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Abstract

We show that every set A of natural numbers with positive upper Banach density can
be shifted to contain the restricted sumset {b1 + b2 : b1, b2 ∈ B and b1 6= b2} for some
infinite set B ⊂ A.

1. Introduction

One of the most celebrated results in Ramsey theory is van der Waerden’s theorem [22]:
if one partitions the natural numbers into finitely many pieces, one of those pieces must
contain arbitrarily long arithmetic progressions. Often, it transpires that a partition re-
sult holds because one of the cells of the partition is large in a suitable sense. In the case
of van der Waerden’s theorem, positive density was conjectured by Erdős and Turán [5]
to guarantee the existence of arbitrarily long progressions. After work of Roth [20] estab-
lished the case of length three progressions, Szemerédi settled the conjecture positively in
general [21], showing that any set A ⊂ N with positive upper density contains arbitrarily
long arithmetic progressions.

Contemporaneously, Hindman [12] proved a landmark result involving infinite arith-
metic patterns: for every finite partition of the natural numbers there is an infinite set
I ⊂ N such that {∑

i∈F

i : F ⊂ I, 0 < |F | <∞

}
is in one cell of the partition. Looking to connect the two major achievements – Hindman’s
theorem and Szemerédi’s theorem – Erdős formulated the following conjecture on multiple
occasions.

Conjecture 1.1 (Erdős [6, Page 305], [7, Pages 57–58], and [8, Page 105]). For any
A ⊂ N with positive density there exists an infinite set B ⊂ A and a number t ∈ N such
that

A− t ⊃ {b1 + b2 : b1, b2 ∈ B and b1 6= b2}.
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This problem was studied by various authors, including Nathanson [19], Kazhdan
(see [19, 13]), and Hindman [13, Section 11]. Hindman provided several equivalent forms,
including a natural reformulation using the Stone-Čech compactification of the integers.
A special case of Conjecture 1.1, also conjectured by Erdős, was resolved in [18], asserting
that, under the same assumptions, A contains a sumset

B + C = {b+ c : b ∈ B, c ∈ C}

of two infinite sets B,C ⊂ N. Further recent progress in this direction has been made
in [3, 14, 16], and further history on Conjecture 1.1 and surrounding problems can be
found in [13, 17, 18, 19].

Our main theorem resolves Conjecture 1.1. To state our result precisely, recall that a
Følner sequence Φ on N is any sequence N 7→ ΦN of finite subsets of N with the property
that

lim
N→∞

|ΦN ∩ (ΦN + t)|
|ΦN |

= 1

for all t ∈ N. A set A ⊂ N has positive upper Banach density if

lim
N→∞

|A ∩ ΦN |
|ΦN |

> 0

for some Følner sequence Φ.

Theorem 1.2. For any A ⊂ N with positive upper Banach density, the following hold:
(i) There exist an infinite set B ⊂ A and a shift t ∈ N such that

{b1 + b2 : b1, b2 ∈ B and b1 6= b2} ⊂ A− t.

(ii) There exist an infinite set B ⊂ N and a shift t ∈ N such that

B ∪ {b1 + b2 : b1, b2 ∈ B and b1 6= b2} ⊂ A− t.

Note that in the formulation of Theorem 1.2 it is not possible to omit the shift by
t or remove the condition b1 6= b2 in either conclusion (see the discussion in [18] after
Question 6.2). Also, it was observed by Hindman in [13] that writing t = 2r + s for
r ∈ N and s ∈ {0, 1} and replacing B by B − r, one obtains the following corollary from
Theorem 1.2.

Corollary 1.3. For any set A of even integers with positive upper Banach density there
exists an infinite set B ⊂ N such that A ⊃ {b1 + b2 : b1, b2 ∈ B and b1 6= b2}.

Our proof of Theorem 1.2 uses ergodic theory and builds on the new dynamical meth-
ods developed in [16] to find infinite patterns in sets with positive upper density. To
formulate our main dynamical result we recall some basic terminology. By a topological
system, we mean a pair (X,T ) where X is a compact metric space and T : X → X is
a homeomorphism. A system is a triple (X,µ, T ), where (X,T ) is a topological system
and µ is a T -invariant Borel probability measure on X. The system is ergodic if any
T -invariant Borel subset of X has either measure 0 or measure 1, and equivalently we say
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that µ is ergodic for T . Given a system (X,µ, T ), a point a ∈ X is generic for µ along a
Følner sequence Φ, written a ∈ gen(µ,Φ), if

µ = lim
N→∞

1

|ΦN |
∑
n∈ΦN

δTna

where δx is the Dirac measure at x ∈ X and the limit is in the weak* topology. This
allows us to formulate a dynamical result equivalent to Theorem 1.2.

Theorem 1.4. Let (X,µ, T ) be an ergodic system, let a ∈ gen(µ,Φ) for some Følner
sequence Φ, and let E ⊂ X be an open set with µ(E) > 0.

(i) There exist x1, x2 ∈ X, t ∈ N, and a strictly increasing sequence n1 < n2 < . . . of
integers such that x1 ∈ E, T tx2 ∈ E, and (T × T )ni(a, x1)→ (x1, x2) as i→∞.

