NONCONVENTIONAL ERGODIC AVERAGES AND
NILMANIFOLDS

BERNARD HOST AND BRYNA KRA

ABSTRACT. We study the L2-convergence of two types of ergodic averages.
The first is the average of a product of functions evaluated at return times along
arithmetic progressions, such as the expressions appearing in Furstenberg’s
proof of Szemerédi’s Theorem. The second average is taken along cubes whose
sizes tend to +oo. For each average, we show that it is sufficient to prove
the convergence for special systems, the characteristic factors. We build these
factors in a general way, independent of the type of the average. To each of
these factors we associate a natural group of transformations and give them
the structure of a nilmanifold. From the second convergence result we derive a
combinatorial interpretation for the arithmetic structure inside a set of integers
of positive upper density.

1. INTRODUCTION

1.1. The averages. A beautiful result in combinatorial number theory is Sze-
merédi’s Theorem, which states that a set of integers with positive upper density
contains arithmetic progressions of arbitrary length. Furstenberg [F77] proved Sze-
merédi’s theorem via an ergodic theorem:

Theorem (Furstenberg). Let (X, X, u,T) be a measure preserving probability sys-
tem and let A € X be a set of positive measure. Then for every integer k > 1,
1
CE —n —2n —kn
1%£Ofﬁ2u(AmT ANT™"AN---nTF4) >0.
n=
It is natural to ask about the convergence of these averages, and more generally
about the convergence in L2(u) of the averages of products of bounded functions
along an arithmetic progression of length k for an arbitrary integer £ > 1. We
prove:

Theorem 1.1. Let (X, X, u,T) be an invertible measure preserving probability sys-
tem, k > 1 be an integer, and let f;, 1 < j <k, be k bounded measurable functions
on X. Then

N-1

(1) lim ~ 3 f(T"2) (%) . fy(T2)
n=0

N —oc0 N
exists in L*(X).

The case k = 1 is the standard ergodic theorem of von Neumann. Fursten-
berg [F77] proved this for & = 2 by reducing to the case where X is an ergodic
rotation and using the Fourier transform to prove convergence. The existence of

Date: November 7, 2003.



2 BERNARD HOST AND BRYNA KRA

limits for £ = 3 with an added hypothesis that the system is totally ergodic was
shown by Conze and Lesigne in a series of papers ([CL84], [CL87] and [CL88])
and in the general case by Host and Kra [HKO01]. Ziegler [Zie02b] has shown the
existence in a special case when k = 4.

If one assumes that T is weakly mixing, Furstenberg [F77] proved that for every
k the limit (1) exists and is constant. However, without the assumption of weak
mixing one can easily show that the limit need not be constant and proving conver-
gence becomes much more difficult. Nonconventional averages are those for which
even if the system is ergodic, the limit is not necessarily constant. This is the case
for k > 3 in Equation (1).

Some related convergence problems have also been studied by Bourgain [Bo89]
and Furstenberg and Weiss [FW96].

We also study the related average of the product of 2 — 1 functions taken
along combinatorial cubes whose sizes tend to +o00. The general formulation of the
theorem is a bit intricate and so for clarity we begin by stating a particular case,
which was proven in [HK04].

Theorem. Let (X, X, u,T) be an invertible measure preserving probability system
and let f;, 1 < j <7, be 7 bounded measurable functions on X. Then the averages
over (m,n,p) € [M,M'] x [N,N’] x [P, P'] of

[1(T2) fo(T™2) f3(T™"2) f4(TPx) f5(T™ Px) fo (T Px) fr (T Pg)
converge in L?(u) as M' — M,N' — N and P' — P tend to +oo.

Notation. For an integer k > 0, let Vj, = {0, 1}*. The elements of Vj, are written
without commas or parentheses. For € = €1€5...¢x € Vi and n = (n1,ne,...,ng) €
7, we write

€N =¢€n+ ene+---+€xng .
We use 0 to denote the element 00...0 of Vi and set V;* =V}, \ {0}.

We generalize the above theorem to higher dimensions and show:

Theorem 1.2. Let (X, X, u, T) be an invertible measure preserving probability sys-
tem, k > 1 be an integer, and let f., e € V}*, be 28 — 1 bounded functions on X.
Then the averages

k

® IECT D SR | PIaE

i=1 nG[Ml,Nl)X---X[Mk,Nk) EGV,:

converge in L?(X) as Ny — My, No — Ms, ..., Ny, — My, tend to +oo.

When restricting Theorem 1.2 to the indicator function of a measurable set, we
have the following lower bound for these averages:

Theorem 1.3. Let (X, X, u,T) be an invertible measure preserving probability sys-
tem and let A € X. Then the limit of the averages

k

I 2. u([) 7" 4)

i=1 n€[M1,N1)x--x[Mg,N)  €€Vj

exists and is greater than or equal to ,u(A)2k when N1 — My, No — Ms, ..., N, — Mj,
tend to +oo.



NONCONVENTIONAL ERGODIC AVERAGES AND NILMANIFOLDS 3

For k = 1, Khintchine [K34] proved the existence of the limit along with the
associated lower bound, for k¥ = 2 this was proven by Bergelson [Be00], and for
k = 3 by the authors in [HK04].

1.2. Combinatorial Interpretation. We recall that the upper density d(A) of a
set A C N is defined to be

d(A) = limsupi|Aﬂ {1,2,...,N}|.
N—o0 N

Furstenberg’s Theorem as well as Theorem 1.3 have combinatorial interpretations

for subsets of N with positive upper density. Furstenberg’s Theorem is equiva-

lent to Szemerédi’s Theorem. In order to state the combinatorial counterpart of

Theorem 1.3 we recall the definition of a syndetic set.

Definition 1.4. Let I'" be an abelian group. A subset E of I' is syndetic if there
exists a finite subset D of I" such that £ 4+ D =T.

When I' = Z¢, this definition becomes:
A subset E of Z¢ is syndetic if there exist an integer N > 0 such that

EN ([My, My + N x [Ma, My + N] x -+ x [My, M, + N]) #0
for every My, Ms, ..., M, € Z.

When A is a subset of Z and m is an integer, we let A + m denote the set
{a+m:a € A}. From Theorem 1.3 we have:

Theorem 1.5. Let A C Z with d(A) > & > 0 and let k > 1 be an integer. The set
of n = (n1,na,...,n) € ZF so that

A (A+en) >0
eeVy

is syndetic.

Both the averages along arithmetic progressions and along cubes are concerned
with demonstrating the existence of some arithmetic structure inside a set of posi-
tive upper density. Moreover, an arithmetic progression can be seen inside a cube
with all indices n; equal. However, the end result is rather different. In Theo-
rem 1.5, we have an explicit lower bound that is optimal, but it is impossible to
have any control over the size of the syndetic constant, as can be seen with elemen-
tary examples such as rotations. This means that this result does not have a finite
version. On the other hand, Szemerédi’s Theorem can be expressed in purely finite
terms, but the problem of finding the optimal lower bound is open.

1.3. Characteristic factors. The method of characteristic factors is classical
since Furstenberg’s work [F77], even though this term only appeared explicitly more
recently [FW96]. For the problems we consider, this method consists in finding an
appropriate factor of the given system, referred to as the characteristic factor, so
that the limit behavior of the averages remains unchanged when each function is
replaced by its conditional expectation on this factor. Then it suffices to prove
the convergence when this factor is substituted for the original system, which is
facilitated when the factor has a “simple” description.

We follow this general strategy, with the difference that we focus more on the
procedure of building characteristic factors than on the particular type of average
currently under study. A standard method for finding characteristic factors is an
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iterated use of the van der Corput Lemma, with the number of steps increasing
with the complexity of the averages. For each system and each integer k, we build
a factor in a way that reflects k successive uses of the van der Corput Lemma. This
factor is almost automatically characteristic for averages of the same “complexity”.
For example, the k-dimensional average along cubes has the same characteristic
factor as the average along arithmetic progressions of length £—1. Our construction
involves the definition of a “cubic structure” of order k on the system (see Section 3),
meaning a measure on its 2¥th Cartesian power. Roughly speaking, the factor we
build is the smallest possible factor with this structure (see Section 4).

The bulk of the paper (Sections 5-10), and also the most technical portion,
is devoted to the description of these factors. The initial idea is natural: For
each of these factors we associate the group of transformations which preserve
the natural cubic structure alluded to above (Section 5). This group is nilpotent.
We then conclude (Theorems 10.3 and 10.5) that for a sufficiently large (for our
purposes) class of systems, this group is a Lie group and acts transitively on the
space. Therefore, the constructed system is a nilsystem. In Section 11, we show
that the cubic structure alluded to above has a simple description for these systems.

Given this construction, we return to the original average along arithmetic pro-
gressions in Section 12 and along cubes in Section 13 and show that the charac-
teristic factors of these averages are exactly those which we have constructed. A
posteriori, the role played by the nilpotent structure is not surprising: for a k-step
nilsystem, the (k + 1)st term T*x of an arithmetic progression is constrained by
the first k terms z, Tz, ..., T* 'z. A similar property holds for the combinatorial
structure considered in Theorem 1.2.

Convergence then follows easily from general properties of nilmanifolds. Finally,
we derive a combinatorial result from the convergence theorems.

1.4. Open questions. There are at least two possible generalizations of Theo-
rem 1.1. The first one consists in substituting integer valued polynomials pi(n),
p2(n), ..., pr(n) for the linear terms n,2n,...,kn in the averages (1). With an
added hypothesis, either that the system is totally ergodic or that all the polynomi-
als have degree > 1, we prove convergence of these polynomial averages in [HK02].
The case that the system is not totally ergodic and at least one polynomial is of
degree one and some other has higher degree remains open.

Another more ambitious generalization is to consider commuting transformations
Ty, T, ..., Ty instead of T, T2, ... T*. Characteristic factors for this problem are
unknown.

The question of convergence almost everywhere is completely different and can
not be addressed by the methods of this paper.

1.5. About the organization of the paper. We begin (Section 2) by introducing
the notation relative to 2¥-Cartesian powers. We have postponed to four appendices
some definitions and results needed, which do not have a natural place in the
main text. Appendix A deals with properties of Polish groups and Lie groups,
Appendix B with nilsystems, Appendix C with cocycles and Appendix D with the
van der Corput Lemma. Most of the results presented in these Appendices are
classical.

2. GENERAL NOTATION
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2.1. Cubes. Throughout, we use 2*-Cartesian powers of spaces for an integer k > 0
and need some shorthand notation.

Let X be a set. For an integer k > 0, we write X[* = X2, For k > 0, we
use the sets V}, introduced above to index the coordinates of elements of this space,
which are written x = (z. : € € Vj).

When f, € € Vi, are 2" real or complex valued functions on the set X, we define
a function @y, fe on X by

® o) = [ fela) -

e€Vy e€Vy

When ¢: X — Y is a map, we write ¢!*1: Xl — V¥ for the map given by
(oM (x)), = ¢(xc) for € € V.

We often identify X *+1 with X* x X[*. In this case, we write x = (x/,x”) for
a point of X[F+1 where x/,x” € X!¥ are defined by

:c’6 = xo and zg =g
for € € Vj, and €0 and €l are the elements of Vi1 given by
(€0); = (el); =¢j for 1 <j <k ; (e0)g+1 =0 and (el)py1 =1.

The maps x — x’ and x — x” are called the projections on the first and second
side, respectively.

It is convenient to view Vj as indexing the set of vertices of the cube of dimension
k, making the use of the geometric words ‘side’, ‘face’, and ‘edge’ for particular
subsets of V natural. More precisely, for 0 < ¢ < k, J a subset of {1,...,k} with
cardinality k — ¢ and n € {0,1}”, the subset

a={eeVy:¢ =n; for every j € J}

of Vi is called a face of dimension £ of Vi, or more succinctly, an ¢-face. Thus Vj
has one face of dimension k, namely V} itself. It has 2k faces of dimension k — 1,
called the sides, and has k2*~! faces of dimension 1, called edges. It has 2* sides
of dimension 0, each consisting in one element of Vi and called a vertezr. We often
identify the vertex {e} with the element € of V.

Let a be an /-face of V.. Enumerating the elements of a and of V; in lexicographic
order gives a natural bijection between « and V,. This bijection maps the faces
of Vi included in « to the faces of V;. Moreover, for every set X, it induces a
map from X¥ onto X[, We denote this map by ﬁ[Xk}a, or ([lk] when there is no
ambiguity about the space X. When « is any face, we call it a face projection and
when « is a side, we call it a a side projection. This is a natural generalization of
the projections on the first and second sides.

The symmetries of the cube Vi play an important role in the sequel. We write
Sy for the group of bijections of Vi onto itself which maps every face to a face
(of the same dimension, of course). This group is isomorphic to the group of the
‘geometric cube’ of dimension k, meaning the group of isometries of R* preserving
the unit cube. It is spanned by digit permutations and reflections, which we now
define.

Definition 2.1. Let 7 be a permutation of {1,...,k}. The permutation o of Vj
given for € € Vi, by
(O’(E))j =er) for 1 <5<k
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is called a digit permutation.
Let ¢ € {1,...k}. The permutation o of V}, given for € € Vj, by

(O’(E))j =¢; when j #14 and (O’(E))i =1-—¢
is called a refiection.

For any set X, the group Sy acts on X* by permuting the coordinates: for
o € Sy, we write o, : X[¥ — X* for the map given by

(0« (:1:))6 = Tq(e) for every e € V.

When o is a digit permutation (respectively, a reflection) we also call the associated
map o, a digit permutation (respectively, a reflection).

2.2. Probability spaces. In general, we write (X, pt) for a probability space, omit-
ting the o-algebra. When needed, the o-algebra of the probability space (X, u) is
written X. By a system, we mean a probability space (X, u) endowed with an
invertible, bi-measurable, measure preserving transformation 7: X — X and we
write the system as (X, u,T).

For a system (X, u,T), we use the word factor with two different meanings: it
is either a T-invariant sub-o-algebra ) of X’ or a system (Y, v, S) and a measurable
map 7: X — Y such that 7y = v and Sonm = woT. We often identify the o-algebra
Y of Y with the invariant sub-o-algebra 7=1())) of X.

All locally compact groups are implicitly assumed to be metrizable and endowed
with their Borel o-algebras. Every compact group G is endowed with its Haar
measure, denoted by mg.

We write T = R/Z. We call a compact abelian group isomorphic to T? for some
integer d > 0 a torus, with the convention that T is the trivial group.

Let G be a locally compact abelian group. By a character of G we mean a
continuous group homomorphism from G to either the torus T or the circle group
S!. The characters of G form a group G called the dual group of G. We use either
additive or multiplicative notation for G.

For a compact abelian group Z and t € Z, we write (Z,t) for the probability
space (Z, mz), endowed with the transformation given by z +— tz. A system of this
kind is called a rotation.

3. CONSTRUCTION OF THE MEASURES

Throughout this section, (X, u, T') denotes an ergodic system.

3.1. Definition of the measures. We define by induction a 7'*-invariant mea-
sure u*! on X for every integer k > 0.

Set X1 = X, 719 = 7" and pl® = ;. Assume that ¥l is defined. Let Z!* denote
the T invariant o-algebra of (X, ul¥ T*]) Identifying XF+1 with X x X*]
as explained above, we define the system (X #4111 TE+11) to be the relatively
independent joining of two copies of (X ¥ plFl Tk gver I+,
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This means that when f., € € V41, are bounded functions on X,

3 d [k+1]
3) /XW R 1. dn

€€Vt

B /x[k] E(® f"O’I[k]>E(® fnl’I[k]) dul* .

neV neVk

Since (X,p,T) is ergodic, ZIU is the trivial o-algebra and plt = pu x p. If
(X, u,T) is weakly mixing, then by induction pl¥l is the 28 Cartesian power ,u®2’c
of pu for k> 1.

We now give an equivalent formulation of the definition of these measures.

Notation. For an integer k£ > 1, let
4) plH = / p¥ dPy (w)
Qp

denote the ergodic decomposition of p!*! under T

Then by definition
(5) ) = [l ap (o)
Q

We generalize this formula. For k,¢ > 1, the concatenation of an element « of
Vi with an element § of V; is the element a3 of Vii,. This defines a bijection of
Vi x V; onto Vi4¢ and gives the identification

(x )VJ — xlk+a

Lemma 3.1. Let k,0 > 1 be integers and for w € Qp, let (u*)¥ be the measure

(k] [k]

built from the ergodic system (X[k],,uw ,T[k]) in the same way that py was built

from (X, u, T). Then

= [ )
k

Proof. By definition, ,uyf Jis a measure on X® and so (,uyf })V] is a measure on

(XN which we identify with X*+4. For ¢ = 1 the formula is Equation (5).
By induction assume that it holds for some ¢ > 1. Let J, denote the invariant
o-algebra of the system ((X)[, (uu[f])m, (T = (xTe+] (ugd)[é],T[k‘M]).

Let f and g be two bounded functions on X ¥+, By the Pointwise Ergodic Theo-
rem, applied for both the system (X F+¢ k48 Pl ang (X ++4 (ME“])W , T+,
for almost every w the conditional expectation of f on Z*+4 (for ulF+4) is equal

(,ugC ])V]—almost everywhere to the conditional expectation of f on J,, (for (,ugC ])[4])_
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As the same holds for g, we have

/f ® gdu[k+€+l]

= [ BT B | T dl
X [k+£]

= [ ([ EG1Z¥) B | T () ) dpew)
QN XRte)

= [ ([ EG12)-Elg | ) dl?) drie)
Qp X [k+e]

= [ ([ T adlHe) dpe)
QM xe+e+
where the last identity uses the definition of (uﬁ“ ])[”1]. This means that pFHH1 =
[yt ). .
Q

3.2. The case k = 1. By using the well known ergodic decomposition of ut) =
X u, these formulas can be written more explicitly for ¥ = 1. The Kronecker
factor of the ergodic system (X, pu,T) is an ergodic rotation and we denote it by
(Z1(X),t1), or more simply (Z1,t1). Let uy denote the Haar measure of 7, and
mx,1 or 7, denote the factor map X — Z;. For s € Zy, let j11,s denote the image
of the measure p; under the map z — (z,sz) from Z; to ZZ. This measure is
invariant under T/ = T x T and is a self-joining of the rotation (Z,t;). Let
1ts denote the relatively independent joining of y over pp,s. This means that for
bounded functions f and g on X,

(6) f(@o)g(x1) dps (o, 1) = / E(f | 21)(2) E(g | 21)(s2) dpa(2)

ZXZ zZ

where we view the conditional expectations relative to Z; as functions defined on
Zy.

It is a classical result that the invariant o-algebra Z[! of (X xX,uxpu,TxT)
consists in the sets of the form

{(z,y) e X x X :mi(x) —m(y) € A} ,

where A C Z;. From this, it is not difficult to deduce that the ergodic decomposition
of u x punder T' x T can be written as

(7) uxu:/z s dpa(s) -

In particular, for pi-almost every s, the measure us is ergodic for T x T. By
Lemma 3.1, for an integer £ > 0 we have

(®) P /Z (1)1 dpa (5) -

Formula (5) becomes

pl? =/ fs X ps dpi (s) .
Z
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When f., € € V,, are 4 bounded functions on X, writing fNE = E(fe | Z1) and
viewing these functions as defined on Z;, by Equation (6) we have

O | Q fan®

eeVa

- ///23 foo(2) fro(z + s1) for (2 + s2) fir (2 + 51 + s2) dpa (2) dpa (s1) dpa (s2)

The projection under 7r£2] of ul on ZF] is the Haar measure u[f] of the closed
subgroup

{(z,2+ 81,2+ 82,2+ 81 + 82) : 2,81,82 € Z1}
of Z{Q] = 7% We can reinterpret Formula (9): the system (X[ pul2 T2 is a
joining of 4 copies of (X, u, T'), which is relatively independent with respect to the
corresponding 4-joining ,u[12] of Z;.

3.3. The side transformations.

Definition 3.2. If « is a face of V}, with £ > 1, let T(gk] denote the transformation

of X! given by
(TWHx), = {T(:ve) foreca

T otherwise

and we call this transformation a face transformation. When « is a side of Vj, we
call To[ék] a side transformation.
The sides are faces of dimension £ — 1 and we denote the group spanned by the

side transformations by Tk[ﬁ]l The subgroup spanned by those T(gk] where « is a

side not containing 0 is denoted by T
We note that 7;[5]1 contains T and is spanned by T* and T*[k}.

Lemma 3.3. For an integer k > 1, the measure pl¥! is invariant under the group
Tk[f]l of side transformations.

Proof. We proceed by induction. For k = 1 there are only two transformations,
Id xT and T x Id, and pl = g x p is invariant under both.

Assume that the result holds for some & > 1. We consider first the side a =
{e € Vi1 @ erp1 = 0}. Identifying X1 with the Cartesian square of X[*
we have Tgﬁﬂ] = T x 1d™. Since T™* leaves each set in ZI¥! invariant, by the
definition (3) of plF*1 this measure is invariant under 7M. The same method

gives the invariance under Tgf], where o' is the side opposite from a.
Any other side § of Vi41 can be written as v x {0,1} for some side v of V.
Under the identification of X *1 with X" x X, we have T} = 7Y x TI".

By the inductive hypothesis, the transformation Tngk] leaves the measure p!¥! invari-

ant. Furthermore, it commutes with 70 and so commutes with the conditional
expectation on ZI*|. By the definition (3) of x!**1, this measure is invariant under

[k+1]
T, O

Notation. Let J*! (X) = J¥ denote the o-algebra of sets on X[ that are in-
variant under the group T*[k}.
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Proposition 3.4. On (X uF) the o-algebra T coincides with the o-algebra
of sets depending only on the coordinate 0.

Proof. If « is a side not containing 0, then (To[ék]x)o = x¢ for every x € X¥. Thus
a subset of X[¥l depending only on the coordinate 0 is obviously invariant under
the group ’Z;[k] and so belongs to J ¥l

We prove the converse inclusion by induction. For k =1, X! = X2 the group
’Z;[k] contains Id xT" and the result is obvious.

