Gauss-Manin connection in noncommutative geometry, I1

Boris Tsygan

ABsTrACT. This paper is a continuation of [?] where we reviewed results on
the Gauss-Manin connection in noncommutative geometry, mostly from [13],
[9], [27], [33]. The Gauss-Manin connection in periodic cyclic homology was
introduced by Ezra Getzler in 1991, then generalized to a superconnection by
the author in a joint work with Dolgushev and Tamarkin. The key to these
constructions is the Cartan calculus in noncommutative geometry. In this
paper, we prove explicit formulas for the Gauss-Manin connection which seem
to be of interest because they strongly evoke physical formulas such as WKB
expansion (where the role of the Planck constant & is played by the formal
parameter u of degree two). One corollary is that the connection is p-adically
integral, which allows to define noncommutative crystalline cohomology of
algebras over a finite fields.

In loving memory of Yuri Ivanovich Manin

1. Introduction
2. Summary of results of [?]

2.1. The algebra a(g). Let k be a commutative unital ring where 2 is invert-
ible. Let u be a formal parameter of degree two. For a graded Lie algebra g, let
a(g) be the associative DG algebra over k[u] generated by a subalgebra U(g) and
by elements (X), X € g, |(X)| = |X| + 1, subject to relations

(2.1) (X, (V)] = (=) N([x,Y]); [(X), (V)] =0
with the differential ud where
(2.2) ud(X) =uX; udX =0

Alternatively, a(g) — (Uypu)(g[u, €]), ud) via (X) — eX where € is of degree one
and square zero. The isomorphism sends (X) to eX.

Let a,, be the free graded Lie algebra generated by elements Ag, ..., A, of degrre
one. By a(a,) we will denote the completion of a(a,)[u"'] with respect to the
filtration induced by the grading of a,, (for these purposes, |u| = 0).

For an element of degree one of a,,, define an element of degree one in a(g)[u~
by

']

/\2
(2.3) dy=r— )
u
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Let k be of characteristic zero. Define an element of degree zero in a(a;) by

(2.4 00, ) = exp( Y120,
LEMMA 2.1. (1)
ud(dy,) +d3, =0
in a(ap);
(2)
udt()\o, /\1) + d)\ot()\o, )\1) - t()\o, /\1)d)\1 =0
in a(ay);
3)
t( Ao, A1)E(A1, A2) = t(Ao, A2)
in a(az).
PROOF.

ud(dy,) +d3, = —A\§ + A5 = 0;
if we denote A\; — A\g by «, then

w2y = 3 (G () =
k=0
n—1 k—1
n(%)nfla _ Z(%)nflfk Z(%)kflfl( [a;a] )(%)l _
k=0 =0

n@ya= Y Y @t @y o

1=0 k=I+1 w woou
n(y o= -1 @yl @y
=0

We will need this formula later; for now, we can use the fact that all (X) commute
and obtain

(2.5) wd(S)" = ()" - %n(n -y [a;a])
Therefore

(2:6) wdexp((2)) = exp((2)) (@ — &2

But ! B “

udt()\m )\1) + d)\Ot()\o, /\1) — t()\o, )\1)d)\1 =

o 2 a o 2
udexp((2) + (o — 20 exp((2)) — exp(( D a1~ AT =

ep((2)(a— ) 4 o, expl( )]+ expl( ) -+ O - OBy _
@y 0D _ Pucd (o), @) 8= Oura)

The last statement of the lemma is obvious. O
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2.2. Algebras Ay and A;.

DEFINITION 2.2. For any differential graded Lie algebra g, let U™ (g) be the
kernel of the augmentation U(g) — k. Let Cobar(U*(g)) be the free associative
algebra generated by U™ (g)[—1] (the degree shift by one). We denote the free
generator corresponding to z € U (g) by (z). Define

(27) aCobar(x) = Z(_l)lx(l)‘(x(l))(x@))
where the comultiplication is defined by
Az = Z M @ z®

In addition, the differential dy induces a differential on Cobar(U™*(g)). Now define
the dg algebra as follows. It is an algebra over k[u] generated by the DG subalgebra
(U(g),dg) and the subalgebra Cobar(U*(g)). The only additional relations are

(X, (2)] = (adx(2)), X € g,2 € U™ (g).