(ii) There exist x1, x2 ∈ X, t ∈ N, and a strictly increasing sequence n1 < n2 < . . .
of integers such that (T × T )t(x1, x2) ∈ E × E and (T × T )ni(a, x1) → (x1, x2) as
i→∞.

A proof of the equivalence between Theorem 1.2 and Theorem 1.4 is given in Section 2,
and the proof of Theorem 1.4 is given in Section 3. For a comparison between the
techniques in [16] and this paper, and an outline of how the new difficulties arising are
overcome, see Section 3.1.

We conclude the introduction with a natural conjecture on a higher order version of
our main theorem.

Conjecture 1.5. Let A ⊂ N have positive upper Banach density and let k ∈ N. Then
there exist an infinite set B ⊂ N and a shift t ∈ N such that

A− t ⊃

{∑
n∈F

n : F ⊂ B, 0 < |F | < k

}
. (1.1)

We remark that an example of Straus answering an earlier question of Erdős (see [2,
Theorem 2.2] and [13, Theorem 11.6]) shows that k can not be replaced by infinity in
(1.1).

Acknowledgements: BK acknowledges National Science Foundation grant DMS-2054643,
JM and FKR thank the organizers of the conference “Ultramath2022” during which part
of this project was completed, and DR acknowledges EPSRC grant V050362. We thank
the anonymous referee for helpful suggestions and comments.

2. Reduction to a dynamical statement

In this section we show the equivalence between Theorems 1.2 and 1.4, beginning with
the easier implication.

Proof that Theorem 1.2 implies Theorem 1.4. We prove that part (i) of Theorem 1.2 im-
plies part (i) of Theorem 1.4; the same proof with obvious modifications shows that
part (ii) of Theorem 1.2 implies part (ii) of Theorem 1.4.
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Let (X,µ, T ) be an ergodic system, let a ∈ gen(µ,Φ) for some Følner sequence Φ,
and let E ⊂ X be an open set with µ(E) > 0. Since E is open, there exists some
point y ∈ E that lies in the support of µ. Let U be an open ball centered at y (and
so µ(U) > 0) whose closure is contained in E. Since a ∈ gen(µ,Φ), the set A := {n ∈
N : T na ∈ U} has positive upper Banach density. Part (i) of Theorem 1.2 then implies
that A ⊃ {b1 + b2 : b1, b2 ∈ B, b1 6= b2} + t for some infinite set B ⊂ A and some
t ∈ N. Compactness of X yields an increasing sequence (ni)i∈N, taking values in B
for which x1 := limi→∞ T

nia exists. Passing to a subsequence of (ni)i∈N if needed, the
limit x2 := limi→∞ T

nix1 also exists. Since B ⊂ A, it follows that x1 ∈ U ⊂ E. Since
{b1 + b2 : b1, b2 ∈ B, b1 6= b2}+ t ⊂ A, we have that T tx2 ∈ E as well.

When the set A in Theorem 1.2 is of the form

A = {n ∈ N : ‖θ + nα‖R/Z < ε}

for some ε > 0 (or, more generally, is a Bohr set), the existence of a set B ⊂ N satis-
fying the conclusion of Theorem 1.2 is connected to the behavior of 3-term arithmetic
progressions θ, θ + β, θ + 2β in R/Z (or, more generally, in the underlying group). For
arbitrary A ⊂ N we bridge the gap between the combinatorial statement Theorem 1.2 and
the dynamical statement Theorem 1.4 using a dynamical variant of 3-term progressions
defined as follows.

Definition 2.1. Given a topological system (X,T ), a point (x0, x1, x2) ∈ X3 is called a
(3-term) Erdős progression if there exists a strictly increasing sequence n1 < n2 < · · · of
integers such that (T × T )ni(x0, x1)→ (x1, x2) as i→∞.

The role played in this paper by Erdős progressions parallels the role played by Erdős
cubes in [15]. Various other notions of dynamical progressions, for example those in [9,
15, 11], have already been used for related questions, but the one we use does not seem
to have been defined previously. We remark that in group rotations all the notions of
dynamical progressions agree with the conventional notion of arithmetic progression.

The next result completes the translation between ergodic theory and combinatorics
by connecting Erdős progressions and sumsets.

Theorem 2.2. Fix a topological system (X,T ) and open sets U, V ⊂ X. If there exists
an Erdős progression (x0, x1, x2) ∈ X3 with x1 ∈ U and x2 ∈ V , then there exists some
infinite set B ⊂ {n ∈ N : T nx0 ∈ U} such that {b1 + b2 : b1, b2 ∈ B, b1 6= b2} is a subset of
{n ∈ N : T nx0 ∈ V }.

Proof. Let c : N → N be a strictly increasing sequence such that (T × T )c(n)(x0, x1) →
(x1, x2). Since U is a neighborhood of x1, by refining the sequence c(n) we can assume
without loss of generality that {c(n) : n ∈ N} ⊂ {n ∈ N : T nx0 ∈ U}.