Assume the result holds for some k > 1. Let F be a bounded function on X [k+1]
that is measurable with respect to the o-algebra JF+1. Write x = (x/,x”) for a
point of X*+1 where x’,x” € X*. Since (X1 ylk+11 Tl+11) is a self joining
of (X plFl T the function F(x) = F(x',x”) on X1 can be approximated
in L2(u*+1]) by finite sums of the form

Z Fi(x)Gi(x")

where F; and G; are bounded functions on X, Since ng:” = 1d* x T s

one of the side transformations of X*+1] it leaves F invariant and by passing to
ergodic averages, we can assume that each of the functions G; is invariant under
T Thus, by the construction of ul*+1, for all i, Gi(x') = G(x") for plF+1l
almost every (x’,x”). Therefore the above sum is equal p*+-almost everywhere
to a function depending only on x’. Passing to the limit, there exists a bounded
function H on X ¥ such that F(x) = H(x') ul**!-almost everywhere.

Under the natural embedding of Vj in Vj, 1 given by the first side, each side of

Vi is the intersection of a side of Vi1 with V4. Since F is invariant under T*[]Hl],
H is also invariant under ’T*[k] and thus is measurable with respect to J (k] By the
induction hypothesis, H depends only on the 0 coordinate. O

Corollary 3.5. (X[k],,u[k]) 1s ergodic for the group of side transformations 776[7]1

Proof. A subset A of X* invariant under the group ’Tk[f]l is also invariant under

the group ’Z;[k]. Thus its characteristic function is equal almost everywhere to a
function depending only on the 0 coordinate. Since A is invariant under T, this
last function is invariant under 7" and so is constant. 0

Since the side transformations commute with 7%/, they induce measure preserv-
ing transformations on the probability space (Qy, Px) introduced in (4), which we
denote by the same symbols. From the last Corollary, this immediately gives:

Corollary 3.6. (Qg, Py) is ergodic under the action of the group T
3.4. Symmetries.

Proposition 3.7. The measure p* is invariant under the transformation o, for
every o € S.

We note that o, commutes with T for every o € S.

Proof. First we show by induction that p!*! is invariant under reflections.
For k = 1 the map (zo, 1) — (21, 20) is the unique reflection and it leaves the
measure pl!l =y x p invariant.



NONCONVENTIONAL ERGODIC AVERAGES AND NILMANIFOLDS 11

Assume that for some integer k& > 1, the measure p!* is invariant under all
reflections. For 1 < j <k +1, let R; be the reflection of X [+1 corresponding to
the digit j. If j < k+ 1, R; can be written S; x S;, where S; is the reflection
of X! for the digit j. Since p[* is invariant under S;, by construction plF 1l g
invariant under R;. The reflection Ry, simply exchanges the two sides of X [k+1]
and by construction of the measures, it leaves the measure p!**1 invariant.

Next we show that p!* is invariant under digit permutations. For k = 1 there
is no nontrivial digit permutation and so nothing to prove. For k = 2, there is one
nontrivial digit permutation, the map (oo, o1, 10, Z11) — (%00, 10, o1, T11). BY
Formula (9), u[? is invariant under this map.

Assume that for some integer k > 2, the measure p!¥! is invariant under all digit
permutations. The group of permutations of {1,...,k,k + 1} is spanned by the
permutations leaving k + 1 fixed and the transposition (k, k + 1) exchanging k and
k+1.

Consider first the case of a permutation of {1,...,k, k + 1} leaving k + 1 fixed.
The corresponding transformation R of X*+1 = X[ x X[ can be written as
S x S, where S is a digit permutation of X and so leaves pl* invariant. By
construction, p*+1 is invariant under R.

Next consider the case of the transformation R of X [¥+1] associated to the per-
mutation (k,k + 1). Using the ergodic decomposition of Formula (4) of u*~1 and
Equation (5) for £ — 1 the measure (MBH])[?] (as a measure on (X [*~1)12]) is in-
variant by the transposition of the two digits. Thus, when we consider the same
measure as a measure on X [*+1 it is invariant under R. Taking the integral, p[F+1
is invariant under R. Therefore p*+1] is invariant under all digit permutations. [

Corollary 3.8. The image of ul* under any side projection X¥ — XF=1 45

M[k_l] .

Proof. By construction of pl*l, the result holds for the side projection associated

to the side {e € Vi, : e, = 0} of V. The result for the other side projections follows
immediately from Proposition 3.7. O

3.5. Some seminorms. We define and study some seminorms on L (). When X
is Z/NZ for some integer N > 0 and is endowed with the transformation n +— n+1
mod N, these seminorms are the same as those used by Gowers in [GO01], although
the contexts are very different.

For simplicity, we mostly consider real valued functions.

Fix k > 1. For a bounded function f on X, by the definition (3) of ul*l:

/X[“ g Had i) = /X[H (E(nel;kll Flan) | I[k_”)f dut=1 >0

and so we can define
(10)

Iflle = (/ ® fdu[k])l/zk = (/X[kﬂ] (E( H Flxn) |I[k_l]>)2du[k_1])

eeVy neVi_1

1/2F

Lemma 3.9. Let k > 1 be an integer.
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(1) When f., € € Vi, are bounded functions on X,

‘/@fedum < TT 0l -

ecVy eeVy,

2) |l - llx is a seminorm on L>(u).
(8) For a bounded function f, || fllx < | fllk+1-

Proof. (1) Using the definition of u*!, the Cauchy-Schwarz inequality and again
using definition of ¥

(f @ ey

eeVy
o @ sttt [ @ s

neEVik—1 neEVik—1
— . [k . . (k]
(f @scar) </g§khdu )

where the functions g. and h. are defined for n € Vi—1 by g0 = gy1 = fyo and
hno = hyg1 = fiyn. For each of these two integrals, we permute the digits k£ — 1
and k and then use the same method. Thus (f ®€6Vk fe du[k})4 is bounded by the
product of 4 integrals. Iterating this procedure k times, we have the statement.

(2) The only nontrivial property is the subadditivity of || - ||x. Let f and g be

L2 (1)

bounded functions on X. Expanding [|f + g||2*, we get the sum of 2¥ integrals.
Using part (1) to bound each of them, we have the subadditivity.
(3) For a bounded function f on X,

2k+1

IS =B 7179, = ([ @ rau) =11

neVi neVy

From part (1) of this Lemma, and the definition (3) of u*+1), we have:

Corollary 3.10. Let k > 1 be an integer and let f., € € Vi, be bounded functions

on X. Then
|E(&) £ 17%)]
eeVy,

gy < T

In a few cases we also need the seminorm for complex valued function and so
introduce notation for its definition. Write C': C — C for the conjugacy map
z +— Z. Thus C™z = z for m even and is Z for m odd. The definition of the
seminorm becomes

a1 1= ([ @ clran)
ecVy

Similar properties, with obvious modifications, hold for this seminorm.
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4. CONSTRUCTION OF FACTORS

4.1. The marginal (X*" ul¥I"). We continue to assume that (X, u,T) is an er-
godic system, and let £ > 1 be an integer.

We consider the 2% — 1-dimensional marginals of x[*!. For simplicity, we consider
first the marginal obtained by ‘omitting’ the coordinate 0. The other cases are
similar.

Recall that V;* = V4 \ {0}. Consider a point x € X¥ as a pair (z¢,), with
z0 € X and & = (zc ;e € V) € X" Let pl*” denote the measure on X"
which is the image of u[¥l under the natural projection x — # from X onto X[l

We recall that (X*], u*) is endowed with the measure preserving action of the
]

*

groups T and ’];C[ﬁ}l The first action is spanned by the transformations T C[J“ for

« a side not containing 0 and the second action is spanned by T'¥ and ’Z;[k]. By
Corollary 3.5, u* is ergodic for the action of Tk[i]l.

All the transformations belonging to Tk[f]l factor through the projection X%l —
K (K" This defines a measure
k)™

X[¥" and induce transformations of X! preserving u

preserving action of the group Tk[ﬁ}l and of its subgroup ’Z;[k] on X¥". The measure
plF” is ergodic for the action of ’Tk[f]l
On the other hand, all the transformations belonging to Tk[ﬁ}l factor through the

projection x — xo from X* to X, and induce measure preserving transformations
of X. The transformation T'* induces the transformation 7 on X, and each trans-

formation belonging to T*[k] induces the trivial transformation on X. This defines a
measure preserving ergodic action of the group Tk[ﬁ}l on X, with a trivial restriction
to the subgroup T*[k}.

Thus we can consider (in a second way) ul¥ as a joining between two systems.
The first system is (X" u*") and the second (X, u), both endowed with the
action of the group Tk[ﬁl

Let ZM" denote the o-algebra of Tl invariant sets of (X*I" ul¥) and JkI"
de[g]ote the o-algebra of subsets of X[¥" which are invariant under the action of
T.".

4.2. The definition of the factors Z;. Let A ¢ X¥" belong to the o-algebra
JW " Ais invariant under the action of the group ’T*[k] and thus the subset X x A
of X!¥ is invariant under ’T*[k] . By Proposition 3.4, this set depends only on the first
coordinate. This means that there exists a subset B of X with X x A = B x X",
up to a subset of X[ of ulFl-measure zero. That is,

(12) 14(%) = 1p(xo) for p*-almost every x = (x9,7) € X*

It is immediate that if a subset A of X" satisfies Equation (12) for some B C X,

then it is invariant under ’Z;[k] and thus measurable with respect to J*/". Moreover,
the subsets B of X corresponding to a subset A € 7" in this way form a sub-o-
algebra of X'. We define:

Definition 4.1. For an integer k > 1, Z;_1(X) is the o-algebra of subsets B of X
for which there exists a subset A of X*I" so that Equation (12) is satisfied.

In the sequel, we often identify the o-algebras Zj_1(X) and J*¥" (X), by identi-
fying a subset B of X belonging to Zj_1(X) with the corresponding set A € J*".
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The o-algebra Zj;_ is invariant under 7" and so defines a factor of (X, u, T') that
we write (Zx—1(X), pr,T), or simply (Zx_1, ux,T) or even Zi_1. The factor map
X +— Zp_1(X) is written mx x—1 Or T_1.

As X" = X | the g-algebra J!! is trivial and Zo(X) is the trivial factor.

We have already used the notation Z;(X) for the Kronecker factor and we check
now that the two definitions of Z;(X) coincide. For the moment, let Z denote the
Kronecker factor of X and let 7: X — Z be the natural projection. By Formula (9),
we have ul?" = px px g and J2” is the algebra of sets which are invariant under
T xId xT and Id xT x T. By classical arguments, 72" is measurable with respect
to Z x Z x Z, and more precisely J?" = ®~1(2), where the map ®: X" — Z
is given by ®(xo1,210,211) = 7(x01) — 7(x10) + 7(211). But pl! is concentrated
on the set {x : zgo = ®(Z)}. This is exactly the situation described above, with
Z, = Z.

Lemma 4.2. For an integer k > 1, (X[k},u[k]) is the relatively independent joining
of (X, ) and (X" u¥™Y over Z;,_1 when identified with J*".

Proof. Let f be a bounded function on X and g be a bounded function on X",
Since p!* is invariant under the group ’Tk[f}l, for integers ni,nq,...,ng we have

/ F(0)g(®) du™ (x / F(wo)g (T (T . (r¥ymz) 4 (x)

K] plk]

where T 1[ TQ[ .,Tik} denote the k generators of T*[ . Thus, by averaging and

taking the limit
13) [ fa)g(@) i) = [ F(ro)Bl | 7@ dul
— [B( | 2 wo)Bl | 7))@ dul ()

Lemma 4.3. Let f be a bounded function on X. Then
E(f | Zk-1) =0 [Ifls =0

Proof. Assume that E(f | Z;,—1) = 0. By Equation (13) applied with g(z) =
H f(ze), we have || f]|x = 0 by definition (10) of the seminorm.
eeVy

Conversely, assume that || f]|x = 0. By Lemma 3.9, for every choice of f., € € V}¥,

/ F(o) T £ (o) dui(x) = 0.

eeVy

By density, the function x — f(xq) is orthogonal in L?(ul®l) to every function
defined on X" and in particular to every function measurable with respect to
JUW™. But this means that f is orthogonal in L?(y) to every Zj_;-measurable
function and so E(f | Z;_1) = 0. O

Corollary 4.4. The factors Zi(X), k > 1, form an increasing sequence of factors
of X.



NONCONVENTIONAL ERGODIC AVERAGES AND NILMANIFOLDS 15

4.3. Taking factors. Let p: (X, X, u,T) — (Y, V,v,T) be a factor map. We can
associate to Y the space Y!¥! and the measure v*! in the same way that X¥ and
pl¥l are associated to X in Section 3. This induces a natural map p*: X — Ykl
commuting with the transformations 7% and the group ’Tk[f]l

Lemma 4.5. Let p: (X, u,T) — (Y,v,T) be a factor map and let k > 1 be an
integer.
(1) The map p¥: (XK ylkl TEY — (vIE yIk TR G5 6 factor map.
(2) For a bounded function f on'Y, |fllx = |If opllx, where the first seminorm
is associated to 'Y and the second one to X.

Proof. (1) Clearly pl¥l commutes with the transformation T¥ and so it suffices to
show that the image of 1% under p*! is v[¥. We prove this statement by induction.
The result is obvious for £ = 0 and so assume it holds for some & > 0. Let f,
€ € Vi, be bounded functions on Y. Since pl* is a factor map, it commutes with
the operators of conditional expectation on the invariant o-algebras and we have

E((Q £ opM|M(x)) = E(®) £ (X)) 0 p .
eeVy eeVy
The statement for k + 1 follows from the definitions of the measures p*+1 and
[k+1]
v .
(2) This follows immediately from the first part and the definitions of the semi-
norms. (]

Proposition 4.6. Letp: (X, u,T) — (Y,v,T) be a factor map and let k > 1 be an
integer. Then p~1(Zx_1(Y)) = Zx—1(X) Np~1 (D).

Using the identification of the o-algebras ) and p~1(})), this formula is then
written

Zk_l(Y) = Zk_l(X) ny.

Proof. For k = 1 there is nothing to prove. Let k > 2 and let pl*I": X" — y[K”
denote the natural map. By Lemma 4.5, it is a factor map. Let f be a bounded
function on X that is measurable with respect to p~(Z_1(Y)). Then f = gop for
some function g on Y which is measurable with respect to Z;_1(Y"). There exists
a function F on Y*" measurable with respect to J¥", so that g(yo) = F(§) for
viH_almost every y = (yo, ) € YI¥. Thus g o p(xo) = F o pl*" (%) for p*l-almost
every X = (zo,Z) € X[ and the function f = g o p is measurable with respect to
Zy1(X). We have p~*(Zx-1(Y)) C Zp—1(X) Np~ ' (V).

Conversely, assume that f is a bounded function on X, measurable with respect
to Zx_1(X)Np~1(Y). Then f = gop for some g on Y. Write g = g’ + ¢”, where
¢’ is measurable with respect to Z,_1(Y) and E(¢” | Z,_1(Y)) = 0. By the first
part, g’ o p is measurable with respect to Z;_1(X). Using Lemma 4.3 and Part (2)
of Lemma 4.5, ||¢”||x = 0 and so ||¢g"” o p|lx =0 and E(¢” o p | Zx—1(X)) = 0. Since
f =g op+g” opis measurable with respect to Zj_1(X), we have g” op = 0. Thus
¢” =0 and ¢ is measurable with respect to Z;_1(Y). O

4.4. The factor Z}’“] of X[¥. We apply this to the factors Z, = Z,(X) of X.
For integers k,¢ > 1, (Zék], uik],T[k]) is the 2*-dimensional system associated to
(Zo, e, T) in the same way that (X ] T is associated to (X, u, T). The



16 BERNARD HOST AND BRYNA KRA
map w0 XK — ZIF is a factor map. We have Zi(Zo(X)) = Z1(X) N Z4(X).
Since the sequence {Z;} is increasing, we have

Zy(X) ifk<t
Zy(xz)  otherwise .

(14) Zi(Zo(X)) = {

Proposition 4.7. Let k > 1 be an integer.

(1) As a joining of 2% copies of (X, u), (XF ulF) is relatively independent
over the joining (Z][ﬁl,ugﬂl) of 2% copies of (Zy—1, ph—1)-
(2) Zy is the smallest factor Y of X so that the o-algebra I is measurable

with respect to Y¥!

Proof. (1) The statement is equivalent to showing whenever f., € € V, are bounded
functions on X,

(15) /X[k] ® fedpl = /Z[k] ® E(fe | Zkfl)d“gﬂl :

eeVy, k-1 e€Vy

It suffices to show that

(16) /X[k] R fedu™ =0

eeVy

whenever E(f, | Zy—1) = 0 for some n € Vj,. By Lemma 4.3, if E(f, | Zx-1) = 0,
we have that || f,[|x = 0. Lemma 3.9 implies equality (16).
(2) Let fe, € € Vi, be bounded functions on X. We claim that

(17) E(Q fe17M) =E(QE(f. | 24) | TH) .

ecVy ecVy

As above, it suffices to show this holds when E(f, | Z;) = 0 for some n € Vj. By
Lemma 4.3, this condition implies that || f,[lx+1 = 0. By Corollary 3.10, the left
hand side of Equation (17) is equal to zero and the claim follows.

Every bounded function on X * which is measurable with respect to Z*! can be
approximated in L?(u*!) by finite sums of functions of the form E(@.cy, fe|Z (K]
where f,, € € Vi, are bounded functions on X. By Equation (17), one can assume

that these functions are measurable with respect to Zi. In this case, ®€6Vk fe is

measurable with respect to Z,[ck] (recall that W][ck]: X Z,[f] is a factor map by

Part (1) of Lemma 4.5). Since this o-algebra is invariant under T, E(®.cvy, fe
T*]) is also measurable with respect to Z,[f]. Therefore Z!*! is measurable with
respect to Z,[ck].

We use induction to show that Zj is the smallest factor of X with this property.
For k = 0, 71 and Z; are both the trivial factor of X and there is nothing to
prove. Let k > 1 and assume that the result holds for k£ — 1.

Let Y be a factor of X so that Z!¥ is measurable with respect to V¥, For any
bounded function f on X with E(f | })) = 0, we have to show that E(f | Z;) = 0.

By projecting on the first 2! coordinates, Z(*~1 is measurable with respect
to YI*=1. By the induction hypothesis, Y D Z,_;. Since ul*¥l is a relatively

independent joining over Z,[f_]17 it is a relatively independent joining over Y¥l.
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This implies that when fe, € € V}, are bounded functions on X, we have
E(Q) fo | V) = R E(fe | ) .
eeVy eeVy
We apply this with f. = f for all e. The function x +— HeGVk

conditional expectation with respect to Y!¥. By hypothesis, it has zero conditional
expectation with respect to ZI*l. By the definition (10) of the seminorm, || f[|x+1 = 0
and by Lemma 4.3, E(f | Z;) = 0. O

f(ze) has zero

4.5. More about the marginal p*!". The results of this Subsection are used
only in Section 13, in the study of the second kind of averages.

Lemma 4.8. Let k > 2 and f., € € Vi, be 2% bounded functions on X. If there
exists n € Vi, so that f, is measurable with respect to Zj,_o and if there exists ¢ € V3

s0 that B(f¢ | Zr—2) = 0, then [ @.cy, fe dul® = 0.

Proof. If n = ¢, then f, = f¢ = 0 and the result is obvious.

Consider first the case that (n,¢) is an edge of Vj. Without loss of generality,
we can assume that for some j, ; = 0 and (; = 1 and that n; = ¢; for ¢ # j.
We proceed as in the proof of Lemma 3.9, but stop the iteration of the Cauchy-
Schwarz inequality one step earlier. This gives a bound of ([ Rccv, fe d,u[k])yc*1

2k—1

by a product of integrals, with one of them being

[T st TT fete0 a0

ecVy, e€Vy
6j:O Ejzl

- / B(Q fol TFU) B R fo | THY) a1
e€EVi_1 €€EVi_1

The conditional expectation with respect to ZF~1 commutes with the conditional

expectation with respect to Z,[ck:;]. The function @
]

cevi,_, Jn is measurable with

and thus the first conditional expectation in the above integral is
(k—1]

respect to Z,[ck:;
measurable with respect to this factor. Since pu is relatively independent over
Z,[Ck__;], we have E(Q) ey, , f¢ | Z,[Ck__;]) = 0 and the conditional expectation with

respect to Z,[Ck_;l] of the second term in the integral is 0. Therefore the integral is
Zero.

Now consider the general case. Choose a sequence = 11,72, ...,7m = ¢ in Vj
so that (ng,mes1) is an edge for each £. Make a series of changes in the integral
S Qccv, fe dul®!| substituting successively E(f,, | Zx—2) for fo,, E(fys | Zk—2)
for fu,, ..., and E(fy,, | Zx—2) for f,, = fc. By the previous case, each of these
substitutions leaves the value of the integral unchanged. After the last substitution,
the integral is obviously 0. 0

Proposition 4.9. (1) For every integer k > 2, the measure p*)" is the rela-
tively independent joining of 2% — 1 copies of 1 over Z,[i]Q

(2) For every integer k > 1, the o-algebra T is measurable with respect to

zkI”
k—1 i
(3) For every integer k > 1, the o-algebra T is measurable with respect to

[k]*
Zi0.
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Proof. (1) Let f, € € V¥, be bounded functions on X and assume that E(f; |
Zi—2) = 0 for some ¢ € V. Set fo = 1. By Lemma 4.8,

/®fedﬂ /®fdu““

eeVy ecVy,

(2) Let fe, € € V¥, be bounded functions on X and assume that E(f¢ | Z2,—1) =0
for some ¢ € V}*. Define fo = 1 and 2* functions on X by geo = ge1 = fe for € € V.

Then
JE@ 2179 2al = [B(Q 1. 1742 4
€€Vk* eeVy
= ® 9n dﬂ[k+1] =0
NEVk41

by Lemma 4.8, and the result follows.