The differential acts as follows:

(2.8) z— dgz,z € U(g); () = (—dgz) + Ocobar(z) +uz, z € Ut (g).
Define also

(2.9) Ao(g) = U(g) xo Cobar(Sym™(g))

in the same way as above, the differential being

(2.10) x = dgx,x € U(g); () — (—dgx) + Ocobar(z) + uBo(x)
where

By(z) =, = € Sym'(g); Bo(z) = 0,z € Sym™"(g)
LEMMA 2.3. Let k contain the rationals. There is a natural isomorphism of
DG algebras
Ao(g) — Ai(g)

PROOF. Start with the case when g = kD is a free k-module generated by an
element D of degree zero. Let

(2.11) Z apz*y =yly —x)... (y — (n — 1)z).
k,1>0
The formula
(2.12) (D) = D" € 37 a DHD)
k+l=n

defines an isomorphism of DG algebras

Ao(g) — Ai(g)

In general, for Dy,..., Dy in g and (D;...D; € Sym®(g), define the image of
(Dy ... D) to be the coefficient at ¢1 ...t in %[(t1D1 + ...+ txDg)*]. Here t; are
formal variables that are central and such that |t;| = —|D;]. O
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REMARK 2.4. Define the Stirling numbers as the coefficients of the power series

oo

1
kol _ 1 _ A
(2.13) D eknty =) —yly—2)...(y—(n—1a).
k>0 n=1
Note that
=1 T

_ Y

@11 3w ety =3 gy —2) .y (- D) = (14 )
k,1>0 n=1 :

Then, formally (or in an appropriate completion),
1 1
(ex? =11+ > ch,lpk(p)l
Ei>1

under the isomorphism from Lemma 2.3.

DEFINITION 2.5. Let Ag(a,) be the completion of Ag(a,)[u~"] with respect to
the increasing filtration induced by the grading of a,,. Define

D,\j = )\j — (G%Rj — 1) S ﬁo(an)l
where R; = )\?.

LEMMA 2.6. Let k be of characteristic zero.

(1)
(aCobar + UBO)D)\O + Dig =0
in Ag(ao)
(2) There exist elements T'(Ag, ..., Am) of degree 1 — m in Ag(a,,) for all
m > 1 such that

(600bar + UB())T(A(), ey )\n) + D)\OT()\(), ey )\n)"'

n—1
S =1y ANT N An) + (=)™ T (Mo -+, An) Da,
j=1
n—1 . .
=D (=TT (Ag, A A) =0
j=1

3. Explicit formulas

3.1. Ordered exponential differences. Let I be a finite set. Let {y;|i € I'}
be variables, {A;|i € I} commuting operators on a k-module H, {X;|i € I} and
D operators on H. Introduce a total ordering on I and use it to identify I with

{1,...,n}. Put
(3.1)
Anyn _ 1 n-1 Ajyj —_ ]_
5{X,}7<({A2y1}) = eT(Xn + A, Z eAn-1yn—1tFAjt1y54 eTXJ)
n = j

(We assume that the above is well-defined. For example, A; could be pronilpotent
operators on a completion associated to a filtration).
For two elements ig < iy of I, put

(3.2) Eivio = Ex,lig<i<iyy, < {Aiyilio < i < ir})
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For example, if X; = A;X for all i then
(3.3) Eiviy = (Vi — 1)ezi(]§j<i1 A9 x

3.2. Admissible words. We are going to encode (some) elements of Ag(ay,)
by noncommutative polynomials Set a;; = Aj — A;. Let B, be the algebra freely
generated by z1,...,z, and by k-modules Sym( ) and Sym(W,,), where

Vo =W, =

Here a2 stands for the graded component of degree two in a,,. The k-module B,, is
spanned by words on letters x1, ..., x,, f, g where f € Sym(V,,) and g € Sym(W,,).
For such a word, let f;, resp. g;, be the jth letter of the type f, resp. g, counted
from the left. We call a word admissible if:

(1) There are exactly n — 1 letters of type g.