We now construct the set B ⊂ {c(n) : n ∈ N} inductively. First choose b(1) in
{c(i) : i ∈ N} with T b(1)x1 ∈ V . Note that with this choice of b(1) the set (T−b(1)V )× V
is a neighborhood of (x1, x2). Next, choose b(2) in {c(i) : i ∈ N} with b(2) > b(1) and

(T × T )b(2)(x0, x1) ∈
(
T−b(1)V

)
× V.
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It follows that T b(1)+b(2)x0 ∈ V and x1 ∈ T−b(2)V ∩ T−b(1)V .
Supposing that, by induction, we have found b(1) < · · · < b(n) ⊂ {c(n) : n ∈ N} with

x0 ∈
⋂

1≤i<j≤n

T−b(i)−b(j)V and x1 ∈
⋂

1≤i≤n

T−b(i)V,

we choose b(n+ 1) ∈ {c(i) : i ∈ N} with b(n+ 1) > b(n) and

(T × T )b(n+1)(x0, x1) ∈
( ⋂

1≤i≤n

T−b(i)V

)
× V.

This is possible because ( ⋂
1≤i≤n

T−b(i)V
)
× V

is a neighborhood of (x1, x2) and (T ×T )c(n)(x0, x1)→ (x1, x2) as n→∞. Together with
the inductive hypothesis, this implies

x0 ∈
⋂

1≤i<j≤n+1

T−b(i)−b(j)V and x1 ∈
⋂

1≤i≤n+1

T−b(i)V

concluding the induction. Taking B = {b(i) : i ∈ N} finishes the proof.

To deduce Theorem 1.2 from Theorem 1.4 using Theorem 2.2, we use the following
version of the Furstenberg correspondence principle.

Proposition 2.3 ([16, Theorem 2.10]). Given a set A ⊂ N with positive upper Ba-
nach density there exists an ergodic system (X,µ, T ), a Følner sequence Φ, a point
a ∈ gen(µ,Φ), and a clopen set E ⊂ X such that µ(E) > 0 and A = {n ∈ N : T na ∈ E}.

Proof that Theorem 1.4 implies Theorem 1.2. Suppose A ⊂ N has positive upper Ba-
nach density. Invoking Proposition 2.3 we find an ergodic system (X,µ, T ), a point
a ∈ gen(µ,Φ), a Følner sequence Φ, and a clopen set E ⊂ X such that µ(E) > 0 and
A = {n ∈ N : T na ∈ E}. Using Theorem 1.4, part (i), we can find t ∈ N and an Erdős
progression of the form (a, x1, x2) ∈ X3 such that x1 ∈ E and x2 ∈ T−tE. It now follows
from Theorem 2.2, applied with U = E and V = T−tE, that there exists an infinite set
B ⊂ {n ∈ N : T na ∈ E} = A such that

A− t = {n ∈ N : T na ∈ T−tE} ⊃ {b1 + b2 : b1, b2 ∈ B, b1 6= b2},

completing the proof of Theorem 1.2, part (i). If we invoke part (ii) of Theorem 1.4
instead, then the same argument, but using Theorem 2.2 applied with U = V = T−tE,
yields Theorem 1.2, part (ii).
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3. Proof of the dynamical statement (Theorem 1.4)

3.1. Outline of the proof

Our first observation is that if (x0, x1) is generic for a (T × T )-invariant measure on
X × X and (x1, x2) is in the support of that measure, then (x0, x1, x2) forms an Erdős
progression. One may be tempted, then, to find pairs having these properties with respect
to the product measure µ× µ on X ×X. However, it may be the case that the product
measure is not T×T -ergodic, and so typical pairs may only be generic for one of the ergodic
components of µ × µ. This possibility leads us to consider the ergodic decomposition of
µ× µ.

We use the notation (x1, x2) 7→ λ(x1,x2) to denote an ergodic decomposition of (X ×
X,µ × µ, T × T ). Since we aim to produce an Erdős progression with prescribed first
coordinate a, as in [16] we make use of a decomposition λ(x1,x2) that is defined for every
pair (x1, x2) and continuous as a function of (x1, x2). We show in the next section that,
without loss of generality, we may assume that our system admits such a decomposition,
referred to as a continuous ergodic decomposition.

To find an Erdős progression (a, x1, x2) ∈ X × X × X, it then suffices to find a pair
(x1, x2) with all of the following properties.

1. The pair (a, x1) ∈ X ×X is generic for the measure λ(a,x1).
2. The pair (x1, x2) ∈ X ×X lies in the support of λ(x1,x2).
3. The measures λ(a,x1) and λ(x1,x2) are equal.

While Properties 1 and 2 hold for (µ×µ)-almost every point (x1, x2) ∈ X×X, the explicit
construction of a continuous ergodic decomposition in [16] tells us that Property 3 holds
if and only if the triple (a, x1, x2) sits above a three-term progression in the Kronecker
factor of (X,µ, T ). Since a is fixed, this constitutes a set of zero measure with respect to
µ× µ whenever the Kronecker factor is not finite.

We must therefore show that Properties 1 and 2 hold within the set of points (x1, x2) for
which (a, x1, x2) projects onto a three-term progression in the Kronecker factor. To that
end, we introduce a natural measure σ on X ×X giving full measure to the set of points
(x1, x2) such that (a, x1, x2) sits above a three-term progression. Thus σ is a measure
with the property that almost every pair (x1, x2) ∈ X ×X satisfies Property 3. Most of
the work then goes into showing that the first two properties hold for σ-almost every pair
(x1, x2). This is where the present work diverges from [16]. To establish the properties
we want, it is necessary to understand in greater detail than [16] the disintegration of µ
over the Kronecker factor.

