corollary is that the connection is p-adically
integral, which allows to define noncommutative crystalline cohomology of
algebras over a finite fields.

In loving memory of Yuri Ivanovich Manin

1. Introduction

2. Summary of results of [?]

2.1. The algebra a(g). Let k be a commutative unital ring where 2 is invert-
ible. Let u be a formal parameter of degree two. For a graded Lie algebra g, let
a(g) be the associative DG algebra over k[u] generated by a subalgebra U(g) and
by elements (X), X ∈ g, |(X)| = |X|+ 1, subject to relations

(2.1) [X, (Y )] = (−1)|X|([X,Y ]); [(X), (Y )] = 0

with the differential ud where

(2.2) ud(X) = uX; udX = 0

Alternatively, a(g)
∼−→ (Uk[u](g[u, ε]), u∂ε) via (X) 7→ εX where ε is of degree one

and square zero. The isomorphism sends (X) to εX.
Let an be the free graded Lie algebra generated by elements λ0, . . . , λn of degrre

one. By â(an) we will denote the completion of a(an)[u−1] with respect to the
filtration induced by the grading of an (for these purposes, |u| = 0).

For an element of degree one of an, define an element of degree one in â(g)[u−1]
by

(2.3) dλ = λ− (λ2)

u
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Let k be of characteristic zero. Define an element of degree zero in â(a1) by

(2.4) t(λ0, λ1) = exp(
(λ1 − λ0)

u
)

Lemma 2.1. (1)
ud(dλ0) + d2λ0

= 0

in â(a0);
(2)

udt(λ0, λ1) + dλ0
t(λ0, λ1)− t(λ0, λ1)dλ1

= 0

in â(a1);
(3)

t(λ0, λ1)t(λ1, λ2) = t(λ0, λ2)

in â(a2).

Proof.
ud(dλ0) + d2λ0

= −λ20 + λ20 = 0;

if we denote λ1 − λ0 by α, then

ud(
α

u
)n =

n−1∑
k=0

(
α

u
)n−1−kα(

α

u
)k =

n(
α

u
)n−1α−

n−1∑
k=0

(
α

u
)n−1−k

k−1∑
l=0

(
α

u
)k−1−l(

[α, α]

u
)(
α

u
)l =

n(
α

u
)n−1α−

n−2∑
l=0

n−1∑
k=l+1

1 · (α
u

)n−2−l(
[α, α]

u
)(
α

u
)l =

n(
α

u
)n−1α−

n−2∑
l=0

(n− l − 1)(
α

u
)n−2−l(

[α, α]

u
)(
α

u
)l

We will need this formula later; for now, we can use the fact that all (X) commute
and obtain

(2.5) ud(
α

u
)n = n(

α

u
)n−1α− 1

2
n(n− 1)(

α

u
)n−2(

[α, α]

u
)

Therefore

(2.6) ud exp((
α

u
)) = exp((

α

u
))(α− (α2)

u
)

But
udt(λ0, λ1) + dλ0t(λ0, λ1)− t(λ0, λ1)dλ1 =

ud exp((
α

u
)) + (λ0 −

(λ20)

u
) exp((

α

u
))− exp((

α

u
))(λ1 −

(λ21)

u
) =

exp((
α

u
))(α− (α2)

u
) + [λ0, exp((

α

u
))] + exp((

α

u
))(−α+

(λ21)

u
− (λ20)

u
) =

exp((
α

u
))(

(λ21)

u
− (λ20)

u
− ([λ0, α])

u
− (α2)

u
) = exp((

α

u
))

(λ21 − (λ0 + α)2)

u
= 0

The last statement of the lemma is obvious. �



GAUSS-MANIN CONNECTION IN NONCOMMUTATIVE GEOMETRY, II 3

2.2. Algebras A0 and A1.

Definition 2.2. For any differential graded Lie algebra g, let U+(g) be the
kernel of the augmentation U(g) → k. Let Cobar(U+(g)) be the free associative
algebra generated by U+(g)[−1] (the degree shift by one). We denote the free
generator corresponding to x ∈ U+(g) by (x). Define

(2.7) ∂Cobar(x) =
∑

(−1)|x
(1)|(x(1))(x(2))

where the comultiplication is defined by

∆x =
∑

x(1) ⊗ x(2)

In addition, the differential dg induces a differential on Cobar(U+(g)). Now define
the dg algebra as follows. It is an algebra over k[u] generated by the DG subalgebra
(U(g), dg) and the subalgebra Cobar(U+(g)). The only additional relations are

[X, (x)] = (adX(x)), X ∈ g, x ∈ U+(g).

The differential acts as follows:

(2.8) x 7→ dgx, x ∈ U(g); (x) 7→ (−dgx) + ∂Cobar(x) + ux, x ∈ U+(g).