(2) For every j > 1, if there are letters of type f between g;,_; and g;, we
denote by f7 the closest such letter to g;. If there are letters of type f to
the left of g; then we denote by f! the closest such letter to g;. Then

e There are no letters ) between f7 and g; (or between g;_; and g;
if there is no f7) other than z,_; and ,_j11.
e There are no letters x between g;_; and f7 other than Tn—jt1-
o If there is no f', there are no letters x; to the left of g; other than
Ty and x,_1.
e There are no letters zj to the right of g,_; other than z;.
We denote the span of admissible words by H,,. For example:
m%'frw%-fz-wlxgﬁ-gl-$§~f3~$1-f4-f5
is a word in Hy; we have fl = f,.

Note that H; is just the free algebra generated by x; and by the k-module
k[a(znv [)‘07 0401]7 )‘%}

REMARK 3.1. There are extra conditions of admissibility that all our expres-
sions will automatically satisfy. If we put
Vn,m = Wn,m+1 = span{[aoj, aO,n*erl”j >n—m; [)‘07 aO,l]a AEL}
then those conditions are:

(1) All letters of type f between g;_; and g; (or left of g; when j = 1, or
right of g,_1 when j = n) denote elements of Sym(V,, ).
(2) For all m, g, € Sym(Wy, ).
Given an admissible word in H,, we associate to it an element of Ag(a,,)[u"!]
as follows. We write the same word, where
e z; is replaced by ag ;;
e g; is replaced by (%n=d bl gy
e any f between g;_; and g; (or to the left of g; when j = 1, or to the right
of gn—1 when j = n) is replaced by (*%2=iEL f).
The resulting map H,, — Ao (a,) extends to

(3.4) Hy — Ao(ay)

Here the left hand side is the completion of H, [u, u~1] with respect to the grading
where u=0, |z;| =1, | f| is the degree of f in Sym(V;,), and |g| is the degree of g in
Sym(Wp,).
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3.2.1. The annihilation operators. As in the commutative case, there are partial
derivatives

awj : Hn — H’n
Such operator takes a word into the sum of all words obtained from it by removing
any letter z; from this word. (Or, alternatively, by replacing any fragment z}*
by mxznfl). But there are also partial partial derivatives. For example, we may

demand that only letters z; to the left or to the right of a certain position are
deleted. For example:

DEFINITION 3.2. Let
Oyt + My — Hn
transform a word

'~-gn—1-~~fr'x’£m 'fr+1'x71n2

into the sum or words obtained by replacing each fragment -z7*- by ~mx§”71', except
for the two rightmost fragments -z7"*- and -27"?+;
let
Oy, + M — Hn

transform a word
m
coiGn—1 - fro)?

into the sum or words obtained by replacing each fragment -z7*- by ~mx§”71', except
for the one rightmost fragment -z7";
let

3;}1 T Hy = Ha

transform a word

'~-gn—1-~-f7"'lqn1 ,fr+1.x’£ﬂ2

into
o Gnet e fromaa T fy 2T
let
O, Hn — Hy
transform a word
...gnfl.ufr _x1n1
into

mi—1
o n—1-.. fr-maz]"

One has
Opy =0, +01 =0, +01 +09],

3.2.2. The creation operators. The creation operators will always act on the
rightmost letter of the type f or g, whichever it is. More precisely, we take the
letter h such that it is not an x; but all letters to its right are x;, and multiply
it by F € V,, = W,, = Sym™ (a2) (so that we obtain one new letter hF). We will
denote this operator by

F:H,—H,.
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3.2.3. The creation-annihilation operators. There are two types of these oper-
ators. They decrease the degree in x1 but create a new letter of type f or g.
1) Define

D:H,— Hn
to be the operator transforming a word ... - 27! into
i+j=m—1

where f =1 is the unit in Sym(V).