(3) Let fe, € € V¥, be bounded functions on X and assume that E(f¢ | Zr,—1) =0
for some ¢ € V;*. By definition of the factor Z;_1, there exists a bounded function
fo on X, measurable with respect to Zj_1, with

fo(zo) H fe(ze) | T )(z) for pl! almost every x = (zo, Z) .
ecVyr

As the measure pl*l is relatively independent with respect to Zj_; and E( fel
Zk—1) = 0 we have

0—/Hf5 o) dplM (x /fo 2o)E( [] fe(ze) | TH) (@) dpM (wo, 7)

eeVy, €€V*
= [IE(T] fuwa | 79 @ aul (z)
ecVyr
and the result follows. O

4.6. Systems of order k. By Corollary 4.4, the factors Z;(X) form an increasing
sequence of factors of X.

Definition 4.10. An ergodic system (X, u, T') is of order k for an integer k& > 0 if
X = Zx(X).

A system might not be of order k for any integer k£ > 1, but we show that any
system contains a factor of order k for any integer £ > 1. These factors may all be
the trivial system, for example if X is weakly mixing. By Equation (14), a system
of order k is also of order ¢ for any integer ¢ > k. Moreover, for an ergodic system
X and any integer k, the factor Z;(X) is a system of order k.

Systems of order 1 are ergodic rotations, while systems of order 2 are ergodic
quasi-affine systems (see [HKO01]).

Proposition 4.11. (1) A factor of a system of order k is of order k.
(2) Let X be an ergodic system and Y be a factor of X. If Y is a system of
order k, then it is a factor of Zi(X).
(3) An inverse limit of a sequence of systems of order k is of order k.

Properties (1) and (2) make it natural to refer to Zx(X) as the mazimal factor
of order k of X.
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Proof. The first two assertions follow immediately from Proposition 4.6.

Let X = lim X; be an inverse limit of a family of systems of order £ and let f be
a bounded function on X. If f is measurable with respect to X for some j, then
(using the same notation as above) by Definition 4.1 there exists a function F' on
X" such that f(z¢) = F(&) plFl-almost everywhere. By density, the same result
holds for any bounded function on X and the result follows by using Definition 4.1
once again. (Il

Using the characterization of Zj(X) in Lemma 4.3, we have:

Corollary 4.12. An ergodic system (X, u, T) is of order k if and only if || f | x+1 # O
for every non-zero bounded function f on X .

5. A GROUP ASSOCIATED TO EACH ERGODIC SYSTEM

In this Section, we associate to each ergodic system X a group G(X) of measure
preserving transformations of X. The most interesting case will be when X is of
order k for some k. Our ultimate goal is to show that for a large class of systems
of order k, the group G(X) is a nilpotent Lie group and acts transitively on X
(Theorems 10.1 and 10.5).

Definition 5.1. Let (X, 4, T) be an ergodic system. We write G(X) or G for the
group of measure preserving transformations x +— ¢ -z of X which satisfy for every
integer £ > 0 the property:

(P¢) The transformation g} of X[ leaves the measure pl¥ invariant and acts
trivially on the invariant o-algebra Z!4(X).

G(X) is endowed with the topology of convergence in probability. This means
that when {g,} is a sequence in G and g € G, we have g, — ¢ if and only if
w(gi-AAg-A) — 0 for every A C X. An equivalent condition is that for every
feL?(u), fogn— fogin L?(u).

The last condition of P, means that the transformation gl leaves each set in
71 invariant, up to a plf-null set.

We begin with a few remarks. Let (X, u, T) be an ergodic system.

1) The transformation T itself belongs to G(X).

1) G(X) is a Polish group.

we) Let p: (X, 1, T) — (Y,v,S) be a factor map. Let g € G(X) be such that g
maps Y to itself. In other words, there exists a measure preserving transformation
h:y— h-yof Y, with hop=pog. For every £, the map pll: (X pl¥l Tl) -
(Y1, ¥ Sl is a factor map by Lemma 4.5, part (1). Thus the measure vl
is invariant under hl¥. As the inverse image of the o-algebra Z!! (Y) under plf is
included in Z1(X), the transformation 2% acts trivially on Z1/(Y"). Thus h € G(Y).

w) Let g be a measure preserving transformation of X satisfying (P;) for some
¢ and let k& < £ be an integer. We choose a k-face f of V;, and write as usual
5[;)] : X140 — X for the associated projection. The image of ul¥) by 5.&6] is pl and

~1
we have T¥ o fy] = 55{3] o T thus 55{3] (z!¥y < 7. 1t follows immediately that

g satisfies (Py). Thus Property (P;) implies Property (Py) for k < £.

5.1. General properties.
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Lemma 5.2. Let (X,u,T) be an ergodic system. Then for any k > 0, every
g € G(X) maps the o-algebra Z, = Zi,(X) to itself and thus induces a measure
preserving transformation of Zy, belonging to G(Zy,).

Notation. We write prg : & — pgg- for this transformation. The map py: G(X) —
G(Zy) is clearly a continuous group homomorphism.

Proof. Let g € G and k > 0 be an integer. Let f be a bounded function on X with
E(f | 2k) = 0. By Lemma 4.3 and the definition (10) of the seminorm,

= ok+1 :/ dylE+1 :/ o gdu*+1
S = [ Q@ sal = [ Q) regdn

€€Vt €€Vt

Since gl*+1] leaves the measure p**+1 invariant, we have || fog[lx+1 = 0 and E(fog |
Zi) = 0. By using the same argument with g—! substituted for g, we have that
E(fog | Z2;) = 0 implies E(f | Zx) = 0. We deduce that g - Z; = Z,. Thus
g induces a transformation of Z;. By Remark u2) above, this transformation pg
belongs to G(Zy). O

Notation. Let G be a group. Let k£ > 1 be an integer and let a be a face of Vj.
Analogous to the definition of the side transformations, for g € G we also write g,[f]

for the element of G[¥ given by

(k]

( gl (%]

)6 =gifeca; (g4 )E = 1 otherwise.

When G acts on a space X, we write also g([lk] for the transformation of X asso-
ciated to this element of G*: For x € X*],

(g([f]-X) :{g~zE ifeca

Te otherwise.

Lemma 5.3. Let (X, u,T) be an ergodic system and let 0 < £ < k be integers. For
a measure preserving transformation g : x — g-x of X, the following are equivalent:

(1) For any ¢-face o of Vi, the transformation g&k] of X! leaves the measure
p* invariant and maps the o-algebra TW*! to itself.

2) For any ({+1)-face B of Viy1 the transformation B+ Jeques the measure

( 4 + 93

pl 1 invariant.
(3) For any (£+1)-face v of Vi the transformation g,[yk] leaves the measure ¥

invariant and acts trivially on the o-algebra TIF.

Proof. We note first that if any one of these properties holds for a face, then by
permuting the coordinates, it holds for any face of the same dimension.

(1) = (2). Let a be an ¢-face of Vi,. The transformation g([f] preserves the measure
pl*! and the o-algebra Z1¥], thus commutes with the conditional expectation on this

o-algebra. For any bounded function F' on X" we have E(F | ZI*) o g([f] =
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E(F o gH | ZI¥). So, for bounded functions F’, F”" on X ¥,

/X[k+1] (F/ ® FU) 0 (g([f] X g([lk]) d‘u[k+1]
:/ E(F' o glf! | W) -E(F" 0 g} | TH) dul¥
X (k]
X (K]
:/ E(F/ | I[k]) . E(F“ | Z[k])d’u[k]
X (k]

:/ F' '@ F" du[k-H]
X [k+1]

and the measure pl**1 is invariant under g([lk] X g([lk]. But this transformation is

ggﬁl] for some (£ + 1)-face (3 of V41 and so Property (2) follows.

(2) = (3). Let y be an (£ + 1)-face of Vj. Under the bijection between V; and
the first k-face of Vi1, v corresponds to an (£+ 1)-face 3 of Vi41. Under the usual
identification of X 1 with X x X¥ we have ggﬂﬂ] = ggk] x Id™. Since the

measure pt1 is invariant under g[ﬁkﬂ] and each of its projections on X is equal

to ¥, this last measure is invariant under g[yk]. For a bounded function F on X ¥,

measurable with respect to Z!¥, we have

k
||F||iz(u[k1) = /F@qu[kﬂ] = /(F@F) Og[ﬁ +1] dplk+1]

= /(Fog[f]) @ FdplF+1 = /E(Fog[ﬁ | Z)y . P dpt®

Thus E(F o g.[yk] | Z¥)) = Fand F o g.[yk] = F. Property (3) is proven.

(3) = (1). Let a be an ¢-face of Vi, and let v be an (¢ + 1)-face of Vj. Since

ggk] acts trivially on Z!¥1| by using the definition of the conditional expectation we

have E(F o ggk] | ZI¥) = E(F | ZI*!) for any bounded function F' on X*I. By the

definition of the measure 1), this measure is invariant under ggk] x Id*l. But

this transformation is equal to ggkﬂ] for some (£+1)-face § of Vj11. By permuting

coordinates, the measure pl**1 is invariant under ggﬁu for every (¢ + 1)-face 8 of
Vit1. As the transformation g,[f ] X g,[f ] is a transformation of this kind, it leaves the
measure p*+t1) invariant. By projection, the measure ¥l is invariant under g,[f I,

Let F be a bounded function on X, measurable with respect to Z!¥l. Then
||E(F°9<[xk] |I[k])||2Lz(HUc1) =
JFodth e (Fodthau ot = (e F) o (ol x gl dult)
= /F® Fdp*+1 = |E(F | I[k])lliw[kl) = HFH%z(u["]) = ||F09Lf“]||iz(u[k1)

and this means that F' o g[(f ] is measurable with respect to 7 (k] O
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By applying this Lemma with ¢ = k — 1 we get some characterizations of the
group G(X):

Corollary 5.4. Let (X, pu,T) be an ergodic system and g : © — g - a measure
preserving transformation of X. The following are equivalent:
(1) For every integer k > 0 and every side o of Vi, the measure p* is invariant
under ng].
(2) For every integer k > 0 and every side a of Vi, the measure ul*! is invariant

(%]

under go and this transformation maps the o-algebra TIF to itself.
(3) g € G(X).

By an automorphism of the system (X, u,T), we mean a measure preserving
transformation of X that commutes with 7.

Lemma 5.5. Let (X, u,T) be an ergodic system. Then every automorphism of X
belongs to G(X).
Moreover, if g : x — g - x is an automorphism of X acting trivially on Zy(X)

for some integer £ > 0, then for every integer k > 0 the measure pl'*t* is invariant

under g[of+k] for every (k — 1)-face o of Viy.

Proof. Let g be an automorphism of X as in the second part of the Lemma. We
use the formula (4) for 1 and the expression given by Lemma 3.1 for pl+#l:

fe—
M[EH] = / /&[fﬂ] dPpy1(w) and M[Hk] :/ (/&[fﬂ])[ . dPpi1(w) -
Qega

Qpia
As pl1) is relatively independent over ZyH] and g acts trivially on Z,, we get

that the measure pl*% is invariant under gyﬂ] for any vertex € € Vyi1. As

the transformation gyﬂ] commutes with T+ it induces a measure preserving

transformation h of 44 1. Moreover, for P4 1-almost every w € (41, the image of

ugH] under gLZH] is u%zl]. It follows that the measure pl** is invariant under
the transformation gyﬂ] X e X ng] (251 times). But this transformation is

g™ for some (k — 1)-face o of Viyo.
The second part of the Lemma follows by permutation of coordinates. The first
part of the Lemma follows from the second part with £ = 0 and Corollary 5.4. [

5.2. Faces and commutators. We need some algebraic preliminaries.

Definition 5.6. Let G be a Polish group written with multiplicative notation. For
every integer k > 0, G*! is endowed with the product topology. For 0 < ¢ < k, we

write Gik] for the closed subgroup of G*! spanned by
(18) {9 . g € G and a is an (-face of V} .

Thus G([Jk] = G and chk] is the diagonal subgroup {(g,9,...,9) : g € G} of
GIFl. We call Ggﬂl the side subgroup and G[lk] the edge subgroup of Gl

For j > 0, GUY) denotes the closed jth iterated commutator subgroup of G (see
Appendix A). Thus G = G, G = G’ is the closed commutator subgroup of G,
and so on.

Lemma 5.7. Let G be a Polish group. For integers 0 < j < k, the jth iterated

commutator subgroup of Ggﬂl contains (G(j))gﬁj_l
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Actually equality holds, but we omit the proof as this fact is not needed.

Proof. For g, h € G and faces «, 8 of Vj, an immediate computation gives

k k
(19) [ h] = [gs 2,

For j = 0 the statement of the Lemma is trivial. For j > 0 the statement is proved
by induction. Every (k — j — 1)-face v of Vi can be written as the intersection of a
side a and a (k — j)-face 8. By using Equation (19) we get the result. O

Corollary 5.8. Let (X,u,T) be an ergodic system and G = G(X). Then, for
integers 0 < j < k, any g € GY) and any (k — j — 1)-face o of Vi, the map ng]

leaves the measure pl¥! invariant and maps the o-algebra TW*! to itself.

Proof. Let k > 1 and H be the subgroup of GI* consisting of the transformations
g = (ge : € € Vi) of X[ that leave the measure pl*! invariant and maps the

o-algebra Z!* to itself. By Corollary 5.4, H contains the side group g,[fll. By

Lemma 5.7, H contains (GW))} | for 0 < j < k. O

Corollary 5.9. If (X, u,T) is a system of order k, then the group G(X) is k-step
nilpotent.

Proof. Let g € G*). By Corollary 5.8, for any vertex € € Vi1, the measure p*+1]

is invariant under g£k+1]. Let f be a bounded function on X. Then

oo 71 = [ TT (Flo- ) = f(a0) du.

€€Vk+1

All 2¥+1 integrals obtained by expanding the right side of this equality are equal
up to sign and so this expression is zero. By Corollary 4.12, f = f o g so g acts
trivially on X, thus is the identity element of G. The group G® is trivial. O

Corollary 5.10. Let (X, u,T) be a system of order k and uw an automorphism of
X inducing the trivial transformation on Zi_1(X). Then u belongs to the center

of G(X).

Proof. u belongs to G(X) by Lemma 5.5. Let g € G. Let € be a vertex of Vi1.
We choose an edge o and a side 3 of Vj41 with €e = « N 3. By Lemma 5.5, plf+1

is invariant under u([f +, By Corollary 5.4 this measure is invariant under ggcﬂ].
Thus this measure is invariant under [ugf 1, g[ﬁkﬂ]] = [u; g]LkH]. We conclude as
in the proof of the preceding Corollary that [u; g] is the identity. O

6. RELATIONS BETWEEN CONSECUTIVE FACTORS

We study here the relations between the factors Zx_1(X) of a given ergodic
system (X, u,T). For each integer k > 1, Z;(X) is an extension of Z;_1(X). We
show first that this extension is isometric, then that it is an extension by a compact
abelian group. We then describe this extension more completely.
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6.1. Isometric extensions. We recall (see [FW96]) that an ergodic isometric ex-
tension W of a system (Y, i, S) can be written (Y x G/H, pu x A, S) where:

e G is a compact (metrizable) group and H is a closed subgroup.

e X\ = mgp is the Haar measure on G/H. That is, A is the unique prob-
ability measure on GG/H which is invariant under the action of G by left
translations. It is also the image of the Haar measure mg of G under the
natural projection G — G/H.

e p=Y - Gisacocycleand S: Y xG/H — Y x G/H is given by S(y,u) =
(Ty, p(y)u), where the left action of G on G/H is written (g,u) — gu.

Without loss, we can reduce to the case that the action of G on G/H is faithful,
meaning that H does not contain any nontrivial normal subgroup of G. Moreover,
we can assume that the the cocycle p: Y — G is ergodic, meaning that the system
(Y x G,pu x mg,T,) is ergodic. As usual, T,(y,g9) = (Ty, p(y)g).

To every g € G we associate a measure preserving transformation z — ¢ - x of
W by

g9+ (y,u) = (y,9u) .

We also denote this transformation by g.

Any factor of W =Y x G/H over Y has the form Y x G/L, for some closed
subgroup L of G containing H. In particular, the action of ¢ € G on W induces a
measure preserving transformation on this factor, written with the same notation.

Lemma 6.1. Let W =Y x G/H be an ergodic isometric extension of Y so that
the corresponding extension Y x G is ergodic. Then, for every g € G, gl =g x g
acts trivially on the invariant o-algebra TM(W) of W x W.

Proof. Let T denote the transformation on W. Consider the factor K of W spanned
by Y and the Kronecker factor Z1(WW) of W. Then K is an extension of Y by a
compact abelian group. Therefore, K =Y x G/L for some closed subgroup L of
G containing H and containing the commutator subgroup G’ of G. Thus, for any
g € G, the action of g on K commutes with 7" and it induces an automorphism of
the Kronecker factor Z1(K) = Z1(W).

But an automorphism of an ergodic rotation is itself a rotation. By the descrip-
tion in Section 3.2 of the invariant sets of W x W, the result follows. O

6.2. Z; is an abelian group extension of Z;_.

Lemma 6.2. Let (X, u,T) be an ergodic system and let k > 2 an integer. Then
Zi, is an isometric extension of Zy_1.

Proof. Let Y be the maximal isometric extension of Zy_; which is a factor of X
(see [FW96]).

We consider (X, ulFl T as a joining of (X, u, T) and (X" x#° TK") and
recall that this joining is relatively independent with respect to the common factor
Zy,_1 = IM of these two systems. It is then classical that the invariant o-algebra
T of (X ) TIF) is measurable with respect to Y @ X[F",

Let f be a bounded function on X with E(f | Y) = 0. Write F for the function
x = [[eey, f(@e) on X, Since pul* is relatively independent with respect to Z,[Ck_]l
and Y D Z;_1, F has zero conditional expectation on the o-algebra )V ® X" and
so zero conditional expectation on Z[*. With the usual identification of X *+1 with

the Cartesian square of X%, we have [y .,y F(x')F(x") dpf+1(x’,x"") = 0. That
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is, || fllk+1 = 0 by definition of this seminorm and E(f | Z;) = 0 by Lemma 4.3.
Therefore Z, C V. O

Proposition 6.3. Let (X, u,T) be a system of order k > 2.

(1) X is a compact abelian group extension of Zy_1, written X = Zp_1 x U,
where U is a compact abelian group.
(2) For every u € U and every edge o of Vi, the transformation u([f] acts

trivially on T,

Proof. By Lemma 6.2, X is an isometric extension of Zx_; and so we can write
X = Zk_1 x (G/H), where G is a compact group and H a closed subgroup. As in
Section 6.1 we write p: Zp_1 — G for the cocycle defining this extension and let A
denote the Haar measure of G/H.

(%]

Since ul* is relatively independent with respect to Z 41, this measure is invariant

under the map ggk] for any g € G and any € € V. A fortiori, it is invariant under

g([f] for any g € G and any edge « of V.

Claim: For any g € G and any edge o of Vi, the transformation g[(f] acts trivially
on T,
Consider the ergodic decompositions of x~1 and ugffll]

71 is measurable with respect to Z,[Ck__lll, these decompositions can be written

as

as in Section 3.1. Since

pul=1 =/ p*=1ap, ;(w) and MLk:ll] :/ Mgil,]w dPy—1(w) ,
Qk71 Qk—l
where ,ugck:ll)]w is the projection of ugﬂ onz ,[Ck:ll].
By Part (1) of Proposition 4.7, (X1, yk=1 7*=11) is the relatively indepen-

dent joining of 2¥~1 copies of (X, T, 1) over Z,[Ck__ll]. Thus we can identify X1

with Z,[ck:ll] X (G““‘”/H[k_l]). The measure p*~1 is the product of ugfjll] by the
2F=1_power A®F~1l of )\, which is the Haar measure of G*~1/HF=1] and X[k—1l
I given by the cocycle plF=11: Z,[f:ll] — GIk-11,
So for almost every w € Q_1, the system (X[k_l],ut[ffl],T[k_l]) is an isometric
extension of (Z,[Jfll],ugfjlly T, with fiber GIF=1 /=1,

Let ¢ € G and let € € Vi_1 be a vertex. Since ggk_l} belongs to GF—1 by
Lemma 6.1 the transformation ngfl] xggkfl] of Xkl = X k=11 X k=1 acts trivially
on the T = T=11 » T=1] jpyariant o-algebra of (X, ulF =1 x pk=1 7).

We recall (see Formula 5) that

pl¥ :/ plb= o pl 1 dp(w)
Qr_1

. . . . k—1
is the isometric extension of Z ,[671

]

Thus gyﬁ” X ggkfl] acts trivially on the invariant o-algebra Z*/. But gyﬁ” X
ng_l] is equal to g([f ! for some edge a of Vi. The claim follows by permuting the
coordinates.

Claim: G is abelian.
Let g,h € G, and let € be a vertex of Vi 1. Choose two edges a and (3 of Vi1

with a N 8 = e. By Equation (19), [g([f];h[;]} = [g;h]Lk]. By the first step and

Lemma 5.3, the transformations g([f 1 and hgﬁl} preserve the measure pu**1, thus
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also the transformation [g; h]LkH]. As this holds for every vertex e, we conclude
as in the proof of Corollary 5.9 that [g; h] acts trivially on X. This means that
[g;h] = 1 and so G is abelian.

By our hypotheses the group H is trivial, and the proof is complete. O
6.3. Description of the extension.
Notation. For k£ > 1 and € € Vj, we write
le| = €1+ €2+ -+ € and s(e) = (=1)ll .

Let X be aset, U an abelian group written with additive notation and f: X — U
a map. For every k > 1, we define a map A*f: X* — U by:

AFf() =) s(e)f(ae) -
eeVy,
In particular, Af is the map defined on X? by Af(z/,2") = f(2') — f(z"). We
have similar notation when the group is written with multiplicative notation.
Proposition 6.4. Let (X, u,T) be a system of order k > 2. By Proposition 6.3, X

is an extension of Zx_1 by a compact abelian group U for some cocycle p: Zj_1 —
U. Then

(1) AFp: Z; k] — U is a coboundary (see Appendiz C.2) of the system (Zl[C ]1, [K] LT

7

meaning that there ewists F': Z, [k} — U with
(20) Ap:FoTW—F.
(2) The o-algebra ¥ (X) is spanned by the o-algebra T¥(Zy_1) and the map
®: XK — U given by

(21) O(y,u) = F(y) — Y s(e)uc
eeVy,
fory e Z,[i]l and u € U where we have identified X with Z,_1 x U and
XU with ZM | s Uk,

Proof. Here we consider characters of U as homomorphisms from U to the circle
group S!, written with multiplicative notation.