Define also

(2.9) A0(g) = U(g) n0 Cobar(Sym+(g))

in the same way as above, the differential being

(2.10) x 7→ dgx, x ∈ U(g); (x) 7→ (−dgx) + ∂Cobar(x) + uB0(x)

where
B0(x) = x, x ∈ Sym1(g);B0(x) = 0, x ∈ Sym>1(g)

Lemma 2.3. Let k contain the rationals. There is a natural isomorphism of
DG algebras

A0(g)
∼−→ A1(g)

Proof. Start with the case when g = kD is a free k-module generated by an
element D of degree zero. Let

(2.11)
∑
k,l≥0

ak,lx
kyl = y(y − x) . . . (y − (n− 1)x).

The formula

(2.12) (Dn) 7→ [Dn]
def
=

∑
k+l=n

ak,lD
k(Dl)

defines an isomorphism of DG algebras

A0(g)→ A1(g)

In general, for D1, . . . , Dk in g and (D1 . . . Dk ∈ Symk(g), define the image of
(D1 . . . Dk) to be the coefficient at t1 . . . tk in 1

k! [(t1D1 + . . .+ tkDk)k]. Here ti are
formal variables that are central and such that |ti| = −|Di|. �
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Remark 2.4. Define the Stirling numbers as the coefficients of the power series

(2.13)
∑
k,l≥0

ck,lx
kyl =

∞∑
n=1

1

n!
y(y − x) . . . (y − (n− 1)x).

Note that

(2.14)
∑
k,l≥0

u−(k+l)ck,lx
kyl =

∞∑
n=1

1

unn!
y(y − x) . . . (y − (n− 1)x) = (1 +

x

u
)

y
x

Then, formally (or in an appropriate completion),

(e
1
uD − 1) 7→ 1 +

∑
k,l≥1

1

uk+l
ck,lD

k(D)l

under the isomorphism from Lemma 2.3.

Definition 2.5. Let Â0(an) be the completion of A0(an)[u−1] with respect to
the increasing filtration induced by the grading of an. Define

Dλj
= λj − (e

1
uRj − 1) ∈ Â0(an)1

where Rj = λ2j .

Lemma 2.6. Let k be of characteristic zero.
(1)

(∂Cobar + uB0)Dλ0
+D2

λ0
= 0

in Â0(a0)

(2) There exist elements T (λ0, . . . , λm) of degree 1 − m in Â0(am) for all
m > 1 such that

(∂Cobar + uB0)T (λ0, . . . , λn) +Dλ0T (λ0, . . . , λn)+

n−1∑
j=1

(−1)j−1T (λ0, . . . , λj)T (λj , . . . , λn) + (−1)nT (λ0, . . . , λn)Dλn

−
n−1∑
j=1

(−1)j−1T (λ0, . . . , λ̂j , . . . , λn) = 0

3. Explicit formulas

3.1. Ordered exponential differences. Let I be a finite set. Let {yi|i ∈ I}
be variables, {Ai|i ∈ I} commuting operators on a k-module H, {Xi|i ∈ I} and
D operators on H. Introduce a total ordering on I and use it to identify I with
{1, . . . , n}. Put
(3.1)

E{Xi},<({Aiyi}) =
eAnyn − 1

An
(Xn +An

n−1∑
j=1

eAn−1yn−1+...+Aj+1yj+1
eAjyj − 1

Aj
Xj)

(We assume that the above is well-defined. For example, Ai could be pronilpotent
operators on a completion associated to a filtration).

For two elements i0 ≤ i1 of I, put

(3.2) Ei1i0 = E{Xi|i0≤i≤i1},<({Aiyi|i0 ≤ i ≤ i1})
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For example, if Xi = AiX for all i then

(3.3) Ei1i0 = (eAi1yi1 − 1)e
∑

i0≤j<i1
AjyjX

3.2. Admissible words. We are going to encode (some) elements of A0(an)
by noncommutative polynomials. Set αij = λj − λi. Let Bn be the algebra freely
generated by x1, . . . , xn and by k-modules Sym(Vn) and Sym(Wn), where

Vn = Wn = a2n

Here a2n stands for the graded component of degree two in an. The k-module Bn is
spanned by words on letters x1, . . . , xn, f, g where f ∈ Sym(Vn) and g ∈ Sym(Wn).
For such a word, let fj , resp. gj , be the jth letter of the type f, resp. g, counted
from the left. We call a word admissible if:

(1) There are exactly n− 1 letters of type g.
(2) For every j > 1, if there are letters of type f between gj−1 and gj , we

denote by f j the closest such letter to gj . If there are letters of type f to
the left of g1 then we denote by f1 the closest such letter to g1. Then
• There are no letters xk between f j and gj (or between gj−1 and gj

if there is no f j) other than xn−j and xn−j+1.
• There are no letters xk between gj−1 and f j other than xn−j+1.
• If there is no f1, there are no letters xk to the left of g1 other than
xn and xn−1.

• There are no letters xk to the right of gn−1 other than x1.
We denote the span of admissible words by Hn. For example:

x42 · f1 · x22 · f2 · x1x22x1 · g1 · x31 · f3 · x1 · f4 · f5
is a word in H2; we have f1 = f2.