2) Define A(x5") as follows: in each monomial in the expansion of (x; + z})™,
replace the rightmost letter ) by ¢ = 1 € Sym(W,,); then replace all other x| by
zo9 — x1. Now define

CHy — 'Hn+1
to be the operator transforming an admissible word into the following: replace all
xj by x;41; replace all f(Xo, A1,...,An) by f(Ao, A2, ..., Apt1); do the same for all
g; and then replace the rightmost fragment z3* by A(z5").

3.3. Formulas for 7. Using notation of 3.1, consider

Qgi, o . Ao, & A2
(3.5) g{Xj|1§j§n;Y,Z},<({AjM|1 <Jj< n;B%;C?})
Here
(3.6) Aj = —ud,,udl , X; = AjouD
when j > 2;
N 1

(3.7) A = —ud, ud], — i(uall)Q;
3.8 X, = —uD o ~(ud] 2 + :(ud! )2 o uD;
() 1="Uu Oi(ua:l) +§(u11) o ub;

. = —U 5 = o ub; = — = —uD;
(3.9) B ., Y=BouD; C=-Id, Z D

and we can choose any linear order < . We also need an ordered exponential dif-
ference related to creation/annihilation operators creating a new letter of type g.
Consider

[C%0j7001]| Ao, ao1] A2

1<j<n;B[

(3.10) Erxr n<i<niyzy,< ({4 <j< ;0
where A;, B, C are as above and
(3.11) X = —A; oudl u ; Y;=-B oudl ; C=-udl

Again, the choice of a linear ordering is arbitrary (but same as the choice above).
We denote by iy the minimal element with respect to the order < . We recall the
definition of &;;; in the case of (3.10), we use the notation &/;.

THEOREM 3.3. Consider the following elements T(Xo, ..., An) of H,
1
T M) =0+ Y Eig+ D Einiririg + ) exp(~a1)

11240 12241210

TAo o dnr) == Y. iy Eininli) TRy -5 An)

kE>0i,>...>i0
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for n > 0. Let T(Xg, ..., A\n) be elements of Ao(a,) represented by T(Xo, ..., An).
Then they satisfy the equations from Lemma 11.4.

4. Proof of Theorem 3.3

4.1. The homotopy on the cobar complex.
4.1.1. Divided powers. Let V be a free graded k-module. Put
(4.1) Sym,q (V') = Symq(Veven) ® Sym(Voaa)

(This is independent of a choice of V). Choose a set of free generators {y;|i € I'}
and a linear ordering on /. Then Sym,4(V') is the k-module freely generated by
finite products

(4.2) g = TTo™

where m; > 0 for even y; and m = 0 or 1 for odd m;. Define

(4.3) H yz[mi] . H yl[nq H (my ':‘nn'z z[m1+nl]

[m

(with the obvious sign). By definition, Y; 7 =0 for m; > 1.

There is unique graded coalgebra structure on Sym,4(V') compatible with mul-
tiplication and such that

(4.4) A = Y. yrey

We denote by Sym;d(V) the subcoalgebra linearly spanned bt y!™, m # 0.
There is another product on Sym_4(V) :

(same sign as in (4.3)).

4.1.2. The homotopy. Let V, y;, < be as above. Define the following operator
on Cobar(Sym;fd(V)).

For a monomial in Cobar(Sym;fd(V)), let n be the maximal element of I for
which y,, occurs in it. Assume that this word is of the form

(4.6) w = wo(ug)(uy) - .. (ug)(Yn)w1
where

w1 = (y;,) - (Y5)
for j1,..., 51 < m;

wp € Cobar(Sym;d(V)); UL = Yiyy- -5 Uk = Yjy

for iy,...,i, < n; and either ug = y, or ug € Sym;dl(V). Put
k
how = Z(—l)lj wo(uo) - .- (W) * Yn)(Ujg1) - . (u)ws
§=0
where

= fwol + (lyul +1)( Y (s + 1) + [uy]

j<i<k
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LEMMA 4.1.
[h07 8Cobar] =1Id—iP

Here iP = 0 on the two-sided ideal generated by (u), u € Sym;dl(V), and

iP((yi,) - (Win) = £W5) - - (¥5,)
where the right hand side is the re-ordering of the left hand side such that j; >
... > jn (the sign is obvious).
In other words: we have a deformation retract

(4.7) i : Sym(V[-1]) — Cobar(Sym/,(V)) : P

with hg being the homotopy between Id and iP.