(1) Let x € U. Define the function ¢ on X = Zy_1 x U by %(y,u) = x(u) and the
function ¥ on X = Z[k] x U by

U(y,u) = X(Z s(€)uc) fory € Y and u e U
e€Vy

Since X is of order k, ||¢|lxy1 # 0 by Corollary 4.12 and E(¥ | ZI¥l) # 0 by
Lemma 4.3.
Let J be the linear map from LQ(,ugil) to L?(ul®) given by

Jf(y,u) = f(y)¥(y,u) for f € L2(,ugck] 1) Y€ Z,[ﬁl and u € UK

J is an isometry and its range M, is a closed subspace of L?(u*). Furthermore,
for f € L2(,ugck] )
T(x(a%p) - foTH) = () 0T
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and so the space H, is invariant under T ], Since the function ¥ belongs to Hy,
the function E(¥ | ZI¥) also belongs to this space. We get that there exists a

non-identically zero function f on Z ,[Ck_]l with

(22) x(AFp) - foTl = f M ace.
Let A={y € Z,[i]l: f(y) #0}. Then pg_1(A) # 0 and A is T!Fl-invariant by
Equation (22). We use the ergodic decomposition given by Formula (4), but for

the measure ugﬁl. Since A is invariant, it corresponds to a subset B of , with
Py(B) #0.
Define

C = {w € Qy: x o A¥p is a coboundary of (Z,[f_]l,ugﬂlw T}

Then C' is measurable in Qj and it contains B by Equation (22) and the definition

of B. Thus P,(C) > 0. We show now that C' is invariant under the group Tk[f]l
of side transformations. Let w € € and let a be a side of Vj, not containing 0 so

that To[ék]w € C. Let ¢: Z,[ﬁl — T be chosen with its coboundary for 7™ equal to

Eﬁl plk- The coboundary of ¢ o T(gk]
bR e [k]

for T[¥ is equal to x o (A*p) o ¥ almost everywhere for the measure y;;°, . But
the map (A¥p) o T(gk] — A¥p from Y¥ to U is the coboundary for T!¥! of the map

y =Y s()p(ye) -

eca

x © A¥p almost everywhere for the measure p

Therefore y o A¥p is a coboundary of the system (Z,[ﬁl, Mgﬂlwa[k]) and w € C.
Thus the set C is invariant under T(gk]. By Corollary 3.6, the action of the group
T on Q, is ergodic. As P(C) > 0, we have P(C) = 1.

Therefore, for Pj-almost every w € Qp, x o AFp is a coboundary of the system
(Z,[Ck_]l, “Eckll,w T™). By Corollary C.4, xoAFp is a coboundary of (Z,[Ck_]l, #Lkll , T,

As this holds for every x € [7, A¥p is a coboundary of this system by Lemma C.1
and the first part of the Proposition is proven.

(2) We identify the dual group of Ul with U, For § = (fc:ee V)€ U and
u=(u.:e€Vy) € Ukl
O(u) = J] Oc(uc)
eeVy,
Let H be the subspace of L?(ul®) consisting in functions invariant under T'*. For

0 c U we write Lg for the subspace of L2(ul*) consisting in functions of the
form

(23) (y,u) = f(y)8(u)

for some f € L2(ME£1)- As above, Ly is a closed subspace of L?(ul*l), invariant
under T, Since the measure p!* is relatively independent over ,ugfll, using the
Fourier Transform it is immediate that L?(ul®l) is the Hilbert sum of the spaces Lg
for @ € UFl. Therefore, the invariant subspace H of L?(ul*l) is the Hilbert sum of

the invariant subspaces H N Ly of Ly.
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Let 8 € UM and assume that H N Ly contains a non-identically zero function
¢. Let a = (e,n) be an edge of Vi, and let v € U. By Equation (23) we have
poul = ¢. 0c(u)6,(u). But by Part (2) of Proposition 6.3, ¢ o ulf! = 4 and we
get that 0. (u)f,(u) = 1. Since this holds for every u € U, 6.0, = 1. As it holds for
every edge o = (¢,7), there exists y € U with 0. = x*(© for every ¢ € Vj. Finally,
¢ is a function of the form

oy, u) = f(y) x( D sle)uc)

eeVy,

for some f € L%u&il), and

o(y,u) = x(—2(y,w) - x(F(y))f(y)

where @ is the map defined by Equation (21). Since ® and ¢ are invariant under
T™, the function x o F - f is also invariant under this transformation and is mea-
surable with respect to ZI¥1(Z;_1). We conclude that ¢ is measurable with respect
to the o-algebra spanned by ¢ and I[k](Zk_l).

Since the invariant space H of L?(u!*) is the Hilbert sum of the spaces H N Ly,
every function in H is measurable with respect to this o-algebra and the second
part of the Proposition in proven. O

6.4. More terms. The next Proposition is used only in the proof of Corollary 6.6,
which in turn is only used in the proof of Lemma 10.6.

Proposition 6.5. Let (X, u,T) be a system of order k. Then for £ > k the invari-

-1
ant o-algebra T is spanned by the o-algebras 5([5] (I[k}), where « is a k-face of
Ve.

Proof. First Step. Let (X, u,T) be a system of order k. We use the notations of
Proposition 6.4 and the maps F' and ® defined in Equations. (20) and (21). Let
> k.

We identify X with Z}fll x U, As the projection of ul? on Z}fll is ugﬂl, for

,ugfl_l—almost everyy € Z,[f]_l there exists a measure Ay, on U such that

‘
,u[e] :/ oy X Ay dﬂgg]_l(}’) .
Zl
k—1
For every u € U, the corresponding vertical rotation (see the definition in Subsec-
tion C.1) is an automorphism of X and acts trivially on Z;_;. By Lemma 5.5, for
every (£ — k)-face 8 of V; the measure pul is invariant under u[g]. It follows that
the measure )y is invariant under this transformation for ugfll—almost every y. By
separability, for almost every y the measure )y is invariant under the translation
€]

by any element of the group U,-,..

We identify U with U1 x U1 and we write u = (u’, u”) for an element
of UM we write also y = (y’,y") for a point of Z,[f]_l = Z][f:lll X Z][f:lll; and x =
(y',u',y",u”) for a point of X} with y = (y/,y") € Z}fll and u = (v, u”) € UM,

Let v be a k-face of Vp_1. As the map &y o §[f71]: Xk - U is invariant,
it follows from the construction of ull that @ o §[f*1] (x') = ¥ 0 §£f*1] (x") for
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,ugf]—almost every X, that is
> sleul =Y s(eyul = F(ElNy) — Fel=ly") pll-ace.

ecy ecy

For ugf]_l—almost everyy = (y',y") € Z,[fl_l, this identity is true for Ay-almost every

u = (u',u”) € U and the measure )\, is concentrated on a coset of the group

{(u,u") e Ul Z s(e)ul — Z s(e)ul =0} .
€cy €cy
We write § for the (k + 1)-face v x {0,1} of Vp, and we notice that this group is
equal to
-1
{ue Ul Zs(e)u6 =0} = 5([)_@] (Ul[kH]) .
€€l

By permutation of coordinates, the same property holds for any k + 1-face § of Vp,
and )\, is concentrated on a coset of the intersection

{ue Ut Z s(€)ue = 0 for every (k -+ 1)-face & of V; }
€€
of the corresponding subgroups of U, By an elementary algebraic computation,

we see that this group is equal to Uﬂk.

Finally, Ay is invariant under translation by Uy_] . and is concentrated on a coset
of this group. Thus this measure is the image of the Haar measure of this group by

some translation. Moreover, for almost every y € Z ,[flI, the measure Ap, is the

a

image of the measure Ay by the translation by pldl (y). We conclude that: Y
The system (Xm,um,Tm) s an extension of (Z][Cgll,ugfll,T[é]) by the compact

abelian group Uy_]k.

Step 2. We keep the notation and hypotheses of the first step. It follows from the

description of pl¥ just above that the Hilbert space L?(ul9) can be decomposed

—

as in the proof of Proposition 6.4: L?(ulY) is the Hilbert sum for @ € Uy_}k of the
subspaces

Lo ={f(u-x)=0(u)f(x) pll-a.e. for every u e Uy_}k} .

(Here we see characters as taking values in the circle group.) Each space Ly is
invariant under T and thus the T¥-invariant subspace H of L?(ul!) is the Hilbert
sum of the spaces Hg = H N Ly.

On the other hand, by Lemmas 5.5 and 5.3, each function in H is invariant under
the map x — u - x for any u € U, y_} w41~ Therefore Hy is trivial except if @ belongs
to the annihilator of ijk 41 in the dual group of ijk. By the same algebraic
computation as above, we get that

ijkﬂ ={ue Ul Zs(e)u6 = 0 for every k-face o of V} .
[S7e7
It follows that the annihilator of U, y_] i1 D Ul is (ﬁ)gf] Therefore, the subspace
H of Lz(,ugf}) is the closed linear span of the family of invariant functions of the
type
é(y,u) = (y)8(u) where ¢ € L*(ul ) and 6 € T} .
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We consider an invariant function ¢ of this type. As ﬁg} is spanned by the

elements of the form X%], where y € U and o is a k-face of Vi, there exist k-faces

i, ...,y of Vy and characters x1,...,xm € U with
m
o(w) = T TT xs(u)
Jj=1le€a;

for u € UM, For each j the function Xjo®po 5([5]]. is invariant, and thus so is the
function

¢~ijo<1>ko§([fj]_.
j=1

But this function factors clearly through Z ,[fll and is measurable with respect to

TW¥(Zy,_1). Therefore, the function ¢ is measurable with respect to the o-algebra

-1

spanned by Z(Z;,_;) and 5an (ZF(X)), 1 < j < m. We get:

The o-algebra T (X) is spanned by the o-algebras T (Zy_1) and the o-algebras

-1
5([5] (ZM(X)), for a a k-face of V;.
Last step. We now prove the assertion of Proposition 6.5 by induction on k& > 0.
For £ = 0 the system X is trivial and there is nothing to prove. We take &k > 0
and assume that the assertion holds for every system of order k — 1. Let X be a
system of order k and let ¢ > k. We use the notation of the first two steps. By

~1
the inductive hypothesis Z1%(Z;_1) is spanned by the o-algebras f([f] (T (Zy 1))

-1 -1
for o a k-face of V;. But, for each a, £’ (Z(Z—1)) C ¢l (ZI¥1(X)) and the
result follows from the conclusion of the second step. O

Corollary 6.6. Let (X, u,T) be a system of order k and let x — g-x be a measure
preserving transformation of X satisfying the property (Py) of Definition 5.1. Then

g€ G(X).

Proof. We have to show that the property (P;) holds for every ¢. For ¢ = k there is
nothing to prove. For £ < k, (P;) follows immediately from (P)) by projection (see
the fourth remark after Definition 5.1). For £ > k we proceed by induction. Let
¢ > k and assume that P,_; holds. By Lemma 5.3, the measure ul? is invariant

under or an — 1)-face 5 of Vy and 1t follows immediately that it 1s invariant
der g}y for any (£~ 1)-face § of V; and it follows immediately that it is invari

under g}, By hypothesis, ¢g!* acts trivially on Z* and it follows that for every

-1
k-face o of V; the transformation gl¢ acts trivially on the o-algebra 5([5] (zI¥). By
Proposition 6.5, gl acts trivially on Z1¢. (]

7. COCYCLES OF TYPE k AND SYSTEMS OF ORDER k

Notation. Let (X, i) be a probability space and U a compact abelian group. We
write C(X, U) for the group of measurable maps from X to U. We also write C(X)
instead of C(X, T).

C(X,U) is endowed with the topology of convergence in probability. It is a Polish
group.

When (X, u, T) is a system, an element of C(X, U) is called an U-valued cocycle.
(see Appendix C.) For the notation A¥p see Subsection 6.3.



NONCONVENTIONAL ERGODIC AVERAGES AND NILMANIFOLDS 31

Definition 7.1. Let k£ > 1 be an integer, (X, u, T') an ergodic system, U a compact
abelian group (written additively) and p: X — U a cocycle. We say that p is a
cocycle of type k if the cocycle A¥p: X¥ — U is a coboundary of (X[k],u[k} , T[k]).

7.1. First properties. We have shown in the preceding section that for every
ergodic system X and integer k > 1, Z;(X) is an extension of Z,_1(X) associated
to a cocycle of type k.

Remark 7.2. A cocycle cohomologous to a cocycle of type k is also of type k.
By Lemma C.1 we get:

Remark 7.3. p: X — U is of type k if and only if x o p: X — T is of type k for
every character x of U. It follows that for any closed subgroup V of U, a V-valued
cocycle is of type k if and only if it is of type k as a U-valued cocycle.

A cocycle p: X — U is of type 1 if and only if p(x) — p(y) is a coboundary on
X?2. Equivalently, x o p is a quasi-coboundary for every x € U. (See Appendix C.4
for the definition and properties.) When U is a torus, this property means simply
that p itself is a quasi-coboundary (see Lemma C.5).

Cocycles p: X — U so that A*¥p = 0 are obviously of type k. In the sequel we
use some properties of these cocycles.

Notation. Let (X, u,T) be an ergodic system, k& > 1 be an integer, and U a
compact abelian group. Let Dy(X,U) denote the family of cocycles p: X — U
with AFp = 0.

Lemma 7.4. Let (X,pu,T) be an ergodic system, k > 1 be an integer, and U a
compact abelian group. Then Di(X,U) is a closed subgroup of C(X,U). Moreover,
it admits the group U of constant cocycles as an open subgroup.

Proof. The first assertion is obvious. We prove the second statement by induction
on k. By definition, a cocycle in D;(X) is constant. Assume that the assertion
holds for some k > 1. We use the formula (5) for u*+11. p belongs to Dy 1(X,U)
if and only if A(A¥p) = 0, uyf] X ;Lgig]—almost everywhere for Py-almost w € ().
This condition means that for Py-almost w € Qy, AFp is equal to some constant,
ugﬁ |_almost everywhere. Thus AFp is an invariant map on X, As (A*p) o T =
AF(poT), this condition is equivalent to A¥(poT—p) = 0. Thus poT—p € Dy(X,U).

The coboundary map 0: p — poT — p is a continuous group homomorphism
from Dy41(X,U) to Dx(X,U) and the kernel of this homomorphism is the group
U of constant cocycles. There exist only countably many constants in U which are
coboundaries of some cocycle on X and thus 9(Dy4+1(X,U)) N U is countable. By
the induction hypothesis, 9(Dy+1(X,U)) is countable and so the compact group U
has countable index in the Polish group Dy+1(X,U) and the result is proven. O

In fact, the proof shows that Dy (X, U) consists of those cocycles p for which the
k-iterated coboundary 9%p is equal to 0.

7.2. Cocycles of type k and automorphisms.

Corollary 7.5. Let (X, u,T) be an ergodic system, p: X — U a cocycle and k an
integer.
(1) If p is of type k > 1, then for any automorphism S of X the cocycle poS—p
is of type k — 1.
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(2) If X is of order k > 2 and p is of type k, then for any vertical rotation
z—u-x of X over Zy_1 the cocycle pou — p is a coboundary.

(3) If X is of order k > 1 and p is of type k+ 1, then for any vertical rotation
x—u-x of X over Zi_1 the cocycle pou — p is of type 1.

For the definition of a vertical rotation, see Appendix C.1.

Proof. (1) Let F': X - U be a map with FoTH — F = AFp. Let a be the

first side of V. By Lemma 5.5, the measure p*! is invariant under S&k]. As this

transformation commutes with 7, by the definition of F' we have
(Ak_l(poS—p)) ofll = (FoSH _FyoTlH — (FosH _ F) .

By Lemma C.7, A*¥~1(po S — p) is a coboundary on X [F—1]

k—1.

and po S — p is of type

(2) By Proposition 6.3, X = Z,_1 x W for some compact abelian group W. The

(%]
k

measure u¥l is conditionally independent over Z ~, and thus invariant under the

vertical rotation by ka] for every € € V, and every w € W. The same computation
as above shows that (pow — p) o {Lk] is a coboundary on X* and so pow —pis a
coboundary on X.

(3) Let W be as in Part (2). Let w € W. For any e € Vj, the measure ul*l is
invariant under ka]. This transformation commutes with 7% and thus maps the
o-algebra Z¥ to itself. By Lemma 5.5, for any edge a of Vj41 the measure plF+1
is invariant under w* ™). We conclude as in Part (2) . O
7.3. Cocycles of type k and group extensions. Let Y be an ergodic extension
of a system X by a compact abelian group U. Then for every u € U the associated
vertical rotation of ¥ above X is an automorphism of ¥ and belongs to G(Y)
by Lemma 5.5. By Lemma 5.2, for every k this transformation induces a measure
preserving transformation pru of Z;(Y), which belongs to G(Z;(Y)) and is actually
an automorphism of Z;(Y"). (This follows also from Proposition 4.6.)

Proposition 7.6. Let (X, u,T) be an ergodic system, U a compact abelian group,
p: X — U an ergodic cocycle and (Y,v,S) = (X x U, x my,T,) the extension it
defines. (See Appendix C.2 for the definition.) Let k > 1 be an integer. Foru € U,
let pru be the automorphism of Z(Y') defined just above. Let W ={u € U : ppu =
Id}. Then

(1) W is a closed subgroup of U.

(2) The annihilator W+ of W in U is the subgroup T = {x € U: xo
p is of type k}.

(3) The cocycle p mod W: X — U/W is of type k.

(4) Zp(Y) is an extension of Zi(X) by the compact abelian group U/W , given
by a cocycle p': Zy(X) — U/W of type k. Moreover, the cocycle p' o wx j
is cohomologous to p mod W: X — U/W.

Proof. (1) is obvious. For every u € U, let @ denote its image in U/W.

We view factors as invariant sub-o-algebras. Then X consists in the sets in
Y which are invariant under the vertical rotation associated to any v € U. By
Proposition 4.6 we have Z5(X) = Z,(Y)NX. Thus Z;(X) consists in those sets in
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Z1,(Y) which are invariant under pyu for every u € U. Therefore, as an extension of
Zi(X), Z,(Y) is isomorphic to an extension by the compact abelian group U/W.

We identify Z,(Y) with Z,(X) x U/W and Y with X x U and study the factor
map my,: X X U — Zx(X) x U/W. By construction, for (x,u) € X x U, the
first coordinate of my k(z,u) is equal to wx x(x). Moreover, for every v € U, the
transformation piv is given by prv(z,%) = (2,7 + w). That is, it is the vertical
rotation by T of Z;(Y) over X. Since 7y o v = ppv o Ty, it follows that there
exists ¢: X — U/W such that 7y (z,u) = (7x.x(2), T + ¢(x)).

Let p': Zi(X) — U/W be a cocycle defining the extension Z(X) x U/W of
Zi(X). Since my : X xU — Zi(X) x U/W is a factor map, we get p’ omx (z) =

p(z) + ¢(Tx) — ¢p(x) and p’ o wx j is cohomologous to 5 = p mod W.

Let x € U//-ﬁ/ = W+. Here we consider x as taking values in the circle group
S. We define a map 1 on Z,(Y) = Z,(X) x U/W by ¥ (x,u) = x(u) and define a
function ¥ on Zy(Y)F = Z,(X)F x (U/W)F] by

U(x,0) = X(Z s(e)u.) for x € Z(X) and @ e (U/W)#
eeVy

and continue exactly as in the proof of the first part of Proposition 6.4. Then y o p’
is of type k.

As this holds for every x € m, the cocycle p’ is of type k and Part (4) of the
Proposition is proven. Part (3) follows immediately, as does the inclusion W+ C T.
We now prove the opposite inclusion.

Let x € I'. Then yop is a cocycle of type k. We consider x as taking values in T.
Let F: X[¥l — T be a map with F o T¥l — F = A¥(x 0 p) u*l-almost everywhere.
We define a map ® from Y = X x U+ to T by

d(x,u) = F(x) — Z s(€)x(ue) for x € X* and u e U
e€Vy

The projection of v!¥ on X is pulF and each of the one-dimensional marginals
of " is v. From these remarks and the definition of F we get that ® o S* = &
vl_almost everywhere. The map ® is measurable with respect to Z(Y)[*.

Let w € W and € € Vj,. The measure v*! is relatively independent with respect
to Zk—1(Y) and thus with respect to Zy(Y'). Since the vertical rotation w acts

trivially on Z;(Y"), the measure v* is invariant under wl™. Moreover this transfor-

mation acts trivially on Z,[Ck] (Y), thus also on ZI¥(Y), and ® o w = & vlF_almost
everywhere. But ® o w — @ is equal to the constant s(€)x(w) and we get that
x(w) = 1. As this holds for every w € W, we have x € W+ and so I' C W+.

Combining the two inclusions, we have the statement of Part (2). (]

Corollary 7.7. Let k > 1 be an integer, (X, u,T) a system of order k, U a compact
abelian group and p: X — U an ergodic cocycle. Then the extension of X associated
to p is of order k if and only if p is of type k.

Proof. We use the notation of Proposition 7.6. If Y is of order k then Z,(Y) =Y,

W is the trivial subgroup of U and p is of type k. If p is of type k, then I" = U,
thus W is trivial, and Z(Y) =Y. O



34 BERNARD HOST AND BRYNA KRA

Corollary 7.8. Assume that (X,pu,T) and (Y,v,S) are ergodic systems and that
X is of order k for some integer k > 1. Assume that m: X — Y is a factor map
and p: Y — U is a cocycle. Then p is of type k on'Y if and only if p o7 is if type
kon X.

Proof. If p is of type k, it follows immediately from the definition that p o 7 is of
type k.

Assume that pom is of type k. It suffices to show that x o7 is of type k for every
X € U. Since x o (pom) is of type k, without loss of generality we can assume that
U=T.