Note that H1 is just the free algebra generated by x1 and by the k-module
k[α2

01, [λ0, α01], λ21].

Remark 3.1. There are extra conditions of admissibility that all our expres-
sions will automatically satisfy. If we put

Vn,m = Wn,m+1 = span{[α0j , α0,n−m+1]|j > n−m; [λ0, α0,1], λ2n}
then those conditions are:

(1) All letters of type f between gj−1 and gj (or left of gj when j = 1, or
right of gn−1 when j = n) denote elements of Sym(Vn,m).

(2) For all m, gm ∈ Sym(Wn,m).

Given an admissible word in Hn, we associate to it an element of A0(an)[u−1]
as follows. We write the same word, where

• xj is replaced by α0,j ;
• gj is replaced by (

α0,n−j

u
αn−j,n−j+1

u gj);
• any f between gj−1 and gj (or to the left of g1 when j = 1, or to the right

of gn−1 when j = n) is replaced by (
α0,n−j+1

u f).

The resulting map Hn → A0(an) extends to

(3.4) Ĥn → Â0(an)

Here the left hand side is the completion of Hn[u, u−1] with respect to the grading
where u=0, |xj | = 1, |f | is the degree of f in Sym(Vn), and |g| is the degree of g in
Sym(Wn).
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3.2.1. The annihilation operators. As in the commutative case, there are partial
derivatives

∂xj
: Hn → Hn

Such operator takes a word into the sum of all words obtained from it by removing
any letter xj from this word. (Or, alternatively, by replacing any fragment xmi
by mxm−1i ). But there are also partial partial derivatives. For example, we may
demand that only letters xj to the left or to the right of a certain position are
deleted. For example:

Definition 3.2. Let
∂→x1

: Hn → Hn
transform a word

. . . gn−1 . . . fr · xm1
1 · fr+1 · xm2

1

into the sum or words obtained by replacing each fragment ·xm1 · by ·mxm−11 ·, except
for the two rightmost fragments ·xm1

1 · and ·x
m2
1 ·;

let
∂⇀x1

: Hn → Hn
transform a word

. . . gn−1 . . . fr · xm1
1

into the sum or words obtained by replacing each fragment ·xm1 · by ·mxm−11 ·, except
for the one rightmost fragment ·xm1

1 ;
let

∂⇑x1
: Hn → Hn

transform a word
. . . gn−1 . . . fr · xm1

1 · fr+1 · xm2
1

into
. . . gn−1 . . . fr ·m1x

m1−1
1 · fr+1 · xm2

1 ;

let
∂↑x1

: Hn → Hn
transform a word

. . . gn−1 . . . fr · xm1
1

into
. . . gn−1 . . . fr ·m1x

m1−1
1

One has
∂x1

= ∂⇀x1
+ ∂↑x1

= ∂→x1
+ ∂⇑x1

+ ∂↑x1

3.2.2. The creation operators. The creation operators will always act on the
rightmost letter of the type f or g, whichever it is. More precisely, we take the
letter h such that it is not an xk but all letters to its right are x1, and multiply
it by F ∈ Vn = Wn = Sym+(a2n) (so that we obtain one new letter hF ). We will
denote this operator by

F : Hn → Hn.
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3.2.3. The creation-annihilation operators. There are two types of these oper-
ators. They decrease the degree in x1 but create a new letter of type f or g.

1) Define
D : Hn → Hn

to be the operator transforming a word . . . · xm1
1 into∑

i+j=m−1
. . . · xi1 · 1 · x

j
1

where f = 1 is the unit in Sym(V ).
2) Define ∆(xm2 ) as follows: in each monomial in the expansion of (x1 + x′1)m,

replace the rightmost letter x′1 by g = 1 ∈ Sym(Wn); then replace all other x′1 by
x2 − x1. Now define

� : Hn → Hn+1

to be the operator transforming an admissible word into the following: replace all
xj by xj+1; replace all f(λ0, λ1, . . . , λn) by f(λ0, λ2, . . . , λn+1); do the same for all
g; and then replace the rightmost fragment xm2 by ∆(xm2 ).

3.3. Formulas for T . Using notation of 3.1, consider

(3.5) E{Xj |1≤j≤n;Y,Z},<({Aj
[α0j , α01]

u
|1 ≤ j ≤ n;B

[λ0, α01]

u
;C

λ2n
u
})

Here

(3.6) Aj = −u∂xju∂
↑
x1
, Xj = Aj ◦ uD

when j ≥ 2;

(3.7) A1 = −u∂⇀x1
u∂↑x1

− 1

2
(u∂↑x1

)2;

(3.8) X1 = −uD ◦ 1

2
(u∂↑x1

)2 +
1

2
(u∂⇑x1

)2 ◦ uD;

(3.9) B = −u∂↑x1
, Y = B ◦ uD; C = −Id, Z = −uD;

and we can choose any linear order < . We also need an ordered exponential dif-
ference related to creation/annihilation operators creating a new letter of type g.
Consider

(3.10) E{X′j |1≤j≤n;Y′,Z′},<({Aj
[α0j , α01]

u
|1 ≤ j ≤ n;B

[λ0, α01]

u
;C

λ2n
u
})

where Ai, B, C are as above and

(3.11) X′j = −Aj ◦ u∂↑x1
u�; Y′j = −B ◦ u∂↑x1

�; C = −u∂↑x1
�

Again, the choice of a linear ordering is arbitrary (but same as the choice above).
We denote by i0 the minimal element with respect to the order < . We recall the
definition of Eij ; in the case of (3.10), we use the notation E ′ij .