The proof of the lemma is straightforward. In particular, hg is a contracting
homotopy for ker(P).

4.1.3. The algebra A5%(g). Now let k be arbitrary. It is easy to see that for
a graded Lie algebra g, the coalgebra Sym 4(g) is equivariant under the adjoint
action of g. We define the DG algebra exactly as in Definition 2.2 but with free
generators (x) for x € Sym;d(g). Now extend hg to Cobar(Symgd(g)) so that it
commutes with the right action of U(g) and with u. We have a deformation retract

(4.8) i : (Ao(g), dcobar) — Cobar(Sym;d(g))U(g)[u] : P

where, as before, dcopar = Id — i P.

The differential uBy on the left hand side gets intertwined by P with the
Chevalley-Eilenberg differential on the standard chain complex C,o(g,U(g)). The
latter is acyclic when k contains the rationals. This is what was used in [?] to prove
the existence of T'(Aq, ..., An) in characteristic zero.

In general, the Chevalley-Einenberg complex is not acyclic. For example: Let
a is an Abelian graded Lie algebra with one generator of a of degree one. Identify
()™ with ™™ where n > 0 and m = 0 or 1. Then the Chevalley-Eilenberg
differential becomes 68% which of course has nontrivial homology. There is a divided
power version of the Chevalley-Eilenberg complex which is acyclic. This makes it
very plausible that T'(Ag, ..., A,) satisfy some integrality property. We will take a
slightly different and more explicit route to show this.

4.2. Some properties of hy. We have
(4.9) By=B"+B"

where

—

B'((w)...(wa) = > (D5 () () (g und) - ()

1<j<k<nu;€g
B"((u1)...(w)) = > =DV (w)... (). (un)y;
1<j<nju;€g

Here

e = Sl + 1) + gl S (el + 1) + |
i<j j<i<k
=Y (sl + 1)+ Jug| Y (il +1)
i<j j<i<n
LEMMA 4.2. Assume that the homotopy hqg is constructed using the linear order
on free generators of a, that is consistent with the grading.
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(1) Let o be an element of order one in a,. Then

n—3

mB ) = 3 Lntn 1) = G+ 1)+ 2)( 2y oD @y
§=0
(2) Let A and a be two elements of degree one in a,. Then
n—2
ol (277 = S — 1 - gy &y LAl @y
=0

(3) Let A and « be as above. Then

a, ()T a5 (aa?)

ho((=)"

u u

)= (=)

BN(%)" (%)n—l
and .,
By == @y @ yoe
=0
Therefore hoB" ()" = 0 and
n—2101—1
moB (2 = 30 (14 )2y ) (@i
1=0 j=0
a.;(afa,a]) a
D D Uy (T =
j=01l=j5+1
n—3
S stnln - 1) - G+ 1)+ 2))( 3y oD @y
7=0
Also: B
ol (27 = —ng S (G el @
k=0
n—1k—1
Syl ey
k=0 5=0
n—2 n—1
(%)J (a[zéa]) (%)n—Z—j —
J=0 k=j+1
n—2
S tn -1 gy @p Al @yecesy
7=0

Finally, the last statement in the lemma is straightforward.

LEMMA 4.3. For a and A of degree one in a, and f € Sym>1(an,

(1)

B (F(2)") = () B (3 (7 12 L 1)
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2)

holr, F(5)™] = (D fholx, (5)7] + (f #

(3)
ho(F(2 (X)) = (VI o (

u u u

)+ (e

Proor. We have
roB/(F(2)") = ~(-D1¥ 3o+ )y (L @2t =

u
=0

n—2 [

DBy = 3 (- 120y @y
=0

u u

—_

(DY (FhoB'(S)" = Sn(n = D(=1VI(f « 2 (2)n2)