The set {¢ € T : ¢+ pis not ergodic } is either empty or is a coset of the
countable subgroup {c € T : nc is an eigenvalue for some n # 0}. Therefore, there
exists ¢ € T so that p + ¢ is ergodic. Substituting p + ¢ for p, we can assume that
p is ergodic.

By Proposition 7.6, the extension of X associated to p o 7 is of order k because
p is of type k. Furthermore, the extension of Y associated to p is a factor of this
and so is of order k as well. Therefore p is of type k. O

Corollary 7.9. Let (X, u,T) be an ergodic system, U a compact abelian group,
and p: X — U a cocycle of type k for some integer k > 1. Then there exists a
cocycle p': Zp(X) — U of type k so that p is cohomologous to p’ o my.

Proof. 1f p is ergodic, the result follows immediately from the preceding Proposition,
since by Part (2), the subgroup W is trivial.

Assume that p is not ergodic. There exist a closed subgroup V of U and an
ergodic cocycle 0: X — V so that p and o are cohomologous as U-valued cocycles
(see [Zim76]). o is of type k as a U-valued cocycle, thus also as a V-valued cocycle.
There exists a cocycle p': Z(X) — V of type k so that o is cohomologous to p’ oy,
as V-valued cocycles on Z(X). Thus, as a U-valued cocycle, p’ is of type k and
p’ o m, is cohomologous to p. ([l

Corollary 7.10. Let k > 2 be an integer, (X,u,T) be a system of order k and
p: X — U a cocycle of type k. Assume that X is an extension of Zx_1 by a
compact connected abelian group. Then there exists a cocycle p': Zi—1 — U of type
k so that p is cohomologous to p' o mp_1.

Proof. Write X = Z_1 x V and assume that V is connected. By Corollary 7.5, for
every v € V the cocycle po v — p is a coboundary. By Lemma C.9, there exists a
cocycle p’ on Zy_1 so that p’ o m,_1 is cohomologous to p. By Corollary 7.8, p’ is
of type k. (|

8. INITIALIZING THE INDUCTION: SYSTEMS OF ORDER 2

In this Section we study the systems of order 2. These systems appeared earlier
in the literature (see [CL88], [CL87] and [Ru95]) as ‘Conze-Lesigne algebras’ and
were studied with a different point of view (in [HK01] and [HK02]) under the name
of ‘quasi-affine systems’. Our purpose here is twofold. In the following sections we
establish properties of systems of order k for arbitrary k. As the proofs are a bit
intricate, we hope that the proofs in the easier case k¥ = 2 aid in understanding
the overall plan. Moreover, we prove some technical results which are useful as the
starting points of the inductive proofs for higher k.
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8.1. Systems of order 1. We have shown that for any ergodic system X, Z;(X)
is it Kronecker factor. Thus an ergodic system is of order 1 if and only if it is an
ergodic rotation.

Let (Z,t) be an ergodic rotation. For every s € Z, the rotation z — sz is
an automorphism of Z and thus belongs to G(Z). Conversely, by Corollary 5.9
G(Z) is abelian. As the rotation T': z — tz lies in G(Z), every element of G(Z) is
a measure preserving transformation of Z commuting with 7" and thus is itself a
rotation z — sz for some s. Therefore, the group G(Z) is equal to Z, acting on
itself by translations.

A compact abelian group is a Lie group if and only if its dual group is finitely
generated. Thus every compact abelian group is the inverse limit of a sequence of
compact abelian Lie groups. Therefore, a system of order 1 is the inverse limit of
a sequence of ergodic rotations (Z,t) where each group Z is a compact abelian Lie
group.

In the rest of this section, we study the systems of order 2. By Proposition 6.3
and Corollary 7.7, an ergodic system is of order 2 if and only if it is an extension
of an ergodic rotation (Z,t) by a compact abelian group U, given by an ergodic
cocycle 0: Z — U of type 2. By the remark after Definition 7.1, 0: Z — U is of
type 2 if and only if yoo: Z — T is of type 2 for every x € U.

8.2. The Conze-Lesigne Equation and applications. Throughout this section,
(Z,t) denotes an ergodic rotation: Z is a compact abelian group, endowed with the
Haar measure m = myz and with the ergodic transformation T': z — tz, where t is
a fixed element of Z.

Lemma 8.1. Let (Z,t) be an ergodic rotation, U be a torus and p: Z — U a cocycle
of type 2. For every s € Z, there exist f: Z — U and ¢ € U so that

(L) plsz) — pla) = f(tx) - f(a) +c.

This functional equation was originally introduced by Conze and Lesigne in[CL84],
and we call it the Conze-Lesigne Equation.

Proof. For every s € Z, the map z — sz is an automorphism of Z. By Corollary 7.5
the cocycle z — p(sz) — p(z) is of type 1. Since U is a torus, the cocycle is a quasi-
coboundary by Lemma C.5 and we obtain the functional equation. (]

Lemma 8.2. Let (Z,t) be an ergodic rotation and p: Z — T be a cocycle of type
2 and assume that there exists an integer n # 0 so that np is a quasi-coboundary.
Then p is a quasi-coboundary.

Proof. Let s, f and ¢ be as in Equation (CL). Since np is a quasi-coboundary, the
map z — n(p(sz) — p(z)) is a coboundary. Substituting into Equation (CL), we
have that the constant nc is a coboundary, i.e. an eigenvalue of (Z,¢). So for all
s, f and ¢ satisfying Equation (CL), ¢ belongs to the countable subgroup I" of T,
where

I'={c € T: ncis an eigenvalue of (X, u,T)} .

Define
Zy = {s € Z : the cocycle x — p(sz) — p(z) is a coboundary} .

Clearly, Z, is a Borel subgroup of X. Let (s, f,¢) and (s, f’,¢) satisfy Equa-
tion (CL). If ¢ = ¢/, the map = — p(s'z) — p(sz) is a coboundary. Thus so is the
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map z — p(s's7tx) — p(z) and s's7! € Zy. As T is countable, Zy has countable
index in Z. As Zj is Borel, Zj is an open subgroup of Z. But Zy obviously contains
t. By density, Zy = Z and the cocycle x — p(sx) — p(z) is a coboundary for every
se .

In other words, the map (zo, 21) — p(21) — p(20) is a coboundary of the system
(Z x Z,m xm,T xT). By Lemma C.5, p is a quasi-coboundary. O

Lemma 8.3. Let (Z,t) be an ergodic rotation, U a torus and p: Z — U a cocycle
of type 2. Then there exist a closed subgroup Zy of Z so that Z/Zy is a compact
abelian Lie group and a cocycle p: Z/Zy — U of type 2 so that p is cohomologous
to p' om, where w: Z — Z/Zy is the natural projection.

In this statement, we mean that Z/Z, is endowed with the rotation by m(t).
(Z]Zy,w(t)) is an ergodic rotation and 7 is a factor map.

Proof. By Equation (CL), for every s € Z the cocycle z — p(sz) — p(z) is a quasi-
coboundary. Applying Lemma C.10 with the action of Z on itself by translations
and Corollary 7.8, we get the result. O

8.3. Systems of order 2. .

Corollary 8.4. For every ergodic system (X, u,T), Zo(X) is an extension of Z1(X)
by a compact connected abelian group.

Proof. By Proposition 6.3, Z5 is an extension of Z; by a compact abelian group U
given by an ergodic cocycle o: Z; — U of type 2.

Assume that U is not connected. Then it admits an open subgroup Uy so that
U/U, is isomorphic to Z/nZ for some integer n > 1. Write 7: Z; — U/Uj for the
reduction of ¢ modulo Uy, meaning the composition of ¢ with the quotient map
U+ U/Uy. Tt is an ergodic cocycle of type 2. Using the isomorphism from U/Uy
to Z/nZ and an embedding of Z/nZ as a finite closed subgroup of T, we get a
(non-ergodic) cocycle p: Z; — T of type 2 with np = 0. By Lemma 8.2, p is a
quasi-coboundary and thus of type 1. Viewed as a cocycle with values in Z/nZ, p
is also of type 1 (even if it is not a quasi-coboundary) and 7 is of type 1.

By Corollary 7.7 the extension T associated to 7 is system of order 1, meaning
it is an ergodic rotation. But this extension is obviously a factor of Z5, which is the
extension of Z; associated to o and thus also a factor of X. The maximal property
(Proposition 4.11) of Z; provides a contradiction. O

Definition 8.5. A system X of order 2 is toral if its Kronecker factor Z; is a
compact abelian Lie group and X is an extension of Z; by a torus.

Proposition 8.6. Every system of order 2 is the inverse limit of a sequence of
toral systems of order 2.

Proof. Let X be a system of order 2. By Corollary 8.4, X is an extension of its
Kronecker factor Z; by a compact connected abelian group U, given by a cocycle
p: Z1 — U. Therefore, U is an inverse limit of a sequence of tori. This means that
there exists a decreasing sequence {V,,} of closed subgroups of U, with (,, V,, = {0}
so that U, = U/V,, is a torus for each n. For each n, let p,: Z; — U, be the
reduction of p modulo V,, and let X,, be the extension of Z; by U,, associated to
the cocycle p,. Then X is clearly the inverse limit of the sequence {X,,}.
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By Lemma 8.3, for each n there exists a subgroup K,, of Z; such that Z; /K,
is a compact abelian Lie group, and a cocycle pl,: Z1/K, — U, so that p, is
cohomologous to p!, o m,, where m, = Z; — Z;/K,, is the natural projection. We
can clearly modify the groups K, by induction, so that these properties remain
valid and so that the sequence {K,}, of subgroups is decreasing and has trivial
intersection. For each n, let Y, be the extension of Z1/K,, by U, associated to the
cocycle pl,. Each of these systems is a factor of X and is toral. This sequence of
factors of X is increasing and its inverse limit is clearly X. O

8.4. The group of a system of order 2. In this section, we study the group
G = G(X) associated to a system (X, u,T) of order 2. We restrict to the case that
X is an extension of its Kronecker factor (Z7,t) by a torus U and write p: Z1 — U
for the cocycle defining this extension. As usual, we identify X with Z; x U.

We use the notation of Appendices A and C. C(Z1,U) denotes the group of
measurable maps from Z; to U, endowed with the topology of convergence in
probability. A map f: Z; — U is said to be affine if it is the sum of a constant
and a continuous group homomorphism from Z; to U and we write A(Z1,U) for
the group of affine maps. It is a closed group of C(Z;,U) and is the direct sum
of the compact group U of constants and the discrete group of continuous group
homomorphisms from Z; to U.

As in Section A.1, for each s € Z; and f € C(Z1,U), let Sy ¢ denote the measure
preserving transformation of Z; x U given by

(24) Ss.r(zu) = (sz,u+ f(2)) .

These transformations form the skew product of Z; and C(Z1,U). Endowed with
the topology of convergence in probability, it is a Polish group.

Lemma 8.7. The group G consists in the transformations of X of the type given
by Equation (24), for s € Zy and f: Z1 — U satisfying Equation (CL) for some
constant c.

Proof. Let g € G. By Lemma 5.2, g induces a measure preserving transformation
of Z; belonging to G(Z1) and thus of the form z +— sz for some s € Z;. Moreover,
by Corollary 5.10, the transformation g commutes with all vertical rotations of X
over Z; and thus is of the form given by Equation (24) for some map f: Z; — U.
We notice that the the commutator [g; 7] induces the trivial transformation of Z;.
As G is 2-step nilpotent, [g,T] belongs to the center of G and thus commutes with
T. Tt follows that [g,T] is a vertical rotation of X over Z;, given by some ¢ € U
(see the definition of a vertical rotation in Subsection C.1). By definition of the
commutator, s, f and ¢ satisfy Equation (CL).

Conversely, let s € Z; and f: Z; — U be such that Equation (CL) is satisfied
for some ¢ € U. We show that the transformation g = S, ¢ belongs to G. Let o
be an edge of V5. The transformation s: z — sz of Z; induced on Z; by g belongs

to G(Z1) and thus the transformation s leaves the measure ,u[f] invariant and

maps the o-algebra I(Zl)m to itself. We define a map F': Z{Q] — U and a map

®: X2 — U as in Proposition 6.4. An immediate computation shows that the

map P o g([f I & is invariant under 712 and so ® o g[o? } is also invariant under this

transformation. By Proposition 6.4, the transformation gg ) maps the o-algebra

Z(X)! to itself. By Lemma 5.3 and Corollary 6.6, g € G. O
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We recall that G is endowed with the topology of convergence in probability. The
map p: Ss r — s is a continuous group homomorphism from G to Z; and is onto by
Lemma 8.1. The kernel of this homomorphism is the group of transformations of
the kind 57,7, where f(tz) — f(z) is constant. By ergodicity of the rotation (Z1,t),
a map f € C(Z1,U) satisfies this condition if and only if it is affine. The map
f + Si,5 is then an algebraic and topological embedding of A(Z1,U) in G with
range ker(p). In the sequel we identify A(Z1,U) with ker(p). This identification
generalizes the preceding identification of U with the group of vertical rotations.
G is a group of the type which is studied in Appendix A. By Corollary A.2, G is
locally compact.

Lemma 8.8. Every toral system of order 2 is isomorphic to a nilsystem.

(See Section B for the meaning of a nilsystem.)

Proof. We keep the same notation as above and assume furthermore that Z; is a
compact abelian Lie group. The kernel A(Z1,U) of p is the direct sum of the torus
U and a discrete group and thus it is a Lie group also. By Lemma A.3, G is a Lie
group. We recall that G is 2-step nilpotent.

Let T be the stabilizer of (1,0) € X for the action of G on this space. Then T’
consists in the transformations associated to (1, f), where f is a continuous group
homomorphism from Z; to U. Thus T is discrete. The map g — ¢ - (1,0) induces
a bijection j from the nilmanifold G/T onto X. For any g € G, the transformation
j~logojof G/T is the (left) translation by g on the nilmanifold G/T'. In particular,
j~loTojis the (left) translation z — T -z by T € G. Moreover, since every g € G
is a measure preserving transformation of X, the image of 1 under j ! is invariant
under the (left) action of G on G/T" and thus is the Haar measure on this space.
The map j is the announced isomorphism. O

8.5. Countable number of cocycles. We show that the number of T-valued
cocycles of type 2 on an ergodic rotation Z, up to quasi-boundary, is countable.

Proposition 8.9. Let (Z,t) be an ergodic rotation. Up to the addition of a quasi-
coboundary, there are only countably many T-valued cocycles of type 2 on Z.

Proof. We make use of explicit distances on some groups of functions. For v € T,
write

Jull = | exp(@miu) — 1]
For f € C(Z) =C(Z,T), write

191 = (I dm(9) "

The distance between two cocycles f, g € C(Z) is defined to be || f — g||. As above,
A(Z) = A(Z,T) denotes the closed group of affine cocycles. For ¢,¢/ € T and
7,7 € Z, we have |[(c+7) — (¢ ++)|| = 2 whenever v # 7.

Let Q(Z) denote the quotient group Q(Z) = C(Z)/A(Z) and write q: C(Z) —
Q(Z) for the quotient map. The quotient distance between ® € Q and 0 € Q is
written ||®] o and the quotient distance between two elements ®, ¥ of this group
is ||® — ¥|lo. Endowed with this distance, Q(Z) is a Polish group.
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We also use the group F of continuous maps from Z to Q, endowed with the
distance of uniform convergence: If s — ®(s) is an element of F, write

2l = sup|®(s)]le -
seZ

The distance between two elements ® and ¥ € F is ||® — ¥| . As Z is compact
and Q is a Polish group, F is also a Polish group.

First Step. Let p € C(Z) be a weakly mixing cocycle of type 2. Let X be the
extension of Z associated to this cocycle. X is of order 2 and Z1(X) = Z. We use
the notation of Section 8.4.

Let s — Ss ¢, be an arbitrary cross section of the map p: G — Z. For every
s € Z, fs belongs to C(Z) and satisfies Equation (CL) for some ¢ € T. Define
®,(s) € Q(Z) to be the image of f, under ¢. Since the kernel of p: G — Z is A(Z),
®,(s) does not depend on the choice of fs. In fact, the map s — ®,(s) from Z to
Q(Z) is the reciprocal of the isomorphism G/ ker(p) — Z and thus it is continuous.
In other words, this map is an element of F.

Second Step. We continue assuming that p is a weakly mixing cocycle of type 2.
®, is defined as above.

Lemma 8.10. If ||®,|lc < 1/20, then p is cohomologous to an affine map.

Proof of lemma 8.10. Define a subset K of G by
K ={Ss, € G: There exists c € T with ||c+ f]| < 1/10} .

Let s € Z. By hypothesis || ®,(s)[lo < 1/20 and there exists f € C(Z) with
Ss,r € G and || f]] < 1/20, thus S, 5 € K. The restriction p|x of p: G — Z to K is
therefore onto.

Claim: K is a subgroup of G.

Let Ss,r and Sy p € K. We have Sy /0 Sg ¢ = Sys ¢ where f"(2) = f(s'2) +
f'(2). Choose ¢, € T with |lc+ f|| < 1/10 and ||’ + f|| < 1/10. Then ||f” +
c+ || <|\If+cll+If + ]| <1/5. On the other hand, there exists an element of
K with projection on Z equal to ss’. This means that there exists g € C(Z) with
llgll < 1/20 and S5, € G. We get that Sq,7v—4 € G and thus [’ — g € A(Z) and
["—gtctd € AZ). But |[f" —g+c+ | <|If"+c+ | +]lgll <1/4 and so
" —g+c+c isequal to a constant d € T. Finally, ||f”+c+c —d| = |lg| < 1/20
and Sy, ¢ € K. Clearly, the identity transformation S belongs to K and the
inverse of an element of K belongs to K. The claim is proven.

KC clearly contains the group T of vertical rotations. If f is an affine map and
llc+ f|| <1/10 for some constant ¢, then f is constant. It follows that the kernel
of the group homomorphism p|c: K — Z is the group T of vertical rotations.
Moreover, K is clearly closed in G and is locally compact. Since the kernel T and
the range Z of p|x are compact, K is a compact group.

Claim: [ is abelian.

We consider the commutator map (g, h) — [g; h]. It is continuous and bilinear
because K is 2-step nilpotent. But the commutator group K’ is included in T
because K’ is the kernel of the group homomorphism px ranging in the abelian
group Z. Thus the commutator map has range in T. Moreover, T is included in the
center of L. (This can be seen either by applying Proposition 6.3 or by checking
directly.) Thus the commutator map is trivial on T x K and I x T. Therefore, it
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induces a continuous bilinear map from K/T x /T — T and finally a continuous
bilinear map b: Z x Z — T. Choose f € C(Z) with Sy € K. For all integers m,n
the transformations S/, and S}'; commute and by definition of b, b(t™, ") = 0.
Since (Z,t) is an ergodic rotation, {t" : n € Z} is dense in Z and so the bilinear
map b is trivial. Returning to the definition, the commutator map K x K — K’ is
trivial and the second claim is proven.

The compact abelian group K admits T as a closed subgroup, with quotient
Z. Thus it is isomorphic to T & Z. This means that the group homomorphism
pli: K — Z admits a cross section Z — K, which is a group homomorphism and
is continuous. This cross section has the form s — S; ¢ and the map s — f; is
continuous from Z to C(Z) satisfies for all 5,58’ € Z

fssr(2) = fs(sz) + fs(2) for almost every z € Z.

By Lemma C.8, there exists f € C(Z) so that fs(z) = f(sz) — f(z) for every s € Z.

Define p'(z) = p(z) — f(tz) + f(2). The cocycle p’ is cohomologous to p. More-
over, for every s we have S; ¢, € K C G and this means that s and f, satisfy
Equation (CL) for some constant c. Substituting in the definition of p’ we have
P (sz) — p(z) = c¢. As this holds for every s € Z, p’ is an affine cocycle. This
completes the proof of Lemma 8.10. 0

End of the proof of Proposition 8.9.

Let W be the family of weakly mixing cocycles of type 2 on Z. To every cocycle
p € W, we have associated an element ®, of F. Since F is separable, there exists a
countable family {p; : ¢ € I} in W so that for every p € W, there exists ¢ € I with
|||q)p — @, | <1/20.

Let p: Z — T be a cocycle of type 2.

Assume first that p is not weakly mixing. There exists an integer n # 0 so that
np is a quasi-coboundary and by Lemma 8.2 p itself is a quasi-coboundary.

Assume now that p is weakly mixing. Choose i € I so that [|®, — ®,,[ < 1/20.
If p — p; is not weakly mixing, by the same argument as above this cocycle is a
quasi-coboundary and p is the sum of p; and a quasi-coboundary. If p— p; is weakly
mixing, then ®,_,, = ®, — ®,,. Thus |®,_,,|| < 1/20 and by Lemma 8.10 the
cocycle p — p; is cohomologous to some affine map. In this case, p is the sum of p;,
a character v € Z and a quasi-coboundary.

The proof of Proposition 8.9 is complete. O

9. THE MAIN INDUCTION

We now generalize the results for systems of order 2 of Section 8 to higher orders.
We start with a more detailed study of the ergodic decomposition of p X .

9.1. The systems X,. In this section, we use the following notation. Let (X, u, T')
be an ergodic system. For every integer k > 2, Z), = Z;(X) is an extension of Z_1
by a compact abelian group Uy, given by a cocycle py: Zx_1 — Uy of type k.

We recall the ergodic decomposition of formula (7)

X o= / fs dp(s)
Zy
of ux pforT xT.
Notation. For every s € Z7, let X, denote the system (X x X, us, T x T).
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We recall that X is ergodic for pi-almost every s € Z; (see Subsection 3.2).

Lemma 9.1. Let (X,u,T) be an ergodic system, U a compact abelian group,
p: X — U a cocycle and k > 0 an integer. Then the subset

A={se Z:Apis a cocycle of type k of X}

of Zy is measurable and p1(A) = 0 or 1. Furthermore, the cocycle p is of type k+1
if and only if u1(A) = 1.