Theorem 3.3. Consider the following elements T(λ0, . . . , λn) of Ĥn :

T(λ0, λ1) = (1 +
∑
i1≥i0

Ei1i0 +
∑

i2≥i1≥i0

Ei2i1Ei1i0 + . . .) exp(
1

u
x1)

T(λ0, . . . , λn+1) = −(
∑
k≥0

∑
ik≥...≥i0

Eikik−1
. . . Ei2i1E ′i1i0)T(λ0, . . . , λn)
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for n > 0. Let T (λ0, . . . , λn) be elements of Â0(an) represented by T(λ0, . . . , λn).
Then they satisfy the equations from Lemma 11.4.

4. Proof of Theorem 3.3

4.1. The homotopy on the cobar complex.
4.1.1. Divided powers. Let V be a free graded k-module. Put

(4.1) Sympd(V ) = Sympd(Veven)⊗ Sym(Vodd)

(This is independent of a choice of V ). Choose a set of free generators {yi|i ∈ I}
and a linear ordering on I. Then Sympd(V ) is the k-module freely generated by
finite products

(4.2) y[m] =
∏
i

y
[mi]
i

where mi ≥ 0 for even yi and m = 0 or 1 for odd mi. Define

(4.3)
∏
i

y
[mi]
i ·

∏
i

y
[ni]
i = ±

∏
i

(mi + ni)!

mi!ni!
y
[mi+ni]
i

(with the obvious sign). By definition, y[mj

j = 0 for mj > 1.

There is unique graded coalgebra structure on Sympd(V ) compatible with mul-
tiplication and such that

(4.4) ∆(ymi
i ) =

∑
k+l=mi

yki ⊗ yli

We denote by Sym+
pd(V ) the subcoalgebra linearly spanned bt y[m], m 6= 0.

There is another product on Sympd(V ) :

(4.5)
∏
i

y
[mi]
i ∗

∏
i

y
[ni]
i = ±

∏
i

y
[mi+ni]
i

(same sign as in (4.3)).
4.1.2. The homotopy. Let V , yi, < be as above. Define the following operator

on Cobar(Sym+
pd(V )).

For a monomial in Cobar(Sym+
pd(V )), let n be the maximal element of I for

which yn occurs in it. Assume that this word is of the form

(4.6) w = w0(u0)(u1) . . . (uk)(yn)w1

where
w1 = (yj1) . . . (yjl)

for j1, . . . , jl < n;

w0 ∈ Cobar(Sym+
pd(V )); u1 = yi1 , . . . , uk = yjk

for i1, . . . , ik < n; and either u0 = yn or u0 ∈ Sym>1
pd (V ). Put

h0w =

k∑
j=0

(−1)ljw0(u0) . . . (uj ∗ yn)(uj+1) . . . (uk)w1

where
lj = |w0|+ (|yn|+ 1)(

∑
j<i≤k

(|ui + 1|) + |uj |
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Lemma 4.1.
[h0, ∂Cobar] = Id− iP

Here iP = 0 on the two-sided ideal generated by (u), u ∈ Sym>1
pd (V ), and

iP ((yi1) . . . (yin)) = ±(yj1) . . . (yjn)

where the right hand side is the re-ordering of the left hand side such that j1 ≥
. . . ≥ jn (the sign is obvious).

In other words: we have a deformation retract

(4.7) i : Sym(V [−1])
⇀
↽ Cobar(Sym+

pd(V )) : P

with h0 being the homotopy between Id and iP.
The proof of the lemma is straightforward. In particular, h0 is a contracting

homotopy for ker(P ).

4.1.3. The algebra Apd
0 (g). Now let k be arbitrary. It is easy to see that for

a graded Lie algebra g, the coalgebra Sympd(g) is equivariant under the adjoint
action of g. We define the DG algebra exactly as in Definition 2.2 but with free
generators (x) for x ∈ Sym+

pd(g). Now extend h0 to Cobar(Sym+
pd(g)) so that it

commutes with the right action of U(g) and with u. We have a deformation retract

(4.8) i : (A0(g), ∂Cobar)
⇀
↽ Cobar(Sym+

pd(g))U(g)[u] : P

where, as before, ∂Cobar = Id− iP.
The differential uB0 on the left hand side gets intertwined by P with the

Chevalley-Eilenberg differential on the standard chain complex C•(g, U(g)). The
latter is acyclic when k contains the rationals. This is what was used in [?] to prove
the existence of T (λ0, . . . , λn) in characteristic zero.