3.2. Using continuous factor maps

Throughout this section, we make use of two types of factor maps from a system (X,µ, T )
to another system (Y, ν, S).
• Measurable factor maps : a measurable function π : X → Y such that π(µ) = ν and
π ◦ T = S ◦ π µ-almost everywhere.
• Continuous factor maps : a continuous surjection π : X → Y that such that π(µ) = ν
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and π ◦ T = S ◦ π everywhere.
If there exists a measurable factor map π : X → Y , then (Y, ν, S) is called a factor of
(X,µ, T ).

In his proof of Szemerédi’s theorem, Furstenberg [9] shows that in order to understand
the behavior of 3-term dynamical progressions, it suffices to consider their projections onto
the maximal group rotation factor. We use an analogous method to study 3-term Erdős
progressions.

A group rotation is a system of the form (Z,m,R), where Z is a compact abelian
group, m is the Haar measure on Z, and R : Z → Z is a rotation of the form R(z) = z+α
for a fixed element α ∈ Z. Whenever (Z,m,R) is a group rotation, we assume that the
metric on Z is chosen such that z 7→ z + w is an isometry for all w ∈ Z.

Every ergodic system (X,µ, T ) possesses a maximal group rotation factor called its
Kronecker factor (see [10, Section 3]). In general, the factor map from an ergodic system
(X,µ, T ) onto its Kronecker factor (Z,m,R) is only a measurable factor map. The next
lemma, however, shows that in many situations one can assume without loss of generality
that the factor map onto the Kronecker factor is continuous, and this is key in our proof
of Theorem 1.4.

Proposition 3.1 ([16, Proposition 3.20]). Let (X,µ, T ) be an ergodic system and let
a ∈ gen(µ,Φ) for some Følner sequence Φ. Then there exists an ergodic system (X̃, µ̃, T̃ ),
a Følner sequence Ψ, a point ã ∈ X̃ and a continuous factor map π̃ : X̃ → X such that
π̃(ã) = a and ã ∈ gen(µ̃,Ψ) and (X̃, µ̃, T̃ ) has a continuous factor map to its Kronecker
factor.

With the help of Proposition 3.1 we can reduce the proof of Theorem 1.4 to the
following special case.

Theorem 3.2. Let (X,µ, T ) be an ergodic system and assume there is a continuous
factor map π to its Kronecker. Let a ∈ gen(µ,Φ) for some Følner sequence Φ, and let
E ⊂ X be a Borel set with µ(E) > 0.

(i) There exist t ∈ N and an Erdős progression of the form (a, x1, x2) ∈ X3 such that
x1 ∈ E and T tx2 ∈ E.

(ii) There exist t ∈ N and an Erdős progression of the form (a, x1, x2) ∈ X3 such that
T tx1 ∈ E and T tx2 ∈ E.

We remark that unlike in Theorem 1.4, in the formulation of Theorem 3.2 we do not
require that E is an open set. In fact, this hypothesis is not needed in Theorem 1.4 either,
but without assuming openness of E, Theorem 1.4 is no longer equivalent to Theorem 1.2.

Proof that Theorem 3.2 implies Theorem 1.4. We only prove that part (i) of Theorem 3.2
implies part (i) of Theorem 1.4. Similar arguments show the implication between part (ii)
of Theorem 3.2 and part (ii) of Theorem 1.4.

Let (X,µ, T ) be an ergodic system, let a ∈ gen(µ,Φ) for some Følner sequence Φ and
let E ⊂ X be open and have positive measure. Let (X̃, µ̃, T̃ ), ã and π̃ result from an
application of Proposition 3.1 and let Ẽ := π̃−1(E) ⊂ X̃. As (X̃, µ̃, T̃ ) has a continuous
factor map to its Kronecker factor, we can apply Theorem 3.2 to find t ∈ N and an
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Erdős progression (ã, x̃1, x̃2) ∈ X̃3 with x̃1 ∈ Ẽ and x̃2 ∈ T−tẼ. It is then immediate that
(π̃(ã), π̃(x̃1), π̃(x̃2)) is an Erdős progression in X3 with π̃(x̃1) ∈ E and π̃(x̃2) ∈ T−t(E).

The proof of Theorem 3.2 is deferred to Section 3.5 until after we have developed the
necessary tools. We conclude this section by recalling the continuous ergodic decompo-
sition of the product measure µ × µ from [16]. To do so we make use of the following
standard disintegration result.

Theorem 3.3 (See [4, Theorem 5.14]). Given a measurable factor map π : X → Y
between systems (X,µ, T ) and (Y, ν, S), there exists a measurable map y 7→ µy defined
on a full measure subset of Y and taking values in the space M(X) of Borel probability
measures on X with the following properties.

(i) For every bounded, measurable function f : X → R, the function

y 7→
∫
X

f dµy

is an almost everywhere defined and Borel measurable function on Y satisfying∫
D

(∫
X

f dµy

)
dν(y) =

∫
π−1(D)

f dµ

for all Borel sets D ⊆ Y .
(ii) For ν-almost every y ∈ Y , we have µy(π

−1({y})) = 1.
(iii) Properties (i) and (ii) uniquely determine the map y 7→ µy in the sense that if

y 7→ µ′y is another measurable map from Y to M(X) with these properties, then
µy = µ′y for ν-almost every y ∈ Y .