Proof. We recall that Ap is defined on X x X by Ap(z’,z"”) = p(a’) — p(z”).
Under the identification of X *+1 with (X x X)I* we can write A*+1p = A*¥(Ap).
Moreover, by Equation (8) we have [(us)!¥) dui(s) = pl*1. By using the definition
of a cocycle of type k + 1 on X, the definition of a cocycle of type k£ on X, and
Corollary C.4, we get immediately that A is a measurable subset of Z; and that p
is of type k + 1 if and only if p1(A) = 1. It only remains to show that p1(A) =0
or 1.

Let s € Z; with T's € A. The map Id xT is an isomorphism of X, onto Xr,.
Thus Ap o (Id xT) is a cocycle of type k on X;. But Apo (Id xT) — Ap is the
coboundary of the map (a/,2”) — —p(a”). Thus, Ap is of type k on X; and s € A.
Therefore, the subset A of Z; is measurable and invariant under T and so has
measure 0 or measure 1. ]

Before stating the next property we need some notation. Let p: (X, pu,T) —
(Y,v,S) be a factor map. p induces a factor map p; from the Kronecker factor
Z1(X) of X to the Kronecker factor Z1(Y) of Y. By an abuse of notation, for
s € Z1(X) we often write v, instead of v, (5) and Y instead of Y} (5. By the
ergodic decomposition, for pi-almost every s € Z; the measure v; is the image of
s under p X p. In other words, p X p is a factor map from X, to Y.

Lemma 9.2. Let (X,u,T) be an inverse limit of a sequence {X,}n of ergodic
systems. Then for pi-almost every s € Z;, Xy = liLanﬁs’ where X, s is the
system associated to X, in the same way that Xs is associated to X.

Proof. There exists a countable family {f; : ¢ € I} of bounded functions defined
everywhere on X, dense in L?(u1) and so that the linear span of the family {f; ® f; :
i,j € I} is dense in L?(v) for every probability measure v on X x X. For every i
and every n, we consider E(f; | A,,) as a function defined everywhere on X.

For every i € I, E(f; | X)) converges to f; p-almost everywhere. There exists a
subset X of X, with u(Xo) = 1, so that E(f; | X,)(z) — fi(z) for all i € I and all
x € Xg. For pi-almost every s € Z7, we have us(Xo x Xo) = 1.

Fix such an s, and consider X x X as endowed with us. For every i,5 € I,
E(fi | X)) QE(f; | X,) converges to f; ® f; on Xo x Xy, thus ps-almost everywhere.
For every n, E(f; | &) @ E(f; | X,) is measurable with respect to X, ® X, and it
follows that f; ® f; is measurable with respect to the inverse limit @Xnﬁs of the
factors X, s of X;. By density, every function in L?(j) is measurable with respect
to lingn,s- O

9.2. The factors Z;(X,). We compute the factors Z(X;) of X.

As above, for every integer k > 2, Zj is an extension of Z;_; by a compact
abelian group Uy, given by a cocycle pi: Zx_1 — Uy of type k. We recall that for
every integer k, the system Zj; has the same Kronecker factor Z; as X.
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For every k and pi-almost every s € Z;, we associate to the system (Z, ug, T)
a measure [, s on Zy X Zj in the same way that u, is associated to (X, u,T). Let
Zy, s denote the system (Zy X Zy, pk,s, T x T).

The measure p, is a relatively independent joining of i over the joining pq s of
p1. Thus, for every k, puy s is a relatively independent joining of py over pp s and
thus over the joining pp_1,s of pr—1. Therefore, the system (Zy.s, pr,s, T X T) is
an extension of (Zy_1 s, tk—1,5, 17 x T') by the group Uy, x Uy, given by the cocycle
pe X pr: (¢, 2") = (o (@), pr(z”)).

Lemma 9.3. Let k > 1 be an integer. Then:

(1) For pi-almost every s € Zi, pr X pi is a cocycle of type k on Zy_1 5.
(2) For pi-almost every s € Zy, Zy,s is a system of order k. In particular, if
X is of order k then X is of order k for pi-almost every s € Z;.

Proof. (1) We identify Z,[i]l X Z,[i]l with (Z7_)!¥ and with Zl[fjll]. We recall

that there exists Fy: Z,[Ck_]1 — Uy, with AFp, = Fj 0 T — Fy, ,ugfll—almost every-

where. Define G: Z,[ﬁl X Z,[ﬁl — U x U, by GX',x") = (Fp(X'), Fr(x")). As

each of the two projections of uLkJrll] on Z,[Ck_]1 is equal to uggk]

1, we get that the
equality A*(py % pr) = GoTH*+1 — G holds k1 _almost everywhere. As pl" ! =
quality Pk X Pk Hr—1 y Hr—1
fZl (,uk_Ls)[k] dp (s), for pi-almost every s, the same relation holds (uk_Ls)M—
almost everywhere and pj X pj is a cocycle of type k of Z;_1 ;.

(2) This follows by induction on k, using Proposition 7.7 at each step. O

Proposition 9.4. For every integer k > 1 and pi-almost every s € Zv, Zi(Xs)
1s a factor of Zyi1,s; it is an extension of Zy s by Uki1, given by the cocycle
Apgr1: (@, 2") = pry1(x’) — pry1(2”), when viewed as a cocycle on Zi(Xs).
Furthermore, Zpy1s is an extension of Zi(Xs) by Uks1, given by the cocycle
(@', 2") = pria(z”).

Proof. By Proposition 4.7, the invariant o-algebra Z(**1(X) of the system (X *+1],
pl+ T+ is measurable with respect to Z,[C]fll]. As plFt1 = fu[sk] dui(s), by
classical arguments for pi-almost every s € Z;, the invariant o-algebra of X s[k] =
(X[kH],u[sk},T[k“]) is measurable with respect to the same o-algebra, that is,
with respect to (Zg41 X Zx11)*. By the minimality property of the factor Zx(X,)

(Proposition 4.7 again), the o-algebra Zj(X;) is measurable with respect to 2541 x
Zit+1. In other words, Z;(X;) is a factor of Zj11 .

Let ', x" € U/k; and consider here these characters as taking values in T. Write
X = (X'sX") € Uky1 X Ug41, which we identify with the dual group of Ug41 X Ugy1-
Let 0: Z), x Zj; — Ug41 be the map given by

o(z’,2") = x'(pr+1(2")) + X" (or+1(2")) .
Define
A= {s € Z, : 0 is a cocycle of type k of Zk,s} .

By the same method as in the proof of Lemma 9.1, we get that A is invariant under
T and pu1(A)=0or 1.

Let us assume that p1(A) = 1. For pp-almost every s € Z;, AFo is a coboundary
of the system (Z,Ekﬂ],ugf:l],T[k“]). Thus A¥o is a coboundary of the system
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k1] [k+1 . k+1 .
(Z,[C + ],,ugc + ],T[kH]) and there exists a map F': Z,[C U Upyr, with

F(TF %) — F(x) = Y s(€)xe(prra ()

€€Vt

where

o XI if €1 = 0
XeZ o ife =1

The function @, defined on Z ][le:-ll] =7 ,[f] X U,[::il] by

D) = Fx)— 3 s(e)xelue) .

€€Vt

is invariant under T*+1. By Proposition 6.3, it is invariant under u([f U for ev-

ery edge a = (¢,m) of Vir1 and every u € Ugt1. This means that s(e)xe(u) +
s(n)xy(u) =1 and thus x.(u) = xy(u). As this holds for every u € Upt1, Xe = Xn-
This holds for every edge « and so x”" = —x/.

Summarizing, if x” # —x’, then pu1(A) # 1 and so p1(A) = 0. Then for uq-almost
every s, the cocycle o of Zj, s is not of type k. If x” = —x/, then 0 = x’ o Apgt1,
which is a cocycle of type k on Zj, s for p;-almost every s € Z; by Lemma 9.1.

We recall that Zj; , is the extension of Z, s associated to the cocycle piy1 X pr+1
with values in Uy41 X Ug4+1 and apply Proposition 7.6. The annihilator of the group
W appearing in this proposition is {(x’,—x’) : x € [71;;} Thus W = {(v/,u) :
' € Ugy1}. The map (u',u”) — (v —u”,u”) is an isomorphism of Uyy1 X Ugy1 on
itself. It maps W to {0} X Ux41 and we can identify (Ug41 X Ugs1)/W with Ugy;.
Under this identification, the cocycle prp+1 X pr+1 mod W is simply Apri1. We
get that Z,(X,) is the extension of Z ; associated to the cocycle Apgt1. Using
the identification of the subgroup W with Uy11 explained above, we have the last
statement of the Proposition. O

9.3. Connectivity. We generalize the connectivity result established for systems
of order 2 in Section 8 to higher orders. We show that for an ergodic system
(X,u,T) and integer k > 1, Zy41(X) is an extension of Zy(X) by a connected
compact abelian group. In fact, we prove simultaneously two results by induction:

Theorem 9.5. Let k > 1 be an integer.

(1) Let (X,u,T) be a system of order k, p: X — T a cocycle of type k+ 1 and
n # 0 an integer. If np is of type k, then p itself is of type k.

(2) For every ergodic system (X, u,T), Zi+1(X) is an extension of Zx(X) by
a compact connected abelian group.

Proof. For k = 1 these results have been proven in Section 8 (Lemma 8.2 and
Corollary 8.4).

Let k£ > 1 and assume that the two properties hold for k — 1. Let X, p and n be
as in the first statement of the Theorem.

X is an extension of Zy_1 = Z;_1(X) by a compact abelian group U, which is
connected by the inductive hypothesis. As usual, for u € U we also use u to denote
the corresponding vertical rotation of X over Zy_1.
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Since np is of type k, by Corollary 7.10 there exists a cocycle o: Z;_1 — T and
amap f: X — T so that

np=comg_1+ folT —f.

Let u € U. By Part (3) of Corollary 7.5, the cocycle pou — p is a quasi-coboundary
and so there exist ¢: X — T and c € T with

pou—p=¢oT —¢p+c.

Plugging into the preceding equation, we get that the constant nc is a coboundary
of X. That is, nc is an eigenvalue of this system and c belongs to the countable
subgroup

I'={c € T:ncis an eigenvalue of X}

of T. For every c € I, define
U.={ueU:pou—p—cisacoboundary of X} .

Each of these sets is a Borel subset of U and their union is U. Thus there exists
¢ € T such that my (U,) > 0, where my is the Haar measure of U. But Uy is clearly
a subgroup of U and U, a coset of this subgroup. It follows that my(Up) > 0
and that Uy is an open subgroup of U. Since U is connected, Uy = U. Thus for
every u € U the cocycle pou — p is a coboundary. By Lemma C.9, there exists
7: Zk—1 — T and g: X — T with

p=T1omg_1+goT —g.

By considering X as a system of order k + 1, 7 is a cocycle of type k+ 1 on Z;_1
by Corollary 7.8 and n7 is a cocycle of type k.

We use the notation and results of Section 9.1, applied to the system Zj_;.
By Lemma 9.3, Z;_; , is a system of order £ — 1 for almost every s € Z;. By
Lemma 9.1, for almost every s, the cocycle A7 of the system Zj_; s is of type k
and the cocycle nAT of this system is of type k — 1. By the inductive assumption,
AT is a cocycle of type k — 1 of this system. Using Lemma 9.1 again, 7 is a cocycle
of type k of the system Z;_; and by Corollary 7.8 p is a cocycle of type k on X.

The first assertion of Theorem 9.5 is proven for k. It remains to show the second
assertion for k.

We deduce it from the first part exactly as in the proof of Corollary 8.4. We
reproduce it here for completeness. Zy41 is an extension of Zj by a compact abelian
group U, given by a cocycle p of type k+ 1. Assume that U is not connected. This
group admits an open subgroup Uy such that U/Uy is isomorphic to Z/nZ for some
integer n > 1. We write p: Z,, — U/Uy for the reduction of p modulo Up; it is
a cocycle of order k + 1. Using the isomorphism from U/Uy onto Z/nZ and the
natural embedding of Z/nZ as a subgroup of T, we get a cocycle 7: Z — T, of type
k+ 1, so that n7 = 0. Thus n7 is of type k and by the first part of the Theorem,
T is of type k.

Therefore p is of type k. The extension of Zj associated to this cocycle is a factor
of X and is of type k by Corollary 7.7. Proposition 4.11 provides a contradiction.

O

9.4. Countability. The countability result that we have shown for the cocycles
of order 2 (Proposition 8.9) cannot be generalized to higher orders. However, the
weaker result proved in this section suffices for our purposes.
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Notation. We let Cr(X) denote the subgroup of C(X) consisting in cocycles of
type k.

Theorem 9.6. Let k > 2 an integer, (X,u,T) be an ergodic system, (2, P) a
(standard) probability space and w — p,, a measurable map from  to Cx,(X). Then
there exists a subset Qo of Q, with P(Qo) > 0, so that p, — p.r € C1(X) for every
(w,w') € Qo x Q.

Proof. We proceed by induction on k.

By Corollary 7.9, Theorem 9.5 and Corollary 7.10, for every cocycle p of type
2 on X there exists a cocycle p’ of type 2 on Z; so that p is cohomologous to
p' omi. By Proposition 8.9, C;(Z;) has countable index in C2(Z;) and so C;(X) has
countable index in C2(X). The statement of the Theorem follows immediately for
k=2

Fix an integer k£ > 2 and assume that the Theorem holds for k. Let (X, pu,T),
(Q, P) be as in the statement of the Theorem and let w — p,, be a measurable map
from € to Cr41(X).

We use the usual ergodic decomposition (formula (7)) of p x p for T x T and
formula (8) for p*+1). The map w + Ap,, from Q to C(X x X) is measurable. By
Lemma C.3 the subset

A= {(w,s) €Ux Z1: Ap, € Cr(Xs)}
of ) x Z; is measurable. In the same way, the subset
B={(w,w',s) €QxQx Z1: Ap, — Ap.y € C1(Xs)}
of Q x Q x Z; is measurable. By Lemma 9.1, for all w,w’ €  the subset
Bow ={s€ Z;: (w,u',s) € B}

of Z; has measure 0 or 1. Moreover, for every w € ) the cocycle p,, is of type k+1
by hypothesis and so by Lemma 9.1, the cocycle Ap is of type k on X for p1-almost
every s € Zy. Thus (P x u1)(A) = 1. Therefore, for pq-almost every s € Z1, using
the inductive hypothesis applied to the system X and the map w — Ap,,, we get
that

(P x P){(w,w) €QxQ: (w,w',s) € B} >0.
Therefore (P x P x p1)(B) > 0 and the subset

C= {(w,w’) EQXQ:pu1(Byyw) > 0} = {(w,w/) €EOXQ:u(Byw) = 1}

of  x € has positive measure under P x P. By applying Lemma 9.1 again, for
(w,w’) € C, the cocycle p,—p. belongs to C2(X). By the base step of the induction,
C1(X) has countable index in C2(X) and so there exists p € C2(X) so that the set

D ={(w,w)€eC:py,—pos—peli(X)}
satisfies (P x P)(D) > 0. Choose wg € € so that the set
Q ={weN: (wy,w) € D}
has positive measure. Then for w,w’ € Qq, pw — pur € C1(X). O

Corollary 9.7. Let (X, u,T) be an ergodic system and {S, : u € U} a free action
of a compact abelian group U on X by automorphisms. Let p: X — T be a cocycle
of type k for some integer k > 2. Then there exist a closed subgroup Uy of U such
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that U/U; is a toral group and a cocycle p’ cohomologous to p with p' oS, = p’ for
every u € Uy.

Proof. Define
Uy={u€eU:pop—pisa quasi-coboundary} .

Clearly, Uy is a measurable subgroup of U.

The map u +— po S, — p is a measurable map from U to Cx(X) (and even to
Cr—1(X) by Corollary 7.5). By Theorem 9.6 there exists a subset Us of U, with
my(Usz) > 0, so that po S, — po S, is a quasi-coboundary for every u,v € Us.
We get immediately that Uy — Uy C Uy and so my (Up) > 0. Thus Uy is an open
subgroup of U.

By Lemma C.10 applied to the action {S, : u € Uy}, there exist a subgroup Uy
of Uy and a cocycle p’ on X with the required properties. (Note that U/U; is toral
because Uy /Uy is toral and U/Uj is finite). O

10. SYSTEMS OF ORDER k AND NILMANIFOLDS

By using the tools developed in the preceding sections, we can now describe the
structure of systems of order k. We show:

Theorem 10.1 (Structure Theorem). Any system of order k > 1 can be expressed
as an inverse limit of a sequence of k-step nilsystems.

The definition of nilsystems and the properties we use are summarized in Ap-
pendix B.

The proof splits into two parts. First we show show that every system of order
k can be expressed as an inverse limit of simpler ones, called toral systems (The-
orem 10.3). Then we show that each toral system of order k is actually a k-step
nilsystem (Theorem 10.5).

10.1. Reduction to toral systems.

Definition 10.2. An ergodic system (X, u, T) of order k > 1 is toral if Z1(X) is
a compact abelian Lie group and for 1 < j < k, Z;41(X) is an extension of Z;(X)
by a torus.

Theorem 10.3. Any system of order k > 1 is an inverse limit of a sequence of
toral systems of order k.

We begin with a Lemma.

Lemma 10.4. Let (X,u,T) be an ergodic system, U a torus and p: X — U a
cocycle of type k + 1 for an integer k > 0. Assume that X is an inverse limit of a
sequence {X; : i € N} of systems. Then p is cohomologous to a cocycle p': X — U,
which is measurable with respect to X; for some i.

Proof of Lemma 10.4. We show by induction on ¢ that:

(*) For integers 0 < £ < k, there exist iy € N and a cocycle py cohomologous to
p that is measurable with respect to Zi_¢(X) V X;,.

By Corollary 7.9, p is cohomologous to a cocycle which factorizes through Zj 1 (X).
By Theorem 9.5, Zj,11(X) is an extension of Z;(X) by a connected compact abelian
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group. Using Corollary 7.10, there exists a cocycle pg, cohomologous to p and mea-
surable with respect to Z,(X), and a fortiori with respect to Z(X) V &X1. The
claim (*) holds for ¢ = 0.

Let 0 < ¢ < k and assume that (*) holds for ¢. Let i, and p; be as in the
statement of the claim. By Corollary 7.8, p, is of type k + 1.

Let Y be the factor of X corresponding to the o-algebra Y = Zj_,(X) V &;, and
let W be the factor of X corresponding to W = Z,__1(X) V &;,. As Zp_¢(X)
is an extension of Z;_,_1(X) by a compact abelian group, by the first part of
Lemma C.2, Y is an extension of W by a compact abelian group V. We identify
Y with W x V. As usual, for v € V we also let v: Y — Y denote the associated
vertical rotation of Y above W.

By Corollary 9.7, there exist a closed subgroup V; of V' so that V/V; is a compact
abelian Lie group and a cocycle p’, cohomologous to p; and thus to p, so that
p'(v-y) = p(y) for every v € V;. We consider p’ as a cocycle defined on the factor
W xV/ViofY.

Since V/V; is a compact abelian Lie group, its dual group W = Vit is finitely
generated. Choose a finite generating set {v1,...,vm} for Vi*. For 1 < j < m,
consider v; as taking values in the circle group S' and define the function f; on
Y =W xV by fj(w,v) =~;(v). Since X is the inverse limit of the sequence { X},
there exists ¢ > i, so that for 1 < j <m, E(f; | X;) # 0. Thus, E(f; | WV X;) # 0.
By Lemma C.2 the functions f; are measurable with respect to WV &;. But the
functions f;, 1 < j < m, together with the o-algebra W, span the o-algebra of the
system W x V/V;i. As p’ is measurable with respect to this system, it is measurable
with respect to WV X; = Z;_4—1 V X;. Therefore, (*) holds for £+ 1 with i1 = 1.
Property (*) with ¢ = k is the announced result. O

Proof of Theorem 10.3. We proceed by induction. For £ = 1 the result is proven
in Section 8.1.

Let £ > 1 be an integer and assume that the result holds for k. Let Y be a
system of order k + 1. Write X = Z;(Y). Then Y is an extension of X by a
compact abelian group U and let p: X — U be the cocycle defining this extension.
By Theorem 9.5, U is connected and can be written as @1 U;, where each Uj is a
torus. Let p;: X — Uj be the projection of p on the quotient U; of U.

By the inductive hypothesis, X can be written as an inverse limit @1 X;, where
each X; is toral. By Lemma 10.4, for every j there exist i; and a Uj-valued cocycle
p;-, measurable with respect to &, and cohomologous to p;. We can clearly assume
that the sequence {7;} is increasing. Each system X, X Ujis toraland Y = X'x, U
is clearly the inverse limit of these systems. O

10.2. Building nilmanifolds. Here we show that every toral system can be given
the structure of a k-step nilsystem. This is obtained by showing that the group G
associated to this system as in Section 5 is a Lie group and acts transitively.

Theorem 10.5. Let (X, u,T) be a toral system of order k > 1. Then:

(1) G =G(X) is a Lie group and is k-step nilpotent.

(2) Let G be the subgroup of G spanned by the connected component of the
identity and T. Then G admits a discrete co-compact subgroup A so that
the system X is isomorphic to the nilmanifold G/A, endowed with Haar
measure and left translation by T .
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(See Appendix B for more on nilmanifolds.)

The proof is by induction on the order k of the system. When k = 1, the system
is a rotation on a compact abelian Lie group Z. We have G(X) = Z, acting on
itself by translations and the first statement is obvious. By ergodicity G = Z and
the second statement holds with A = {1}.

Let £ > 1 be an integer and assume that both statements of the Theorem hold
for every toral system of order k.

10.2.1. Conditions for lifting. Throughout this section, £ > 1 is an integer and
(Y,v,S) is a toral system of order k + 1. We write (X, u, T') for Z;(Y'), where Y is
an extension of X by a torus U, given by a cocycle p: X — U of type k + 1. By
the inductive hypothesis, G(X) is a Lie group.

By Lemma 5.2, every element g of G(Y') induces a transformation pyg of X, which
belongs to G(X). We now study the inverse problem. We say that an element g
of G(X) can be lifted to an element of G(Y") if there exists g € G(Y) with pxg = g.
We now establish conditions for lifting.