In general, the Chevalley-Einenberg complex is not acyclic. For example: Let
a is an Abelian graded Lie algebra with one generator of α of degree one. Identify
(α)nαm with xnεm where n ≥ 0 and m = 0 or 1. Then the Chevalley-Eilenberg
differential becomes ε ∂∂x which of course has nontrivial homology. There is a divided
power version of the Chevalley-Eilenberg complex which is acyclic. This makes it
very plausible that T (λ0, . . . , λn) satisfy some integrality property. We will take a
slightly different and more explicit route to show this.

4.2. Some properties of h0. We have

(4.9) B0 = B′ +B′′

where

B′((u1) . . . (un)) =
∑

1≤j<k≤n;uj∈g

(−1)ljk(u1) . . . (̂uj) . . . ([uj , uk]) . . . (un)

B′′((u1) . . . (un)) =
∑

1≤j≤n;uj∈g

(−1)lj (u1) . . . (̂uj) . . . (un)uj

Here
ljk =

∑
i<j

(|ui|+ 1) + |uj |
∑
j<i<k

(|ui|+ 1) + |uj |

lj =
∑
i<j

(|ui|+ 1) + |uj |
∑
j<i≤n

(|ui|+ 1)

Lemma 4.2. Assume that the homotopy h0 is constructed using the linear order
on free generators of an that is consistent with the grading.
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(1) Let α be an element of order one in an. Then

h0B
′(
α

u
)n =

n−3∑
j=0

1

2
(n(n− 1)− (j + 1)(j + 2))(

α

u
)j

(α[α, α])

u2
(
α

u
)n−j−3

(2) Let λ and α be two elements of degree one in an. Then

h0[λ, (
α

u
)n] =

n−2∑
j=0

(n− 1− j)(α
u

)j
(α[λ, α])

u2
(
α

u
)n−2−j

(3) Let λ and α be as above. Then

h0((
α

u
)n

(λ2)

u
) =

n−1∑
j=0

(
α

u
)j

(αλ2)

u2
(
α

u
)n−1−j

Proof. The computation in the proof of Lemma 2.1 yields

B′′(
α

u
)n = n(

α

u
)n−1α

and

B′(
α

u
)n = −

n−2∑
l=0

(l + 1)(
α

u
)l(

[α, α]

u
)(
α

u
)n−2−l

Therefore h0B′′(αu )n = 0 and

h0B
′(
α

u
)n =

n−2∑
l=0

l−1∑
j=0

(l + 1)
α

u
)j

(α[α, α])

u2
(
α

u
)n−j−3 =

n−3∑
j=0

n−2∑
l=j+1

(l + 1)(
α

u
)j

(α[α, α])

u2
(
α

u
)n−j−3 =

n−3∑
j=0

1

2
(n(n− 1)− (j + 1)(j + 2))(

α

u
)j

(α[α, α])

u2
(
α

u
)n−j−3

Also:

h0[λ, (
α

u
)n] = −h0

n−1∑
k=0

(
α

u
)k

([λ, α])

u
(
α

u
)n−1−k =

n−1∑
k=0

k−1∑
j=0

(
α

u
)j

(α[λ, α])

u2
(
α

u
)n−2−j =

n−2∑
j=0

n−1∑
k=j+1

(
α

u
)j

(α[λ, α])

u2
(
α

u
)n−2−j =

n−2∑
j=0

(n− 1− j)(α
u

)j
(α[λ, α])

u2
(
α

u
)n−2−j

Finally, the last statement in the lemma is straightforward. �

Lemma 4.3. For α and λ of degree one in an and f ∈ Sym>1(an,

(1)

h0B
′(f(

α

u
)n) = (−1)|f |+1fh0B

′(
α

u
)n + (f ∗ [α, α]

u
)
1

2
n(n− 1)(

α

u
)n−2
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(2)

h0[λ, f(
α

u
)n)] = (−1)|f |+1fh0[λ, (

α

u
)n] + (f ∗ [λ, α]

u
)n(

α

u
)n−1

(3)

h0(f(
α

u
)n(

λ2

u
)) = (−1)|f |+1fh0((

α

u
)n(

λ2

u
)) + (f ∗ λ

2

u
)(
α

u
)n

Proof. We have

h0B
′(f(

α

u
)n) = −(−1)|f |+1f

n−2∑
l=0

(l + 1)(
α

u
)l(

[α, α]

u
)(
α

u
)n−2−l =

(−1)|f |+1(fh0B
′(
α

u
)n −

n−2∑
l=0

(l + 1)(−1)|f |(f ∗ [α, α]

u
)(
α

u
)n−2) =

(−1)|f |+1(fh0B
′(
α

u
)n − 1

2
n(n− 1)(−1)|f |(f ∗ [α, α]

u
)(
α

u
)n−2)