1
()7 B (2" 4 Ll — 1)(f #
u
and similarly for the other two statements. (]
LEMMA 4.4. (1)
hE =
0
(2) For any wg € Ag(ay), f € Sym”(a,), and a of degree one in a,,
ho(wof(2)") = (=)o g (£(2)™)
(3) For «; of degree one in a, and f; € Sym>1(un),
B'(Z2ymo(fy)... (f1)Lym) =
(). () 2y
-1

S = ey (B (B (B ED™ + fag, (SH)

U u
Jj=0

4.3. The end of the proof of Theorem 3.3. First find 7" = T'(Ao, A1).
Because of Lemma 2.1, we look for 7" = t + T where t = exp((®2+)) and 7' is in
ker(P). We have to solve

(O+uBg)(t+T) 4 Dx,(t+T)— (t+T)Dx, =0
(we write 0 = dcobar). If
¢ = uBot + Dyt — tDj,
then the above turns into
(4.10) ¢+ (0 +uBy)T + D\,T —TDy, =0
Put D = uByT + D),T — TD,,. We have
9 =0D+D*>=0

We have seen that hg is a contracting homotopy for (ker(P), d). By the homotopy
perturbation lemma,

(4.11) h = (1+[D,ho)) ‘ho



12 BORIS TSYGAN

is a contracting homotopy for 9 + D. Indeed:
[0+D, h] = [0+D, (1+[D, ho]) "' ho] = —(1+[D, ho]) " [0+D, [D, ho]] (1+[D, ho]) "

+(1+[D, ho)) 1 (1 + [D, ho]) = (1 + [D, ho]) " [0D + D?, ho](1 + [D, ho]) ' +1=1
So the solution to (4.10) is

(1.12) T= —hé = —(1+[D, ho) oo

In other words,

(oo}
e
T = ZTk; Ty = eXp((%); Try1 = —ho(uBoTy + DT — T Dy,)
k=0
Since T}, is in the image of hg for k£ > 0, and because of the properties of iy discussed
above, this is the same as
> Qo1 ’ )\%
T=> Ty Th= exp((==); Tor1 = —ho(uB'Ti + [No, T] + Ti(+

u

)
n=0
Now the statement for n = 1 follows from Lemmas 4.2, 4.3, and 4.4, as well as from
Ay _ 1
e

A

The proof for n > 2 is by induction in n. The argument is the same if we take ¢ to
be the right hand side of the formula in Theorem 3.3. Choose the linear order on
generators of degree one of a,, 41 so that ag 41 < ... < ap1. (As always, our order
is compatible with the grading). Then observe that all terms of ¢ are in the kernel
of hy except for —T'(A\g, A2, ..., An+1). This completes the proof.

y+Ayxy+adlyryxy+... =

4.4. The integrality property. Optimistically, one would expect the ex-
pression T'(\g, ..., \,) to be an infinite linear combination of terms #T (m) where
T(m) is of degree m (in the grading induced by the grading of a,,). A priori, it is
an infinite linear combination of terms

(4.13) L1 (f1)-

m! m1!

fn)

1
..—mN!(

in T(m), where m; = [‘f—gl] and m = Zj\;l |fj]- Actually, the integrability prop-

erty is much stronger, although (unless we missed some cancellations) it is slightly

weaker than the optimistic case. More precisely, T is a linear combination of mono-
[@o,1,20.]7

mials -L;(f1)...(fn) where each f; contains no more than one factor pEn b

there are no more denominators.

To see that, recall the notation of (3.5), (3.6), (3.7), (3.9). All A; are of the
form A;a%i for some i and some A’. Similarly, B = B’@;. Now, X; = A;D for
j > 2 and Y = BD; so contributions of those operators are divisible by %(6‘1 IR
The terms with C' also introduce no new denominators. (Example:

1 ,ap1., 1,001 )\fq
) )
divides (n + 2¢)!).

But the term corresponding to of A; is

eAllall [o1,01] 1

AL9L
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where X is not a multiple of 8. Its contributions are multiples of terms of the
form ﬁ(@ll)q[agl,am]q, and therefore of ﬁ[am,am]q. Iterative steps push
these factors to the left (and replace a1 by agp).