We use the maps F': Xkt — U7 and ®: YI**1 — U introduced in Proposi-
tion 6.4. We have

(25) Aty = FoT+ _ Fand &(x,u) = F(x) — Z s(€)ue

EEV}H,l

under the identification of Y+ with X+ x U+ By Proposition 6.4, the
o-algebra Z#+1(Y) is spanned by the o-algebra ZI*+1(X) and the map ®.

Lemma 10.6. Let g € C(X). If g€ G(Y) is a lift of g, then g is given by

(26) g (z,u) = (9-2,u+ ¢(x))
where ¢: X — U is a map satisfying
(27) Foglttl _p = Aktly

Conversely, if ¢: X — U satisfies Equation (27), then the transformation g of
Y given by Equation (26) is a lift of g to G(Y').

Proof. Let g € G(X) and assume that g admits a lift g € G(Y). By Corollary 5.10,
the vertical rotations of Y over X belong to the center of G(Y') and thus commute
with g. It follows that g has the form given by Equation (26) for some ¢: X — U.
Asg € G(Y), the transformation gi*+1 of Y *+1] acts trivially on Z*+1(Y') and thus
leaves the map ® invariant. This implies immediately that ¢ satisfies Equation (27).

Conversely, let g € G(X), ¢: X — U be a map satisfying Equation (27) and let g
be the measure preserving transformation of Y given by Equation (26). Since lagy
is conditionally independent over p**+% and g*+% leaves the measure p*+1) invari-
ant, gi*+! leaves the measure p*+! invariant. Moreover, Equation (27) means
exactly that the map ® is invariant under g*+t'. Since g € G(X), g*t! acts
trivially on Z**t1(X) By Proposition 6.4, gl**1 acts trivially on ZI*+1(Y). By
Corollary 6.6, g € G(Y). O

Corollary 10.7. The kernel of the group homomorphism pg: G(Y) — G(X) con-
sists in the transformations of the form (z,u) — (z,u+¢(x)), where ¢ € Dy41(X,U)
(see Section 7.1).
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In order to build lifts of elements of G(X), we progress from G*~1(X) to G(X)
along the lower central series of G(X). For 1 < j < k, we show that ‘many’ elements
of GU) (X)) satisfy a property stronger than the lifting condition of Lemma 10.6. We
need some notation.

Notation. Let 3 be a ¢-face of Vi1 and ¢: X — U amap. We write Ag“ . Ay QN
U for the map given by

A o(x) =) s(e)(xe) -

eep

The projection f[ﬁkﬂl . X1 X1 is defined in Section 2.1. We have that

AR o(x) = £A(¢f T (x))
where the sign depends on the face 3.

Lemma 10.8. Let j be an integer with 0 < j < k. Forg € GW(X) and ¢: X — U,
the following are equivalent:

(1) For every (k41— j)-face B of Viy1, F Og[kﬂ] = AZ+1¢'

(2) For every (k — j)-face a of Viq1, F og[kH] F - A’;Jrl(b is invariant on

X[k-'rl]'

Notation. We write Qéj) for the set of g € GY)(X) so that there exists ¢: X — U
satisfying the properties of Lemma 10.8.

Proof. The proof is similar to the proof of Lemma 10.6. Let g € GW(X). Let

¢: X — U and let g be the measure preserving transformation of Y = X x U given

by Equation (26). As g € GU(X), the measure ulF+1] is invariant under g[kﬂ]

whenever « is a (k — j)-face of Viy 1. Also, v*+1 is invariant under g g pecause

this measure is conditionally independent over u*+11. So for a (k — j + 1)-face f3,

v[F+1 ig invariant under g[kH]

The first property means that the function ® (see Proposition 6.4) defined above

is invariant under gg““] for every (k+1—j)-face 8 of Vi11. Moreover, by Lemma 5.8,

[k+1] acts trivially on Z[F+1 (X) because g € G (X). Therefore, the first property

means that g[kﬂ] acts trivially on ZW+1U(Y) for any (k + 1 — j)-face 8 of Vi 1.
Similarly, the second property means that for every (k — j)-face a of Vi41, g [k 1
maps the g-algebra ZIF+1(Y) to itself.
The equivalence of these properties follows from Lemma 5.3. O

Note that for j = 0 the first property of Lemma 10.8 coincides with the condition
given in Lemma 10.6. Therefore, géo) consists in the elements of G(X) which can
be lifted to an element of G(Y') and QSO) =pe(G(Y)).

More generally, let g € Qéj ) for some j and ¢ satisfying the first property of
Lemma 10.8. Then ¢ obviously satisfies Equation (27), and the transformation g of
Y given by Equation (26) is a lift of g in G(Y'). Therefore, px, maps pgl (géj)) onto
géj ). Each element g of G(Y) is given by Equation (26) for g = pr(g) and some
¢, and p,;l (géj )) consists in those g for which the map ¢ satisfies the conditions of
Lemma 10.8. Therefore, p,;l (géj)) is a closed subgroup of G(Y).
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10.2.2. Lifting results. We maintain the same notations as in Section 10.2.1.

Lemma 10.9. Each element of G*~V(X) can be lifted to an element of G(Y).
More precisely, gé’“‘l) = g(kfl)(X).

Proof. Let g € G~V (X). We use the results of Section 5. Since G(X) is k-step
nilpotent, g belongs to the center of G(X) and thus commutes with 7" and is an
automorphism of X. Since G(Z_1) is (k — 1)-step nilpotent, g induces the trivial

transformation on Z;_1. Thus g is a vertical rotation of X over Zy_;. For every

edge a of Vi1, the transformation g([lkﬂ] leaves the measure pl*+1) invariant and

commutes with T*+1 by Corollary 5.4. By Equation (25),

(28) O(F o gl — F) = (AF+1p) o glb+1] = ARFL, = ARF (o g — p)
= +A(pog—p)olliti.

By Lemma C.7, A(pog —p): X? — U is a coboundary. As U is a torus, by
Lemma C.5, po g — p is a quasi-coboundary. Thus there exists ¢: X — U and
c € U with

(29) pog—p=¢oT —¢+c.

Using this in Equation (28), we get that for every edge « there exists an invariant
map i: XFtU — U, with

Foglttl_p—=Al+lg 4
By Lemma 10.8, g € gé’H). (]

The next Proposition is the crucial step in the proof. We recall that G(X) is a
Lie group.

Proposition 10.10. For an integer j with 0 < j < k, géj) is open in G (X).

Proof. We proceed by induction downwards on j. For j =k —1, g(()j) =G (X) by
Lemma 10.9. Take j with 0 < j < k — 1 and assume that géj) is open in GU)(X).
We prove now that géj‘l) is open in g(jfl)(X).

Since géj ) is an open subgroup of GW)(X), it is also closed and it is locally
compact and Polish (actually it is a Lie group). We have noted that the contin-
uous group homomorphism py: p,?l (géj )) — géj ) is onto. By Theorem A.1, this
homomorphism admits a Borel cross section.

Let H={g€ GU-D(X):[g-:T"! € G{}. By the inductive hypothesis, H is
open in GU~1(X), and is locally compact. Consider the Borel map x: H — G(Y)
obtained by composing the continuous map g — [¢~; T~!] from H to géj) with
a Borel cross section Qéj) — G(Y). For g € H, k(g) is given by Equation (26)
for some map 4: X — U so that the properties of Lemma 10.8 are satisfied with
[g~1;T~1. That is, for every (k + 1 — j)-face 3 of Vi1,

Folg T 5™ — F = Afty, .

Define 84 = g0 Tg+pog—p.
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Let 8 be a (k + 1 — j)-face of Vi41. Then

(Fo g[ﬁk+1] — F)oTl+_ (F Og[ﬁk-{-l] P
—(Folg~ Tl plerlglitt] _ g plkn] gty
+ (Fo T[k+1]ggc+1] CFo ggﬁul}) (FoT_ F)
:AEH% o T[k+1]ggc+1] + (AR p) o ggcﬂ] AR,
sl
— + ARG o g[ﬂk-i-l] '

Thus the cocycle AZHHQ is a coboundary of the system X[ 1. As already

noted, the cocycle (A*+1=7¢, ) of[ﬁkﬂ] is equal to this coboundary or to its opposite
and thus is a coboundary. By Lemma C.7, A*¥1770, is a coboundary of the system
X*+1=3] and 6, is a cocycle of type k +1 —j < k on X.

Since the map ~ defined above is Borel, the map g — 14 from H to C(X,U) is
Borel, and the map g — 6, is a Borel map from H to the group Ciq1—;(X,U) of
U-valued cocycles of type k+ 1 — j on X. Choose a probability measure A on H,
equivalent to the Haar measure of H and apply Theorem 9.6. Then there exists a
measurable subset A of H, with A(4) > 0, so that §, — ), is a quasi-coboundary
for every (g,h) € A x A.

Let g,h € A. Let §: X — U and c € U be such that 6, — 6, = 90 + c. For any
(k41— j)-face 8 of V41, by the last equation we get that

3(Fog[ﬁk+1] —Fo hgﬁ_l]) = 8AZ+19 .

Thus F o ggﬁu —Fo hgﬂﬂ] — A§+16‘ is an invariant function on X+ Ag
h € GU=N(X), the transformation h%ﬂﬂ] maps the o-algebra ZFH1(X) to itself.
Therefore, the function Fo (gh_l)ch] —F—AZH(Hoh_l) is invariant. The second

property of Lemma 10.8 is satisfied and gh~! € Qéjfl).
Therefore A - A~ C géj‘”. Since H is open in GU~Y A has positive Haar

(5—1)
0

measure in GY~Y and it follows that G also has positive Haar measure in

GU=1. Since géj‘l) is a Borel subgroup of GU~Y(X), it is an open subgroup. [J
10.2.3. End of the proof of Theorem 10.5.

Proof. Recall that £ > 1 is an integer and that we assume that the properties
of Theorem 10.5 hold for every toral system of order k. Let (Y,r,S) be a toral
system of order k + 1. We write (X, u,T) = Z(Y). By the inductive hypothesis,
the conclusions of Theorem 10.5 hold for this system. Let G and A be as in this
Theorem and let géo) be as in the preceding subsection.

(1) By Proposition 10.10 used with j = 0 the group Qéo) is open in G0 (X) = G(X)
and thus is a Lie group. The restriction map pi: G(Y) — G(X) is a continuous
group homomorphism and maps G(Y') onto Qéo). Its kernel is D41 (X, U) by Corol-
lary 10.7 and thus is a Lie group. Since géo) and Dy41(X,U) are both Lie groups,
G(Y) is a Lie group by Corollary A.2 and Lemma A.3 (see Appendix A).
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(2) Let H be the subgroup of G(Y') spanned by the connected component of the
identity and S. The image under pg of the connected component of the identity
of G(Y) is included in the connected component of the identity of G(X); moreover
pr(S) =T and thus pi(H) C G. Since p; maps G(Y') onto Qéo), it is an open map
and pi(H) is an open subgroup of g(()o) and thus also of G(X). Therefore py(H)
contains the connected component of the identity in G(X) and so it contains G.
We get that pp(H) = G.

On the other hand, for every u € U, the corresponding vertical rotation belongs
to G(Y) and it defines an embedding of U in G(Y'). H NU is an open subgroup of
U and since U is connected, U C H.

By the inductive assumption, X = G/A. This means that G acts transitively on
X and that A is is the stabilizer of the point 1 of X, image of the identity element
of G under the natural projection G — G/A = X. Choose a lift y; of 2; in Y and
consider the map f: H — Y given by f(h) = h-x1. Since U C H, the range of this
map is invariant under all vertical rotations. The projection of this range on X is
onto. Therefore f is onto.

This defines a bijection of H/T onto Y, where T is the stabilizer of y; in H. This
bijection commutes with the actions of H on Y and H/I'. The measure on H/T'
corresponding to v through this bijection is invariant under the action of H and
thus is the Haar measure of H/T.

Thus we are left only with checking that I' is discrete and cocompact in H.
Clearly, I'- U = plzl(A). Since I' N U is trivial, I' is discrete. This also implies that
H/TU is homeomorphic to G/A and thus is compact. Since U is compact, I' is
cocompact in H. (Il

11. THE MEASURES pl*]

We can prove a converse to Theorem 10.5, showing that every k-step ergodic
nilsystem is a system of order k. Therefore the expressions “toral system of order
k” and “k-step ergodic nilsystem” are actually synonymous. However, as we have
no need for this result, we do not prove it and we keep using the term “toral system
of order k”.

When (X, u,T) is a toral system of order ¢ for some integer ¢, the measures
p*l k> 1, have a simple description, which is used in the proof of Theorem 1.2
(convergence for “cubic averages”).

11.1. Algebraic preliminaries. In this Section G is a nilpotent Lie group. We

study the sequence of groups Ggfll for £ > 1 and the relations between two consec-
utive groups of this form.
Temporarily, we slightly modify the definition of Ggfll given by Definition 18:

Ggﬂl is the subgroup of G!*! spanned by
{g¥] . g € G and « is an (-face of Vj.}

Therefore the group G Eﬂl with the preceding definition is the closure of the present

group Ggﬂll. Below we show that this group is actually closed and thus the two

definitions coincide. Recall that the groups G\) are equal to the algebraic iterated
groups of commutators (see Lemma B.1).
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Let k& > 1 be an integer. As usual, we write g = (g’,g") for a point of GIF+1],

where g’, g” € GI* are given by
ge:goand g/ =g foree V.
We also identify the element g = (g’, g”) of GI*+1 with the element (g/, g : € € Vi)
of (G x G)* and thus we have GI*+1 = (G x @)¥.
Lemma 11.1. Let
G = {gea: (g,1M) e gl

Then G[.k] is a normal subgroup of Ggﬂl and
(30) GLkH] ={(g'.g") € Ggfll X Ggfll g'g" e G[.k}} )

Proof. For g € G}1,, we have (g',g') € G|, For h = (0',h") € G, we
have h/,h” € Ggfll. The result follows. 0

We also note that gl*! € G for every g € G.
Lemma 11.2. Define
G= {(¢,9") eGxG: g'g e G(l)} )
Then égﬁl s a normal subgroup of Ggﬁl].
Moreover, writing ¢ for the side {€ € V41 : €x+1 = 0}, we have

Gg”” = {h[gkﬂ}g :heq, ge é;ﬂl

If h[ckﬂ]g = h’[ck+1]g’ for some h,h' € G and g, g € égﬂll, then h/ = hu~! and

g = ugﬁl]g for some u € GOV,

(Here we consider égﬂl as a subgroup of GlF+11))

Proof. We claim that, for every g € G and every h € égﬂl we have
k+1N—1. [k =k
(31) (g gl eal .

First we consider the case that h = (h, h)([f] for some h € G and some side a of V.

Then, under the identification of (X x X))l with X*+1] h = h[;H] where (3 is the

side a x {0,1} of Vj41. We notice that 5N ¢ = a x {0}. By Equation (19) we have
[h; gék“]} = [k g]?&” = ([h; gl, 1)[5] eGl,

because [h; g] € G and thus ([h;g],1) € G. The relation (31) holds in this case.

We consider now the case that h = (1, u)([f] for some u € GV and some side a
of V.. We have h = u[ykﬂ] where 7 is the (k — 1)-face a x {1} of Vj41. We notice
that yN¢ = 0. Tt follows that [h; gEkH]] = 1 and the relation (31) holds in this case
also.

Therefore, when « is a side of Vj, this relation holds whenever h = (¢’, g” )Ef +1]
for any (¢',¢"”) € G. This relation holds for every h € é;ﬁl by definition of this
group. The claim is proven.

By definition, every element of GLkH] can be expressed as a product of elements
of one of the following three types.
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(1) g**+1 for some g € G.

(2) g[ﬁk] for some g € G and some side § of Vi1 defined by fixing a coordinate
j<k+l

(3) gékﬂ] for some g € G.

Let g € G. gkt = (g, g)M € égﬂl because (g,g) € G. Let (3 be a side of Vi1
defined by fixing a coordinate j < k + 1. Then § = a x {0,1} where « is a side of
Vi and ggcﬂ] = (979)[0146] € égﬂl.

Therefore, every element of the types (1) or (2) above belongs to G’Eﬂl The
first two assertions of Lemma 11.2 follows immediately from the relation (31).

If we have h[gf“]g = h’[fﬂ]g’ as in the third statement of the Lemma, then

(hi/ " HE e GH L. Thus (hh'~',1) € G and hih' ™" € GO, O

By induction, the commutator subgroups (N?(j), j >0, of G are given by

QU — {(d,g") € G x GU) . g"g " € G(jH)} .
Lemma 11.3. Let

M ={geclh:(g1M)yecl y.
Then GLk] is a normal subgroup of G[.k] and
G = (Mg . hea, geal.

Proof. We claim that
@M ceMc @)y,

When u € G and « is a side of Vj we have (u([f], ¥y = (u, 1)%1 € égﬂl because

(1,u) € G and thus u¥ e G, The first inclusion follows. Moreover, when

g € GLk], we have (g, 1) ¢ G’Eﬂl thus for every ¢ € Vi we have (g.,1) € G and
thus g. € G, The second inclusion follows and the claim is proven.

Since C?Lkll is a normal subgroup of GECkH], it follows from the definition of GLk]
and G[.k] that GLk] is a normal subgroup of G[.k].

Let q € G[.k]. We have (q, 11¥) € GECkH]. By Lemma 11.2, there exists h € G
and g € é;ﬁl with (q, 11*) = h[ckﬂ]g. The element g has the form g = (g’, 1%,

g€ lely by definition and q = hl*lg’. 0

If for some q € G[.k] and some € € V}, we have ¢ € GOV, then, writing q = hlflg
as in Lemma 11.3, we have that h € GW. Thus hl¥ € GLk] and q € GLk]. This
proves:

Lemma 11.4. For every e € Vi,
M ={qeal . q.ecMy}.

In particular, GLk] — oM n (GM)HIEL,
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11.2. Topological results.

Lemma 11.5. Let G be a nilpotent Lie group. For any integer k > 1, the group
Ggﬂl is closed in GIF.

Proof. By induction on k. For k = 1, G,[Jll = G = @ x G and there is nothing
to prove. Take k > 1 and assume that the result holds for & and any nilpotent Lie
group. We use the notation of the preceding subsection.

Since G is a nilpotent Lie group, by the inductive hypothesis égﬁl is closed in
éﬁ Thus it is complete and thus it is closed in G¥*+1), Therefore Ggﬁk] is closed in
GIH,

Let {g,} be a sequence in G[.k], converging in GI*! to some element g. For every
integer n, let ,, be the image of the first coordinate (g, )o of g, in G/G(l). Then 6,,
converges to the projection of go in G/G™M). As G/GM is endowed with the quotient
topology, the sequence {6,} can be lifted in a sequence {h,} in G, convergent to
some h € G. The sequence {(h,*)~1g,} converges in GI¥ to (h!*)~1g. For every
n, we have that (hn[k])_lgn e GY and its 0 coordinate is equal to 1. Thus by
Lemma 11.4, this element belongs to G, Since this group is closed, (hl¥))~lg €

GLk] and it follows that g € G[.k]. Therefore G[.k] is closed in G,
The announced result follows now immediately from Lemma 11.1. O

Along the way, we have shown that
GL’C] and G[.k] are closed subgroups of GI¥l.

Recall that if A is a discrete cocompact subgroup of a nilpotent Lie group G,
then for every j the group GYWA is closed in G (see Lemma B.1). Tt follows that
for every j, the group A N G is cocompact in GU).

Lemma 11.6. Let G be a nilpotent Lie group and A a discrete cocompact subgroup
of G. For every integer k > 1, the group Al N Ggfll is cocompact in Ggfll.

Proof. By induction on k. For £ = 1 there is nothing to prove. We take k > 1
and assume that the result holds for k and for any nilpotent Lie group G and any
discrete cocompact subgroup A.

We use the notation of the preceding sections. The group Gis a nilpotent Lie
group. We define

A=Gn(AxA) ={(N,V)eAxA: NN e Anc®)
and we note that A is cocompact in G.
Claim. GL’“] N ALK s cocompact in GLk].

Proof. Let {g,} be a sequence in G Consider the sequence {(gn,1)} in égﬁl.
By the inductive hypothesis, AN é;ﬁl is cocompact in égﬂl. Therefore, for each
integer n, there exists (A, A7) € AlF N C:’Lkll and (h/ h’) € é;ﬂl so that the
sequence {(h],h!")} is bounded and for every n,

g, =h/ X and 1% =0\’
The sequence {\} is bounded; since A is discrete, this sequence takes only finitely
many values. Let A € AlFl 0 Ggﬂl be one of these values and let F = {n: A, = A}.
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For n € E, we have (A,\) € é;ﬂl Thus (h)A,1) € C:’Lkll and h/ X € G We
have written the sequence {g, : n € E} as the product of the bounded sequence
{h/A:n € FE}in G with the sequence A'XN ineE}in G AR,

Since N is a finite union of sets F with this property, it follows that GLk] N Al
is cocompact in GLk]. O

Claim. G[.k] N A s cocompact in G[.k].

Proof. Let {q,} be a sequence in G¥. By using Lemma 11.3 and the fact that A is
cocompact in G, for every n we can write q,, = R \K) gn, where {h,,} is a bounded
sequence in G, A, € A for every n, and g, € G[kk] for every n. We have that
/\Z“]gnAL{“]fl IS GLk]. Using the first claim, we write /\%C]gn)\%grl = Vpl,,, where

{vn} is a bounded sequence in G and B, € G N AR for every n. The claim
follows. O

The Lemma follows immediately from Equation 30 and the inductive hypothesis.
O

As a corollary of the two claims we have:

Corollary 11.7. G (AN Ggfll) and G (AN Ggfll) are closed subgroups of
(K]

G-

11.3. The measures p*l. Here (X, u,T) is a toral system of order £ for some

integer ¢. By Theorem 10.5, this system can be represented as an ¢-step nilsystem

X = G/A, where G is nilpotent Lie group, A is a cocompact subgroup, u is the Haar

measure of X and the transformation T is left translation by some fixed element

of G which we also write as T'. Recall that G is the subgroup of G(X) spanned by
the connected component of the identity and 7.