(iv) For almost every y ∈ Y , we have Tµy = µSy.

Fix an ergodic system (X,µ, T ). Let (Z,m,R) be its Kronecker factor, and assume
that π is a continuous factor map from (X,µ, T ) to (Z,m,R). Also fix a disintegration
z 7→ ηz of µ with respect to π. As in [16, Equation (3.10)], for every (x1, x2) ∈ X ×X we
define

λ(x1,x2) =

∫
Z

ηz+π(x1) × ηz+π(x2) dm(z) (3.1)

on X×X. Note that λ(x1,x2) does not depend on the choice of disintegration z 7→ ηz. The
following properties are proved in [16, Proposition 3.11].

1. The map (x1, x2) 7→ λ(x1,x2) is continuous.
2. The map (x1, x2) 7→ λ(x1,x2) is a disintegration of µ× µ in the sense that∫

X×X
λ(x1,x2) d(µ× µ)(x1, x2) = µ× µ

holds.
3. For (µ× µ)-almost every (x1, x2), the point (x1, x2) is generic for λ(x1,x2) and λ(x1,x2)

is T × T ergodic.
4. For every (x1, x2) ∈ X ×X, we have that λ(x1,x2) = λ(Tx1,Tx2).
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3.3. The measure on Erdős progressions

In this section, we introduce a measure σ on X×X that helps us study Erdős progressions
beginning at a fixed point a ∈ X.

Fix an ergodic system (X,µ, T ) and a point a ∈ X, let (Z,m,R) denote its Kronecker
factor, and further assume that there is a continuous factor map π : X → Z. Moreover,
we fix a disintegration z 7→ ηz of µ over π as guaranteed by Theorem 3.3.

Definition 3.4. We define the measure

σ =

∫
Z

ηz × η2z−π(a) dm(z) =

∫
Z

ηπ(a)+z × ηπ(a)+2z dm(z) (3.2)

on X ×X.

For the remainder of this paper, we use σ to denote the measure defined by (3.2).
Note that the second equality in (3.2) follows from translation invariance of m. We stress
that σ does not depend on the exact choice of disintegration z 7→ ηz since any two choices
agree m-almost everywhere.

The motivation for this definition is that σ is a relatively independent joining, putting
as unbiased as possible a measure on the set of pairs (x1, x2) ∈ X ×X such that(

(π(a), π(x1), π(x2)
)

forms a 3-term arithmetic progression in Z. The connection to three-term progressions is
made apparent by the equality

π(x2)− π(x1) = π(x1)− π(a),

which holds for σ-almost every (x1, x2) and guarantees via (3.1) that λ(a,x1) = λ(x1,x2).
We conclude this section with some lemmas that are of use in the next sections.

Lemma 3.5. Let π1 : X × X → X denote the projection (x1, x2) 7→ x1 onto the first
coordinate. Then π1σ = µ.

Proof. For any f ∈ C(X), we have∫
X

f d(π1σ) =

∫
X×X

(f ⊗ 1) dσ

=

∫
Z

(∫
X×X

(f ⊗ 1) d(ηz × η2z−π(t))

)
dm(z)

=

∫
Z

(∫
X

f dηz

)
dm(z) =

∫
X

f dµ,

as desired.

Lemma 3.6. Let π2 : X ×X → X denote the projection (x1, x2) 7→ x2 onto the second
coordinate. Then 1

2
(π2σ + Tπ2σ) = µ.

Proof. Denote by 2Z the subgroup {z + z : z ∈ Z} and let ξ denote its Haar measure.
Ergodicity of R ensures that Z = (2Z) ∪ R(2Z) and that m = 1

2
(ξ + Rξ). In particular,
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for each s ∈ X there exists w ∈ Z such that either π(s) = 2w or π(s) = R(2w). In the
first case

π2σ =

∫
Z

η2(w+z) dm(z) =

∫
Z

η2z dm(z) =

∫
2Z

ηu dξ(u),

and in the second

π2σ =

∫
Z

η2(w+z)+α dm(z) =

∫
Z

η2z+α dm(z) =

∫
2Z+α

ηu d(Rξ)(u).

Since Tηu = ηRu and R2ξ = ξ, it follows that in either case

1

2
(π2σ + Tπ2σ) =

∫
Z

ηz d
1
2
(ξ +Rξ)(z) = µ.

3.4. The support of the measure

We maintain the notation of Section 3.3 and assume that (X,µ, T ) is an ergodic system
with Kronecker factor (Z,m,R), continuous factor map π : (X,µ, T ) → (Z,m,R), the
measures λx1,x2 are those defined in (3.1), and σ denotes the measure defined in (3.4). We
continue to use the fixed disintegration z 7→ ηz of µ with respect to π.

Lemma 3.7. For σ-almost every (x1, x2) ∈ X ×X, the measures λ(a,x1) and λ(x1,x2) are
equal.

Proof. Consider the set

P := {(x1, x2) ∈ X ×X : π(x1) = π(a) + z, π(x2) = π(a) + 2z for some z ∈ Z}.