(−1)|f |+1fh0B
′(
α

u
)n +

1

2
n(n− 1)(f ∗ [α, α]

u
)(
α

u
)n−2

and similarly for the other two statements. �

Lemma 4.4. (1)
h20 = 0

(2) For any w0 ∈ A0(an), f ∈ Sym>1(an), and α of degree one in an,

h0(w0f(
α

u
)n) = (−1)|w0|+|f |+1w0h0(f(

α

u
)n)

(3) For αi of degree one in an and fi ∈ Sym>1(an),

B′((
α0

u
)n0(f1) . . . (fl)

αl
u

)nl) =

l−1∑
j=0

(−1)
∑l(|fi|+1)

0 (
α0

u
)n0 . . . nj(

αj
u

)nj−1 . . . (
αl−1
u

)nl−1fl(B
′(
αl
u

)nl + [αi, (
αl
u

)nl ])

4.3. The end of the proof of Theorem 3.3. First find T = T (λ0, λ1).
Because of Lemma 2.1, we look for T = t + T̄ where t = exp((α01

u )) and T̄ is in
ker(P ). We have to solve

(∂ + uB0)(t+ T̄ ) +Dλ0(t+ T̄ )− (t+ T̄ )Dλ1
= 0

(we write ∂ = ∂Cobar). If

φ = uB0t+Dλ0t− tDλ1

then the above turns into

(4.10) φ+ (∂ + uB0)T̄ +Dλ0 T̄ − T̄Dλ1 = 0

Put D = uB0T +Dλ0T − TDλ1 . We have

∂2 = ∂D +D2 = 0

We have seen that h0 is a contracting homotopy for (ker(P ), ∂). By the homotopy
perturbation lemma,

(4.11) h = (1 + [D, h0])−1h0
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is a contracting homotopy for ∂ +D. Indeed:
[∂+D, h] = [∂+D, (1+[D, h0])−1h0] = −(1+[D, h0])−1[∂+D, [D, h0]](1+[D, h0])−1

+(1 + [D, h0])−1(1 + [D, h0]) = (1 + [D, h0])−1[∂D +D2, h0](1 + [D, h0])−1 + 1 = 1

So the solution to (4.10) is

(4.12) T̄ = −hφ = −(1 + [D, h0])−1h0φ

In other words,

T =

∞∑
k=0

Tk; T0 = exp((
α01

u
); Tk+1 = −h0(uB0Tk +Dλ0

Tk − TkDλ1
)

Since Tk is in the image of h0 for k > 0, and because of the properties of h0 discussed
above, this is the same as

T =
∞∑
n=0

Tk; T0 = exp((
α01

u
); Tk+1 = −h0(uB′Tk + [λ0, Tk] + Tk(

λ21
u

))

Now the statement for n = 1 follows from Lemmas 4.2, 4.3, and 4.4, as well as from

y +Ay ∗ y + a2y ∗ y ∗ y + . . . =
eAy − 1

A
The proof for n ≥ 2 is by induction in n. The argument is the same if we take φ to
be the right hand side of the formula in Theorem 3.3. Choose the linear order on
generators of degree one of an+1 so that α0,n+1 < . . . < α01. (As always, our order
is compatible with the grading). Then observe that all terms of φ are in the kernel
of h0 except for −T (λ0, λ2, . . . , λn+1). This completes the proof.

4.4. The integrality property. Optimistically, one would expect the ex-
pression T (λ0, . . . , λn) to be an infinite linear combination of terms 1

m!T (m) where
T (m) is of degree m (in the grading induced by the grading of an). A priori, it is
an infinite linear combination of terms

(4.13)
1

m!

1

m1!
(f1) . . .

1

mN !
(fN )

in T (m), where mj = [
|fj |
2 ] and m =

∑N
j=1 |fj |. Actually, the integrability prop-

erty is much stronger, although (unless we missed some cancellations) it is slightly
weaker than the optimistic case. More precisely, T is a linear combination of mono-
mials 1

m! (f1) . . . (fN ) where each fj contains no more than one factor [α0,l,α0,l]
q

q+1 ;
there are no more denominators.

To see that, recall the notation of (3.5), (3.6), (3.7), (3.9). All Aj are of the
form A′j

∂
∂xi

for some i and some A′j . Similarly, B = B′∂↑x1
. Now, Xj = AjD for

j ≥ 2 and Y = BD; so contributions of those operators are divisible by 1
q! (∂

↑
x1

)q.

The terms with C also introduce no new denominators. (Example:

1

n!
(
α01

u
)n−1(

α01

u

λ2q1
q!uq

)

divides (n+ 2q)!).
But the term corresponding to of Aj is

eA
′
1∂
↑
x1

[α01,α01] − 1

A′1∂
↑
x1

X1
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where X1 is not a multiple of ∂↑x1
. Its contributions are multiples of terms of the

form 1
(q+1)! (∂

↑
x1

)q[α01, α01]q, and therefore of 1
q+1 [α01, α01]q. Iterative steps push

these factors to the left (and replace α01 by α0l).