4.5. The formulas for A;.
4.5.1. Special elements of Ai(a,,). Let A(ll) be the linear span of elements z(y),

x € U(ay), y € UT(a,). This is a k-submodule of .,Zl\l(an). It carries the product *
which is defined as follows:

(4.14) wxy = ay; o (y) — (1)1 (@) xa = (1)1l (ad, (y)); (2)*(y) = (2y)

In other words, * is the cross product on U(a,) x Ut (a,).

As usual, /Tgl) is the completion of Agl)[uﬂfl] with respect to the filtration
induced by the grading of a,.

Recall the isomorphism in Lemma 2.3. By definition, it sends exp(%) to

R R ~
(4.15) Sy =1+ 2R e AW
U U
Next, for any a and any o € a', R € a2, define
m—1 n—1
(416)  (aDg)(R™R") = > RfaR"FR")+ Y R™(RFaR"'F)
k=0 k=0
Define
a R R
4.17 E(—,—) = (aDr)(E(—
(117) (2, %) = (aDR)EC)
In general, let a,,; be the free DG Lie algebra with generators a,...,q, of

degre one and R of degree two. Let a; Dg be its derivation of degree one that sends
R to «; and all other free generators to zero. Define

aq a, R
4.18 E(—,...,—,—)=(a1Dg)...(anDr)E(R
(115) (L% 2 = (1 D) - (an DR)E(R)
By universality, elements (4.18) are defined for a; of degree one and for R of degree
two in any a.
LEMMA 4.5. Under the isomorphism .Zl\o = ./11 as in Lemma 2.3,
aq Qn R (e %1 a, R
(—...—ev)=E(—,...,—,—)
u u u uu

PrOOF. We arleady know this for n = 0. For n = 1, by definition,

(aR™) — nil > ari(aDg)(RF(RY))
k+l=n+1
(as in (4.16)). Therefore
Oz R u~ " akl k7l R a R
UG“ HZ Z NCESIE (aDg)(R (R)):(OZDR)(‘S(E)):S(E»E)

n=0 k4+Il=n-+1

Similarly for all n > 1. O
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4.5.2. Admissible words, the case of A;. Recall the k-module H,, from 3.2. We
change the definition slightly and require letters f and g to be monomials in Aﬁ”.
The map H, — Ap(a,) is also different from the one we used before, and more
straightforward: it sends z; to (ap ), and monomials f and g to their images in
Ap(a,); A concatenation of words is sent to the product of their images.

4.6. The new &;;. Asin 3.1, let I be a finite set. Let {y;|¢ € I} be elements
of degree two in a,. Also, let {4;|i € I} be elements of some commutative ring
Op of operators, such as the ring of linear differential operators in several variables
with constant coefficients. (We assume, as it happens in our case, that Op has no
zero divisors). Let H be a k-module on which Op acts, and let be operators on H.

Choose a linear order on I and use it to identify I with {1,...,n}. Recall the
expressions

(4.19)
i eAnyn — 1 — et — 1
5{Xi},<({Aiy7}) = T(Xn + A, Z eAn-1yn—1t A A1y TX])
u n P ;

as in (3.1). They lie in the completed tensor product
(4.20) Sym(a2)® Y Opo X,
i

which is the completion of the usuall tensor product with respect to the filtration
induced by the grading on a,,.
Expressions (4.19) are linear combinations of the form

k
i 1
(4.21) Exy <AL =Xo+ Y exp(S D Aw) X
1<j<k<n 1=j

where
Xo, Xjk S Z FI'&C(Op) oX;

(Frac(Op) being the field of fractions of Op); in fact they lie in (4.20). (Example:

e%Ayfl
a0
Recall also
(4.22) Eiris = 5{xi|i1§igi2},<({f4i%|ﬁ <i<is})
Now consider two partial examples (3.5), and (3.10). For the example (3.5),
. vi I
(4.23) Exi<({4i]) = Xo+ > E(~ a0, > A X
1<j<k<n i=j
For the example (3.10), we do the same but now
. Yi 1 1 1
! ? _ T .
(4.24) g{xi},<({AiE}) =Xo+ 1<j§<:k<n5(aa01» L2 ; Aiyi) X ji

We denote by c‘j‘im resp. g'i’liz, the versions of £ and & with indices limited to
11 <1 < is.
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4.6.1. Ezplicit formulas.