Combining (3.2) and property (ii) of Theorem 3.3 for the disintegration z 7→ ηz, it follows
that σ(P ) = 1 and each (x1, x2) ∈ P satisfies

π(x2)− π(x1) = π(x1)− π(a).

Thus we have λ(x1,x2) = λ(a,x1) by the defining formula (3.1) and translation invariance of
m.

Let supp(ν) denote the support of a Borel measure ν and let F(X) denote the family
of closed, nonempty subsets of a given compact metric space (X, d). We endow F(X)
with the Haudsorff metric H, defined by

H(F,G) = max

{
sup
x∈F

d(x,G), sup
y∈G

d(y, F )

}
whenever F,G ∈ F(X).

Lemma 3.8. Let W be a compact metric space, M(W ) the space of Borel probability
measures on W endowed with the weak* topology, and F(W ) the space of closed, non-
empty subsets of W endowed with the Hausdorff metric.

1. The map ν 7→ supp(ν) from M(W ) to F(W ) is Borel measurable.
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2. If x 7→ ρx is a measurable map from W to M(W ), then {x ∈ W : x ∈ supp(ρx)} is
a Borel set.

Proof.
1. Combining Theorem 17.14, Lemma 17.5, and Theorem 18.9 in [1], the result follows.
2. The map ψ1(x) = {x} from W to F(W ) is continuous and hence measurable. By

part 1, the map ψ2(x) = supp(ρx) from W to F(W ) is also measurable. Thus
ψ(x) = (ψ1(x), ψ2(x)) from W to F(W ) × F(W ) is measurable. The set Ω =
{(F1, F2) ∈ F(W ) × F(W ) : F1 ∩ F2 6= ∅} is closed, and therefore {x ∈ W : x ∈
supp(ρx)} = ψ−1(Ω) is Borel.

Lemma 3.9. The disintegration z 7→ ηz satisfies µ({x ∈ X : x ∈ supp(ηπ(x))}) = 1.

Proof. Write G = {x ∈ X : x ∈ supp(ηπ(x))}, which is Borel measurable by Lemma 3.8,
part 2. Since

µ(G) =

∫
Z

ηz(G) dm(z),

it suffices to show ηz(G) = 1 for m-almost every z ∈ Z. By Theorem 3.3, part (ii), for
almost every z ∈ Z we have ηz(π

−1(z)) = 1. If ηz(π
−1(z)) = 1, then supp(ηz) ⊂ π−1(z)

because continuity of π gives that π−1(z) is a closed set, and therefore it is a closed set
of full measure. Thus, for m-almost every z ∈ Z, we have supp(ηz) ⊂ π−1(z) and hence
supp(ηz) ⊂ G. Since supp(ηz) ⊂ G, we have ηz(G) ≥ ηz(supp(ηz)) = 1 for m-almost every
z ∈ Z.

Write

S =
{

(x1, x2) ∈ X ×X : (x1, x2) ∈ supp(λ(x1,x2))
}

(3.3)

and note that part 2 in Lemma 3.8, together with continuity of (x1, x2) 7→ λ(x1,x2), implies
that S is a Borel subset of X ×X. Our goal for the remainder of this section is to show
that σ(S) = 1 for every s ∈ X (see Proposition 3.11).

Proposition 3.10. Fix a system (X,µ, T ) and a continuous factor map π to its Kronecker
factor (Z,m, T ). Also fix a disintegration z 7→ ηz over its Kronecker factor (Z,m,R).
There is a sequence δ(j) → 0 such that for almost every x ∈ X the following holds: for
every neighbourhood U of x we have

lim
j→∞

m
({
z ∈ Z : ηz(U) > 0

}
∩B

(
π(x), δ(j)

))
m
(
B
(
π(x), δ(j)

)) = 1. (3.4)

Proof. Consider the map Φ: Z → F(X) given by Φ(z) = supp(ηz). This map is Borel
measurable by Lemma 3.8 as it is the composition of two Borel measurable functions
z 7→ ηz and ν 7→ supp(ν). Applying Lusin’s theorem [1, Theorem 12.8] for every j ∈ N,
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there is a closed set Zj ⊂ Z with m(Zj) > 1−2−j such that Φ|Zj
is continuous. By uniform

continuity of Φ|Zj
, there exists a positive number δ(j) such that for all z1, z2 ∈ Zj,

d(z1, z2) 6 δ(j) =⇒ H
(
Φ(z1),Φ(z2)

)
<

1

j
.

Consider the set

Kj =

{
z ∈ Zj : m

(
B
(
z, δ(j)

)
∩ Zj

)
>

(
1− 1

j

)
m
(
B
(
z, δ(j)

))}
for each j ∈ N. Define

χj(z) =
1

m(B(0, δ(j)))

∫
Zj

1B(0,δ(j))(w − z) dm(w)

and note that χj(z) 6 1 for all z ∈ Z. Since translations on Z are isometries, we have

Kj = Zj ∩
{
z ∈ Z : χj(z) >

(
1− 1

j

)}
. (3.5)

Using Fubini’s theorem, we deduce that∫
Z

χj(z) dm(z) = m(Zj) > 1− 1

2j
, (3.6)

which combined with χj(z) 6 1 implies that

m

({
z ∈ Z : χj(z) >

(
1− 1

j

)})
> 1− j

2j
. (3.7)

Combining (3.5) with (3.6) and (3.7), it follows that
∑

j∈Nm(Z\Kj) <∞.
Let

K =
⋃
M>1

⋂
j>M

Kj.