4.5. The formulas for A1.
4.5.1. Special elements of Â1(an). Let A(1)

1 be the linear span of elements x(y),
x ∈ U(an), y ∈ U+(an). This is a k-submodule of Â1(an). It carries the product ?
which is defined as follows:

(4.14) x?y = xy; x? (y)− (−1)|x|(|y|+1)(y)?x = (−1)|x|(adx(y)); (x)? (y) = (xy)

In other words, ? is the cross product on U(an) n U+(an).

As usual, Â(1)
1 is the completion of A(1)

1 [u, u−1] with respect to the filtration
induced by the grading of an.

Recall the isomorphism in Lemma 2.3. By definition, it sends exp(Ru ) to

(4.15) E(
R

u
) = (1 +

R

u
)?

(R)
R ∈ Â(1)

1

Next, for any a and any α ∈ a1, R ∈ a2, define

(4.16) (αDR)(Rm(Rn)) =

m−1∑
k=0

RkαRn−1−k(Rn) +

n−1∑
k=0

Rm(RkαRn−1−k)

Define

(4.17) E(
α

u
,
R

u
) = (αDR)(E(

R

u
))

In general, let an,1 be the free DG Lie algebra with generators α1, . . . , αn of
degre one and R of degree two. Let αiDR be its derivation of degree one that sends
R to αi and all other free generators to zero. Define

(4.18) E(
α1

u
, . . . ,

αn
u
,
R

u
) = (α1DR) . . . (αnDR)E(R)

By universality, elements (4.18) are defined for αi of degree one and for R of degree
two in any a.

Lemma 4.5. Under the isomorphism Â0
∼−→ Â1 as in Lemma 2.3,

(
α1

u
. . .

αn
u
e

R
u ) 7→ E(

α1

u
, . . . ,

αn
u
,
R

u
)

Proof. We arleady know this for n = 0. For n = 1, by definition,

(αRn) 7→ 1

n+ 1

∑
k+l=n+1

ak,l(αDR)(Rk(Rl))

(as in (4.16)). Therefore

(
α

u
e

R
u ) 7→

∞∑
n=0

∑
k+l=n+1

u−n−1ak,l
(n+ 1)!

(αDR)(Rk(Rl)) = (αDR)(E(
R

u
)) = E(

α

u
,
R

u
)

Similarly for all n > 1. �
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4.5.2. Admissible words, the case of A1. Recall the k-module Hn from 3.2. We
change the definition slightly and require letters f and g to be monomials in A(1)

1 .
The map Hn → A0(an) is also different from the one we used before, and more
straightforward: it sends xj to (α0,j), and monomials f and g to their images in
A0(an); A concatenation of words is sent to the product of their images.

4.6. The new Eij. As in 3.1, let I be a finite set. Let {yi|i ∈ I} be elements
of degree two in an. Also, let {Ai|i ∈ I} be elements of some commutative ring
Op of operators, such as the ring of linear differential operators in several variables
with constant coefficients. (We assume, as it happens in our case, that Op has no
zero divisors). Let H be a k-module on which Op acts, and let be operators on H.

Choose a linear order on I and use it to identify I with {1, . . . , n}. Recall the
expressions
(4.19)

E{Xi},<({Ai
yi
u
}) =

eAnyn − 1

An
(Xn +An

n−1∑
j=1

eAn−1yn−1+...+Aj+1yj+1
eAjyj − 1

Aj
Xj)

as in (3.1). They lie in the completed tensor product

(4.20) Sym(a2n)⊗̂
∑
i

Op ◦Xi,

which is the completion of the usuall tensor product with respect to the filtration
induced by the grading on an.

Expressions (4.19) are linear combinations of the form

(4.21) E{Xi},<({Ai
yi
u
}) = X0 +

∑
1≤j≤k≤n

exp(
1

u

k∑
i=j

Aiyi)Xjk

where
X0, Xjk ∈

∑
i

Frac(Op) ◦Xi

(Frac(Op) being the field of fractions of Op); in fact they lie in (4.20). (Example:
e

1
u

Ay−1
A ).
Recall also

(4.22) Ei1i2 = E{Xi|i1≤i≤i2},<({Ai
yi
u
|i1 ≤ i ≤ i2})

Now consider two partial examples (3.5), and (3.10). For the example (3.5),

(4.23) Ẽ{Xi},<({Ai
yi
u
}) = X0 +

∑
1≤j≤k≤n

E(
1

u
α01,

1

u

k∑
i=j

Aiyi)Xjk

For the example (3.10), we do the same but now

(4.24) Ẽ ′{Xi},<({Ai
yi
u
}) = X0 +

∑
1≤j≤k≤n

E(
1

u
α01,

1

u
α12,

1

u

k∑
i=j

Aiyi)Xjk

We denote by Ẽi1i2 resp. Ẽ ′i1i2 , the versions of Ẽ and Ẽ ′ with indices limited to
i1 ≤ i ≤ i2.
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4.6.1. Explicit formulas.