THEOREM 4.6. Consider the following elements T(Ao, ..., An) of ﬁn :

~ 5~ = 1
T(Ao, M) =(1+ Z Eivig + Z EivirEirig +---) exp(aml)

i1 >0 12211 >0

Thor-dr) = =00 Y Eies - Eiinli) Ty An)

k>045,>...>i0

forn > 0. Let T(Xg,...,\n) be elements of A\o(an) represented by T(Ag, ..., An).
Then they satisfy the equations from Lemma 11.4.

Here 7o is the minimal element of I.

4.7. The free Fock space description of 1. Here we give another descrip-
tion of the operators T that we constructed above. For the sake of simplicity we
only discuss the case n = 1, A\g = 0. The goal is to point out certain similarities
with expressions arising in mathematical physics. The formal parameter u plays
the role of the Planck constant A.

4.7.1. Formulas for Ag. Let

5 To 1, T2 Y1, Y2
H=k[[—, —, —,...;=,=,.. ]
U ou - u U u
be the k-module of power series in infinitely many variables. We will be using
the annihilation operators p; = u% and the creation operators %, as well as
J

creation/annihilation operators

(UD f)(xo ) _ u(f((EO, sy Lj—1, Tj41, Lj425 - - ) — f(x07 sy Lj—15Ljy T2, - - ))
“ ’ Tj+1 = T;
Define
e’} Aky—k Alﬂ
et —1 etltw —1 1
T = 1 7X i 7X -
( +kZ::1 A k-1 A o)exp(uxo)
where
Ly 1,
(4.25) X = —uD,, o 2Pk + 3Pk ouDy, —uDy,
1

(4.26) Ap=—(1+ ... +pr—1)pr — ipi -1

PROPOSITION 4.7. Transform an element 0f7-A£ into an element of ﬁo(al) as
follows: replace any monomial

@no&ml E"1%m2
(oo (Lym Ty (Lym
by
a ala,a]™ |« ala, a]™2
e
u umit u um2+
Then the element T gets transformed into an element T'(«) that satisfies the equation

from Theorem 8.3 when n =1, \g =0, and \; = «.
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4.7.2. Formulas for Ag. Now let

=~ oo T, T2 Y1, Y2 oM, e 2, 22 QL Q2
H=k[[—, —, =, . ;== =, ==, =2 =]
u u u u u u u u u u u

where 7, (; are odd variables. Define

- 1
T = (14 > (F (ks 2k s G Ap) X1 - Flyr, 21,1, G, A1) Xo) exp(- o)
k=1

where
8 6 VAN
4.27 Fly, 20, ¢, A) = (02 + ¢y 4 2yt
(4.27) (y,2,m,¢, A) (n6y+C62)(+u)
4.7.3. Formulas for A;. Now let
~ To Ti, T2 Y1, Yo m, 72 21, 22 G, G2
H:k[[;77,z777,;,,7,;,,7,;,,z,;7”

where 7n;, (; are odd variables. Define
— 1
T=(1+ Z(F(yk, 2y Mhes Gy Ak) Xie—1 -+ F(y1, 21,m1, C1, A1) Xo) eXp(al’o)
k=1

where

0 0

PROPOSITION 4.8. Consider the map
7/'2 — ﬁo(al)

z

A
)

sending
@no, ﬂmﬂmgblﬂm, ﬂm,
(Zyre - (Mym (L Sy (Zyan (Eyme
to
Ay @l alta,a]® ol
(a) ' up1+1 ( uq1+1 )(g) ’

forng, pi, ¢; >0 and a;, b; € {0,1}. Then the element T gets transformed into an
element T'(«) that satisfies the equation from Theorem 3.3 whenn =1, A\g =0, and
)\1 = Q.
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