Observe that, by the Borel-Cantelli lemma, m(K) = 1. In view of Lemma 3.9, this implies
that the set L := {x ∈ X : x ∈ supp(ηπ(x))} ∩ π−1(K) has µ(L) = 1. To finish the proof
it thus suffices to show that any x ∈ L satisfies (3.4).

Fix a point x ∈ L and let U be a neighborhood of x. Let z = π(x). Since z ∈ K and
U is open, there exists j0 ∈ N such that for all j > j0 we have z ∈ Kj and B(x, 1/j) ⊂ U .
We claim that for all j > j0, we have

B
(
z, δ(j)

)
∩ Zj ⊂ H :=

{
z ∈ Z : ηz(U) > 0)

}
. (3.8)

To verify this claim, let z′ ∈ B(z, δ(j)) ∩ Zj be arbitrary. Since H(Φ(z),Φ(z′)) < 1/j and
x ∈ Φ(z), there exists x′ ∈ Φ(z′) with d(x, x′) < 1/j. From d(x, x′) < 1/j it follows that
x′ ∈ U and using x′ ∈ Φ(z′) we conclude U ∩ Φ(z′) 6= ∅. Since Φ(z′) = supp(ηz′), it
follows that ηz′(U) > 0 and hence that z′ ∈ H, proving that (3.8) holds, as claimed.
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Since z ∈ Kj, it follows from (3.8) and the construction of Kj that

m
(
H ∩B(z, δ(j))

)
m
(
B(z, δ(j))

) > 1− 1

j

for all j > j0. We conclude that

lim
j→∞

m
(
H ∩B(z, δ(j))

)
m
(
B(z, δ(j))

) = 1

and the proof is complete.

Proposition 3.11. The set S defined in (3.3) satisfies σ(S) = 1.

Proof. Apply Proposition 3.10 to get a sequence δ(j) → 0 with the properties therein.
Let L denote the set of points satisfying (3.4) which has full µ-measure. We conclude
from Lemma 3.5 that σ(L×X) = 1 and conclude from Lemma 3.6 that

1 = µ(L) =
σ(X × L) + σ(X × T−1L)

2
,

whence σ(X × L) = 1. Thus

σ(L× L) = σ((X × L) ∩ (L×X)) = 1.

To prove σ(S) = 1, it therefore suffices to show L× L ⊂ S.
Let (x1, x2) ∈ L×L. Let U1 be a neighborhood of x1 and let U2 be a neighborhood of

x2. To show (x1, x2) ∈ S, we have to verify λ(x1,x2)(U1 × U2) > 0. For convenience, write
β = π(x2)− π(x1). By definition,

λ(x1,x2) =

∫
Z

ηz × ηz+β dm(z).

Since x1, x2 ∈ L, there exists some δ > 0 such that

m({z ∈ Z : ηz(U1) > 0)} ∩B(π(x1), δ))

m(B(π(x1), δ))
>

3

4
(3.9)

as well as

m({z ∈ Z : ηz(U2) > 0)} ∩B(π(x2), δ))

m(B(π(x2), δ))
>

3

4
. (3.10)

Observe that {z ∈ Z : ηz(U2) > 0)} − β = {z ∈ Z : ηz+β(U2) > 0)}, and so (3.10) implies

m({z ∈ Z : ηz+β(U2) > 0)} ∩B(π(x1), δ))

m(B(π(x1), δ))
>

3

4
. (3.11)

Define W = {z ∈ Z : ηz(U1) > 0 and ηz+β(U2) > 0)}. By (3.9) and (3.11) it follows
that W contains at least one-quarter of the ball B(π(x1), δ), which implies m(W ) > 0.
Since for all z ∈ W one has

(ηz × ηz+β)(U1 × U2) > 0.

and m(W ) > 0, it follows that λ(x1,x2)(U1 × U2) > 0 as desired.
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3.5. Proof of Theorem 3.2

To prove Theorem 3.2 we need one further lemma.

Lemma 3.12 ([16, Lemma 3.18]). Let (X,µ, T ) be an ergodic system, let a ∈ gen(µ,Φ)
for some Følner sequence Φ. Then there exists a Følner sequence Ψ such that for µ-almost
every x1 ∈ X the point (a, x1) belongs to gen(λ(a,x1),Ψ).