Theorem 4.6. Consider the following elements T(λ0, . . . , λn) of Ĥn :

T(λ0, λ1) = (1 +
∑
i1≥i0

Ẽi1i0 +
∑

i2≥i1≥i0

Ẽi2i1 Ẽi1i0 + . . .) exp(
1

u
x1)

T(λ0, . . . , λn+1) = −(
∑
k≥0

∑
ik≥...≥i0

Ẽikik−1
. . . Ẽi2i1 Ẽ ′i1i0)T(λ0, . . . , λn)

for n > 0. Let T (λ0, . . . , λn) be elements of Â0(an) represented by T(λ0, . . . , λn).
Then they satisfy the equations from Lemma 11.4.

Here i0 is the minimal element of I.

4.7. The free Fock space description of T . Here we give another descrip-
tion of the operators T that we constructed above. For the sake of simplicity we
only discuss the case n = 1, λ0 = 0. The goal is to point out certain similarities
with expressions arising in mathematical physics. The formal parameter u plays
the role of the Planck constant ~.

4.7.1. Formulas for A0. Let

Ĥ = k[[
x0
u
,
x1,

u
,
x2
u
, . . . ;

y1,

u
,
y2
u
, . . .]]

be the k-module of power series in infinitely many variables. We will be using
the annihilation operators pj = u ∂

∂xj
and the creation operators yj

u , as well as
creation/annihilation operators

(uDxj
f)(x0, . . .) =

u(f(x0, . . . , xj−1, xj+1, xj+2, . . .)− f(x0, . . . , xj−1, xj , xj+2, . . .))

xj+1 − xj
Define

T = (1 +

∞∑
k=1

eAk
yk
u − 1

Ak
Xk−1 . . .

eA1
y1
u − 1

A1
X0) exp(

1

u
x0)

where

(4.25) Xk = −uDxk
◦ 1

2
p2k +

1

2
p2k ◦ uDxk

− uDxk

(4.26) Ak = −(p1 + . . .+ pk−1)pk −
1

2
p2k − 1

Proposition 4.7. Transform an element of Ĥ into an element of Â0(a1) as
follows: replace any monomial

(
x0
u

)n0(
y1
u

)m1(
x1
u

)n1(
y2
u

)m2 . . .

by

(
α

u
)n0(

α[α, α]m1

um1+1
)(
α

u
)n1(

α[α, α]m2

um2+1
) . . .

Then the element T gets transformed into an element T (α) that satisfies the equation
from Theorem 3.3 when n = 1, λ0 = 0, and λ1 = α.
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4.7.2. Formulas for A0. Now let

Ĥ = k[[
x0
u
,
x1,

u
,
x2
u
, . . . ;

y1,

u
,
y2
u
, . . . ;

η1,

u
,
η2
u
, . . . ;

z1,

u
,
z2
u
, . . . ;

ζ1,

u
,
ζ2
u
, . . .]]

where ηi, ζi are odd variables. Define

T = (1 +

∞∑
k=1

(F (yk, zk, ηk, ζk, Ak)Xk−1 . . . F (y1, z1, η1, ζ1, A1)X0) exp(
1

u
x0)

where

(4.27) F (y, z, η, ζ, A) = (η
∂

∂y
+ ζ

∂

∂z
)(1 +

z

u
)

y
z

4.7.3. Formulas for A1. Now let

Ĥ = k[[
x0
u
,
x1,

u
,
x2
u
, . . . ;

y1,

u
,
y2
u
, . . . ;

η1,

u
,
η2
u
, . . . ;

z1,

u
,
z2
u
, . . . ;

ζ1,

u
,
ζ2
u
, . . .]]

where ηi, ζi are odd variables. Define

T = (1 +

∞∑
k=1

(F (yk, zk, ηk, ζk, Ak)Xk−1 . . . F (y1, z1, η1, ζ1, A1)X0) exp(
1

u
x0)

where

(4.28) F (y, z, η, ζ, A) = (η
∂

∂y
+ ζ

∂

∂z
)(1 +

z

u
)

y
z

Proposition 4.8. Consider the map

Ĥ → Â0(a1)

sending

(
x0
u

)n0 · (η1
u

)a1(
y1
u

)p1(
ζ1
u

)b1(
z1
u

)q1 · (x1
u

)n1 · . . .
to

(
α

u
)n0 · α

a1 [α, α]p1

up1+1
(
αb1 [α, α]q1

uq1+1
)(
α

u
)n1 · . . .

for ni, pi, qi ≥ 0 and ai, bi ∈ {0, 1}. Then the element T gets transformed into an
element T (α) that satisfies the equation from Theorem 3.3 when n = 1, λ0 = 0, and
λ1 = α.
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