Proof. From property (3) after the definition of λ(x,y) in (3.1) and Fubini’s theorem,
there exists (a full measure set of) b ∈ supp(µ) such that for µ-almost every x ∈ X,
the point (b, x) is generic for λ(b,x) with respect to the Følner sequence ({1, . . . , N})N∈N.
Let (Gj)

∞
j=1 enumerate a countable dense subset of C(X × X) and, for each j ∈ N, let

G̃j(x, y) =
∫
X2 Gj dλ(x,y). Since the map (x1, x2) 7→ λ(x1,x2) is continuous and (T × T )-

invariant, each of the functions G̃j is also continuous and (T × T )-invariant.
Since a ∈ gen(µ,Φ) and b ∈ supp(µ), for every m ∈ N, there exists s(m) ∈ N such that

‖Gj(b, ·)−Gj(T
s(m)a, ·)‖∞ < 2−m for every j 6 m and ‖G̃j(b, ·)− G̃j(T

s(m)a, ·)‖∞ < 2−m

for every j 6 m. Since (b, x) is generic for λ(b,x) for µ-almost every x ∈ X, for each m ∈ N,
there exists some N(m) ∈ N for which the continuous function

Fm(x) := max
16j6m

∣∣∣∣∣∣ 1

N(m)

N(m)∑
n=1

Gj(T
nb, T nx)− G̃j(b, x)

∣∣∣∣∣∣
satisfies ‖Fm‖L1(µ) < 1/2m. The choice of s(m) implies that

F̃m(x) := max
16j6m

∣∣∣∣∣∣ 1

N(m)

N(m)∑
n=1

Gj(T
n+s(m)a, T nx)− G̃j(T

s(m)a, x)

∣∣∣∣∣∣
satisfies ‖F̃m‖L1(µ) < 3/2m. Letting Ψm = {s(m) + 1, . . . , s(m) +N(m)} and using T × T
invariance of G̃j we deduce that

F ′m(x) := F̃m(T s(m)x) = max
16j6m

∣∣∣∣∣ 1

|Ψm|
∑
n∈Ψm

Gj(T
na, T nx)− G̃j(a, x)

∣∣∣∣∣ .
Since µ is T -invariant, ‖F ′m‖L1(µ) = ‖F̃m‖L1(µ) < 3/2m for every m ∈ N, hence the
function F (x) :=

∑
m∈N F

′
m(x) has norm ‖F‖L1(µ) =

∑
‖F ′m‖L1(µ) < ∞ and is therefore

finite almost everywhere. For every point x1 ∈ X for which F (x1) < ∞, we have that
F ′m(x1)→ 0 as m→∞ and hence (a, x1) ∈ gen(λ(a,x1),Ψ).

Proof of Theorem 3.2. Fix a system (X,µ, T ), a ∈ gen(µ,Φ) for some Følner sequence Φ,
and E ⊂ X open with µ(E) > 0. Assume (X,µ, T ) has a continuous factor map π to
its Kronecker factor (Z,m,R). Applying Lemma 3.12 it follows that for µ-almost every
x1 ∈ X, we have (a, x1) ∈ gen(λ(a,x1),Ψ) for some Følner sequence Ψ. Since, in view
of Lemma 3.5, the projection of σ onto the first coordinate equals µ, it follows that for
σ-almost every (x1, x2) ∈ X × X we have (a, x1) ∈ gen(λ(a,x1),Ψ). By Proposition 3.11,
σ-almost every (x1, x2) ∈ X×X also has the property that (x1, x2) ∈ supp(λ(x1,x2)). Using
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Lemma 3.7 it follows that σ-almost every (x1, x2) ∈ X ×X satisfies λ(x1,x2) = λ(a,x1). We
conclude that σ-almost every (x1, x2) satisfies both of the following properties (matching
Properties 1 and 2 in Section 3.1):
• (a, x1) ∈ gen(λ(a,x1),Ψ),
• (x1, x2) ∈ supp(λ(a,x1)).

Since orbits of generic points are dense in the support (see, eg., [16, Lemma 2.4]), we
deduce that for σ-almost every (x1, x2) ∈ X2, the point (a, x1, x2) ∈ X3 is an Erdős
progression.

To finish the proof, note that if (a, x1, x2) ∈ X3 is an Erdős progression then (a, x1, x2)
satisfies the conclusion of Theorem 3.2, part (i), if and only if

(x1, x2) ∈ E × T−tE

for some t ∈ N, whereas (a, x1, x2) satisfies the conclusion of part (ii) if and only if

(x1, x2) ∈ (T × T )−t(E × E)

for some t ∈ N. Therefore, the proof is complete once we verify that

σ

(
E ×

(⋃
t∈N

T−tE

))
> 0 and σ

(⋃
t∈N

(T × T )−t(E × E)

)
> 0. (3.12)

Since µ is ergodic and E has positive measure, the union
⋃
t∈N T

−tE covers all of X up
to a set of measure 0 (with respect to µ). Writing

E ×
(⋃
t∈N

T−tE

)
=
(
E ×X

)
∩

(
X ×

(⋃
t∈N

T−tE

))
,

we use Lemma 3.6 and then Lemma 3.5 to obtain

σ

(
E ×

(⋃
t∈N

T−tE

))
= σ(E ×X) = µ(E) > 0,

as desired.
We are left with showing the second positivity statement in (3.12). Write u =

2t when u is even and u = 2t + 1 when u is odd. Since σ is (T × T 2)-invariant,
σ ((T × T )−2t(E × E)) = σ(T−tE × E) and σ ((T × T )−2t−1(E × E)) = σ(T−t−1E ×
T−1E). On the other hand,

σ

(⋃
t∈N

T−tE × E ∪
⋃
t∈N

T−t−1E × T−1E

)
= σ

(
X × (E ∪ T−1E)

)
> 0.

Therefore, for some u ∈ N we have that σ ((T × T )−u(E × E)) > 0.
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