For every integer k, the group Al N Ggﬂl is cocompact in Ggfll by Lemma 11.6
and we can define the nilmanifold
(32) Xi=Gl /A NG
and let v, denote its Haar measure. The nilmanifold X}, is included in X% =
G* /AlF] in the natural way.

For every g € G we have glf € Ggﬂl. It follows that, for every z € X, Xy
contains the diagonal point (x,x, ..., z) of XK.

Lemma 11.8. For every k > 1, the measure p*! is the Haar measure of the
nilmanifold Xjy,.

Proof. The proof is by induction. The assertion is obvious for k& = 1, because
X1 =X x X and Ggl] = Gl = @ x G. We assume that it holds for some k > 1.

By Corollary 11.7 leld (AlF A Ggfll) is a closed subgroup of Ggfll and we can
define the space

Ve =Gy GPaM Gy

Write ¢y : Xx — Y for the the natural continuous surjection.

For x € X}, the subset G[.k] x:={g-x:g¢€ G[.k]} of X}, is the inverse image of
the point ¢y (x) € Y, under ¢ and thus it is closed. So the action of M on X k by
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left translations has closed orbits and we can identify Yj with the quotient of X}
under this action.

Claim. The invariant o-algebra Z* of (X[k],u[k],T[k]) is equal up to p!*! null sets
to the inverse image under ¢ of the Borel o-algebra of Y.

Proof of the Claim. Let B be this inverse image. This o-algebra consists in the
Borel subsets of X which are invariant under translation by any element of G[.k}.
Since T € G, TH ¢ G and every set belonging to B is invariant under T and
thus belongs to Z!¥.

On the other hand, as G C G(X), the measure p*+1] is invariant under g for
any g € GLkH] by Corollary 5.4. In particular p/*+t1 is invariant under (lgck],h) for
any h € G[.k]. Proceeding exactly as for the implication (2) = (3) in the proof of

Lemma 5.3, we have that every h € G[.k] acts trivially on Z* and we conclude that
T is measurable with respect to ¢~(B). The claim is proven. |

From Equation (30), it follows immediately that Xy41 consists in the pairs
(x',x") € Xi x Xi, with ¢p(x’) = ¢x(x”). Using the inductive hypothesis and
the definition of the measure pl**1, we get that this measure is concentrated on
the nilmanifold Xj;. By Lemma 5.2, this measure is invariant under the transla-
tion by any of the generators of ch-u] and thus by translation by every element
of this group. It is therefore the Haar measure of the nilmanifold X4, and the
statement of the Lemma is proven for k + 1. O

12. ARITHMETIC PROGRESSIONS

We now use the tools assembled to study convergence along arithmetic progres-
sions in order to obtain Theorem 1.1.

12.1. Characteristic Factor for Arithmetic Progressions. We first show that
we can modify the original system and replace it by some factor so that convergence
of the factor system implies convergence in the original system. This is based on
the notion of a characteristic factor used by Furstenberg and Weiss in [FW96].

We can always assume that the system is ergodic by using, if necessary, ergodic
decomposition.

Theorem 12.1. Let (X, u,T) be an ergodic system. Assume that f1,..., fr are
bounded functions on X with ||fjllec <1 for j=1,...,k. Then

N-1 k
1 ,
. 1 i . '
(33) timsup|| 5 S ([T 0mn)|, < i (¢ 170
N—+o00 n=0 j=1 K
Proof. We proceed by induction. For k = 1 by the Ergodic Theorem,
1 N1
- ™ ’ d ‘: .
5 Z a0 ug, = | e =15

Let k£ > 1 and assume that the majorization (33) holds for k. Let f1,..., frt1 €
L>(p) with ||fjllec < 1for j=1,...,k+ 1. Choose ¢ € {2,...,k+ 1}. (The case
¢ =1 is similar.) Write

k+1

gn: HfjoTjn'
=1
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By the van der Corput Lemma (Lemma D.2)

lirnsupH— Z {n

N —o0

. < hm sup — (hm sup‘ Z /§n+h &n d,u‘

Letting M denote the last lim sup, we need to show that M < £2] f||7 ;.
For any integer h > 1,

\%i/mh-gndu\

N  k+1
1 ) )
:‘/“1 o) = S (TLWs S0 ") 0 TUD") dyl
n=1 j5=2
1 N  k+1
< . fr0Th H_ Tgh o Tl-1)n
<Ifr- froT"lL2( an_:l(g ) ()

and by the inductive assumption,

N

. 1

timsup| & 3 [€nen-€ada| < € s
n=1

N—oo

We get

M<e hmsup—sze feo Tk < 22 thHP—ZHW feo Tk
= h=1

1 k 1/2
2 9. h 2
<2 timsup( 5 h}_jlnm feo M)

Define F'(x) = [[.cy, fe(xe). The last average becomes

H
%Z/FO(TW)’%F@W
h=1

by definition of the seminorm || - ||x. When H — +o0, this average converges to

/ E(F | Z)2 dult] = / F @ Fdu 1 = || 12,

by definition of the seminorm || - ||x+1, and the proof is complete. O

12.2. Convergence for Arithmetic Progressions. We prove Theorem 1.1.

Let f;,1 < j <k, be k bounded functions on X. By Theorem 12.1, the difference
between the average (1) and the same average with f; replaced by E(f;|2x) for
1 < j < k tends to 0 in L*(X). Thus it suffices to prove Theorem 1.1 when all
functions are measurable with respect to Z. In particular, we can assume that
the system X = Z;(X), that is, that X is a system of type k. Such a system is an
inverse limit of translations on nilmanifolds by Theorem 10.3 and so it suffices to
prove Theorem 1.1 for a translation z +— ¢ - z on a nilmanifold X = G/A endowed
with its Haar measure. By density, it is also sufficient to prove the convergence
when the functions fi, ..., fx are continuous.

Several independent proofs already exist for the convergence of the averages (1)
in this case (see Appendix A). Leibman [Lb02] uses Theorem B.3 applied to the



NONCONVENTIONAL ERGODIC AVERAGES AND NILMANIFOLDS 59

the translation by s = (¢,2,...,t*) on the nilmanifold X* = G*/A*  and obtain
the convergence everywhere. Ziegler ([Zie02a]) builds an explicit partition of X*
into invariant nilmanifolds and shows that almost every nilmanifold is ergodic and
thus uniquely ergodic for the translation by s; the convergence almost everywhere
follows.

13. CUBES

We are now ready to complete the proof of Theorem 1.2. As for the arith-
metic progressions, we can assume that the system is ergodic. We first describe an
appropriate characteristic factor.

Let (X,u,T) be an ergodic system. Given an integer & > 1 and 2¥ bounded
functions fe, € € Vi, on X, we study the convergence of the sequence of numerical
averages:

k

(Ax) HN_; > /H feo Tt tenn g,

i=1 Y nE[My,N1)x X [My,Nip) * €€V

and the convergence in L?(u) of the averages

k
1
€1ni+---+egn

EXN | (S RN | AT Rt

=1 n€[Mi,N1)X---x[My,Ny) €€V’
when Ny — My, ..., N — M}, tend to +00. We show:
Theorem 13.1. (1) The averages (Ay) converge to
(34) [ e dnion

X[ ecVy

(2) The averages (By) converge in L?(p). The limit is the function

(35) z—=E(Q) f]|TH) (@)

eeVyr

where we have identified the o-algebra JH™ with the factor Zp_1(X) (see
Section 4.2).

13.1. The case of a toral system.

Lemma 13.2. The results of Theorem 13.1 hold when X is a toral system of order
£ for some integer £ > 1.

Proof. Let k > 1 be an integer. For this proof we let T3, 1 < i < k, denote the
transformation To[!f] of X* where a1, ..., as are the sides of V}, not containing 0.
We recall that the group of transformations T*[k] of XI¥ is spanned by {T; : 1 <
i < k} and that the group Tk[f]l is spanned by ’T*[k] and T,

We assume that X is a toral system of order £. By Lemma 11.8, ¥l is the Haar
measure of the nilmanifold X = Ggfll /(A ﬂGEﬁl) introduced in Subsection 11.3.

By Corollary 3.5, u*! is ergodic under the group ’Tk[f]l. As the transformations T3,
1 <i <k, and T of X} are translations by commuting elements of Ggﬁl, it

follows from Theorem B.2 that X} is uniquely ergodic for the action of ’Tk[f]l
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Let f., € € Vi, be 2* continuous functions on X. For integers n,n,...,n; the
transformation 777" ... T,'* is given by

(T"T1"1 . T,;”‘x)6 = prtenitetans y for every € € Vj, .

Therefore, by unique ergodicity, when N1 — My, ..., Ny — M} and N tend to +oo,
the functions
k 1 =
n+eini+---+exn
* ~ HNi—Mi Z NZ HfE(T o e
i=1 M;<ni <Ny, n=0 eV}
My <nj, <Ny

converge uniformly on Xy to the constant given by the integral
(36) / IT £ duMix) .
Xk eeVy,

Thus, they converge uniformly to this constant on the ‘diagonal’ subset of X} (the

subset consisting in points x = (x,z,...,x)). This means that the averages
k 1 L Nl
T — I - Tn+€1n1+“'+€knkx
Iete ¥ L3I |
i=1 M;i<ni<Niy, n=0 ecVy
My <nk <Ny

converge uniformly on X to this constant. Taking the integral we get that the
averages (Ay) converge to this constant. Part (1) of Theorem 13.1 holds for a
toral system when the functions f. are continuous. The case of arbitrary bounded
functions follows by density.

Let f., € € Vi, be 28 — 1 continuous functions on X. By Theorem B.3 the
averages

My X I oo

" M1<ni<Ni, €V}
My, Snk)<Nk
converge for every x € X}, and in particular for every diagonal point x = (z,z, ..., x).

Therefore the averages (By) converge for every z € X. Let ¢(zx) be the limit. By
Part (1), for every bounded function fo on X,

[ oot duto) = [ gotao) T] fulee) ¥ )

ecVyr

:/Xfo(gc)E(® fE|J““]*)(:v)du($)

ecVy

by Lemma 4.2, under the identification of the o-algebras J¥I" and 2,_;(X). Tt fol-
lows that the function ¢ is equal to the conditional expectation (35). By density, the
same result holds for arbitrary bounded functions on X. Part (2) of Theorem 10.3
is proven for a toral system. |

Corollary 13.3. The results of Theorem 13.1 hold when X is a system of level £
for some £ > 1.
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Proof. Let X be a system of order ¢. By Theorem 10.3, X can be represented as
an inverse limit of a sequence of toral systems of order £. Let Y be one of these
systems and p: X — Y the corresponding factor map.

Let g, € € Vi, be bounded functions on V. pl¥l: XK — V¥ is a factor map
by Lemma 4.5 and thus it follows from Lemma 13.2 that Part (1) of Theorem 13.1
holds for X and the functions f. = ge o p.

By Proposition 4.6, p~*(Z,(Y)) = Z,(X)Np~1(Y) and Part (2) of Theorem 13.1
also follows from Lemma 13.2 for the functions f. = g. o p.

By density the same results hold for every bounded functions on X. 0

13.2. The general case. In the proof, we consider the averages (Ay) with fo =1
separately. That is, the averages

N : M > / [ feoamttamdy.
T e[ My, Ny ) XX [Mi,Ny,) Y eV

(Ck)

k

i=1

We prove Theorem 13.1 by induction. For k = 1, the averages are

L N
N Z/fO'floT"dﬂ

n=M

and
N-1

1 n
N 2 froT" du
n=M

where fo and f; are bounded functions on X. Since u! =y x pu, the results are
obvious.

Henceforth, fix an integer £ > 1 and assume that the two statements of Theo-
rem 13.1 hold for k£ — 1.

13.2.1. The averages (C).

Lemma 13.4. Let g,, n € Vi_1, be bounded functions on X. Then the limsup for
Ny —My,..., Ny_1 — My_1 — +00 and N — M — +oc0 of

k—1 1 1 N-1 2
o Doy X Jlirw X I e
i=1 My §.7.1.1 <Ni, p=Mnevy_,

]chflﬁnk!1<Nk71
is less than or equal to
_1y (2 _
(38) /|IE( Q@ g | ) dpl
NEVk-1

Proof. Without loss of generality, we can assume that |g,| < 1 for each n € Vj_;.
Fix an integer H > 0. By the finite van der Corput Lemma (Lemma D.2), for each
n=(ny,...,ng_1) the integral in (37) is bounded by

H-1
N—M+H-1 N-M+H-1 H—h N—h N '
2 [] cgn o TMY o T dy .
(N—M)H + N—M Z HZ N / (977 gn © )O "

h=1 Nn€EVik—_1
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Thus the limsup of expression (37) is bounded by

H-1 k
1 H—h . 1 .
—+ E 2—- lim sup H E / H (gn-gnoTh)oT""d,u.
H H _ N;—M;
h=1 N ],L.I}’_)OO’ i=1 M1<ni1<Ny, neEVi_1
Nip—1=Mj—1—00 My <np<Ni

By the inductive hypothesis Theorem 13.1 holds for £ — 1 and this expression is
equal to

H—1
1 H—h _
—+ 32— Q) (g9 gnoT") dul~" .
H et H Xlk—1]
= neEVik—1
Taking the limit when H — oo, we get the result. (|

Lemma 13.5. The factor Zy_o is characteristic for the convergence of the aver-
ages (Ck). In other words, if for some € € V¥ we have E(fe | Z—2) = 0, then these
averages converge to 0.

Proof. Without loss of generality, we can assume that |f.| <1 for every e € V;*.

First assume that E(fc | Zx—2) = 0 for some € € V;* with ¢; = 0. Define gy,
n € V¢ by gn = foy and go = 1 and hy,, 7 € Vi, by h,y = f1,,. Then the average (C)
can be written

k—1

H 1 Z
. N;—M;

i=1

Mi<ni<Ni,....Mp_1<ng_1<Mp_1

Ni—1

/( [T poer ) (e S T] apo )i

neEVk_1 p=Mjy n€Vi_1

By the Cauchy-Schwartz inequality, the square of this average is bounded by (37).
By Lemma 13.4, the lim sup of the square of this average is bounded by (38).

The measure pl*~1" is relatively independent with respect to Z,[ck:;]* and at
least one of the functions g,, n € V7, has zero conditional expectation with respect
to Z4_p. Therefore E(@yev-gy | Z1,) = 0. But by Part (2) of Proposition 4.9,

the o-algebra Z(*~1" is measurable with respect to Z,[f:;r. Thus E(®WEV; gn |

Z*=1") = 0 and also E(®,cv, 9n | Z*=11) = 0. The bound (38) is equal to 0 and
the averages (Cy) converge to 0.

By permuting the coordinates, we get the same result when E(f. | Z;_2) = 0 for
some € with €; = 0 for some j, that is, for some € # 11...1.

Finally assume that E(f11..1 | Zk—2) = 0. By the preceding proof, the lim sup
of the absolute value of the averages (Cj) remains unchanged when we substitute
E(fe | Zk—2) for f., for every e # 11...1. Without loss of generality, we can
therefore assume that for each 11...1 # € € V)7, the function f. is measurable with
respect to Zi_o. But in this case the integral in the average (Cy) is equal to 0 and
the result is obvious. |

Corollary 13.6. The averages (Cy) converge to

(39) /X[k]* H fe(ze) du[k]*(f) .

eeVy
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Proof. By Lemma 13.5 the difference between the averages (Cx) and the same av-
erages with the functions E(f. | Zx_2) substituted for f. converges to zero. As

the natural projection X" — Z,[Ck_]; is a factor map, the announced result follows
immediately from Corollary 13.3. O

13.2.2. The averages (Ay) and (By).

Lemma 13.7. The factor Zy_1 of X is characteristic for the convergence in L*(p)
of the averages (By,)

Proof. Assume that for some € € V* we have E(f. | Zx—1) = 0. By Proposi-
tion 4.9 the measure ¥l is conditionally independent with respect to Z;_; and
thus ]E(®eev,; fel Z,[Clﬂl) = 0. Moreover by Proposition 4.9 the o-algebra J*" is
measurable with respect to Z,[i]l and thus

E(Q® f| 7M7) =0.

ecVyr
For n = (ni,...,nx) € ZF, set
go=I] feor"
ecVyr

and we have to show that

k
1 o
H N, L Z gn — 0in L*(p)
=1 M1S_7_1_1<N17
My <nj <Ny
as Ny — My, ..., N — My, — +oo. For h = (hy,...,h;) € Z*, by Corollary 13.6
G
ARSYA > /gn-l-h'gndﬂ_”yha
= Mi<ni <Ny,
MkSnk)<Nk

i=1

when Ny — M1, ..., N — M}, tend to +o00, where

= oo Thy k)
Yh /X[W®(f 1. ) dp

3%

When H — oo, we have

> f[H;;wh - [E(& £la™)

—H<h,<H, i=1 eV

2
L2y

7H§;1k <H
and the statement of the Lemma follows from the multidimensional van der Corput
Lemma (Lemma D.3). O

As for arithmetic progressions, we combine the fact that the factors Zj are
characteristic with the proof of convergence for nilsystems to prove Theorem 13.1:
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Proof of Theorem 13.1. We study the convergence of the averages (Ay) and (By)

for an arbitrary ergodic system.

k

Recall that the natural projections X¥ — Z ,[C] and X" — 7 ,[f_]l are factor

-1

maps and that the o-algebra J!¥1" is measurable with respect to Z,[:]l (Propo-
sition 4.9). Then Theorem 13.1 follows immediately from Corollary 13.3 and
Lemma 13.7. O

13.3. Proof of Theorem 1.3. Using ergodic decomposition, we restrict to the case
where the system X is ergodic. By part (1) of Theorem 13.1, applied to fo = 14
for every € € Vj, the averages appearing in the statement of Theorem 1.3 converge

to
k
[ T e o0 = 1l
XK eeVy,
By part (3) of Lemma 3.9 we have ||[1 ]|z > [|1a]l1 = #(A) and the result follows.

d

13.4. Proof of Theorem 1.5. Theorem 1.3 has the following corollary:

Corollary 13.8. Let (X,B,u,T) be an invertible measure preserving probability
system, let A € B and let k > 1 be an integer. Then for any ¢ > 0, the set of
n € ZF so that
( ﬂ T°"A) > ,u(A)Qk —c
eeVy,
is syndetic.

Proof. Let E be the subset of Z* appearing in Theorem 1.3. If E is not syndetic,
there exist intervals [My,, N1,), [Ma,, Na,), ..., [Mg,, Ni,) with the lengths of the
intervals tending to 400 so that

Em([MliaNli) X [M2i5N2i) Koo X [Mk17Nk‘L)) =0.

Taking averages along these k dimensional cubes in Theorem 1.3, we get a contra-
diction. ]

Theorem 1.5 follows by combining Furstenberg’s correspondence principle and
Corollary 13.8.

APPENDIX A. GROUPS

A.1. Polish groups. We summarize the main results we need (see Chapter 1
of [BK96)):

Theorem A.1l. Let G and H be Polish groups and let p: G — H be a group
homomorphism that is continuous and onto. Then p is an open map. Moreover, p
admits a Borel cross section, that is, a Borel map s: H — G with po s = 1d.

Let G,H and p be as above and let the quotient G/ker(p) be endowed with
the quotient distance. It follows from the Theorem the natural group isomorphism
G/ ker(p) — H is a homeomorphism.

Corollary A.2. Let H be a closed normal subgroup of the Polish group G. If
H and G/H are locally compact, then G is locally compact. If H and G/H are
compact, then G is compact.



NONCONVENTIONAL ERGODIC AVERAGES AND NILMANIFOLDS 65

We often build groups by a skew product construction and so present it here. Let
G be a Polish group and let (X, ) be a probability space. A measure preserving
action on G on X is a measurable map (g,z) — g-x of G X X to X so that

(1) For every g € GG, the map = +— ¢ - x is a measure preserving bijection from
X onto itself.
(2) For every g,h € G, gh -z = g - (h-z) almost everywhere.

Let U be a compact abelian group, written additively. We recall that C(X,U)
denotes the additive group of measurable maps from X to U. Endowed with the
topology of convergence in probability, it is an abelian Polish group. For g €
G and f € C(X,U) we write Sy ; for the measure preserving transformation of
(X x U, u x my) given by

Sy () = (g a,u+ f(2)) -

These transformations form a group, called the skew product of G and written
G x C(X,U). Endowed with the topology of convergence in probability, it is a
Polish group. A sequence {Sy, 1, } converges to Sy in G x C(X,U) if and only if
gn converges to g in G and f,, converges to f in C(X,U).

The map p: Sy — ¢ is a continuous group homomorphism from G x C(X,U)
onto G and thus is an open map.

A.2. Lie groups. We call a locally compact group a Lie group when it can be
given the analytic structure of a Lie Group, although we never use the analytic
structure. From the characterization of Lie groups in [MZ55] it can be deduced:

Lemma A.3. Let G be a locally compact group and H a closed normal subgroup.
If H and G/H are Lie groups then G is a Lie group.

A.3. Nilpotent Lie groups. Let G be a Polish or locally compact group. For
g,h € G, we write [g; h] for the commutator g~*h~1gh of g and h. If A, B are subsets
of G, we write [A; B] for the closed subgroup of G spanned by {[a;b] : a € A,b € B}.
The subgroups G), j > 0, of G are defined by G(©) = G and GU+Y = [G; GY)] for
j > 0. We say that G is k-step nilpotent if G*) is the trivial subgroup {1} of G.

(This definition of nilpotency is stronger than the purely algebraic definition,
but the two definitions coincide for Lie groups.)

APPENDIX B. NILMANIFOLDS

Let G be a k-step nilpotent Lie group and A a discrete cocompact subgroup.
The compact manifold X = G/A is called a k-step nilmanifold. The group G acts
on X by left translations and we write (g,x) — ¢ -« for this action. There exists
a unique probability measure p on X invariant under this action; it is called the
Haar measure of X. The fundamental properties of nilmanifolds were established
by Malcev [Ma51]. We use the following properties of the commutator:

Lemma B.1. Let G be a nilpotent Lie group and A a discrete cocompact subgroup.
Then:

(1) The groups GY), j > 1, are equal to the algebraic subgroups of iterated
commutators. This means that for j > 1 the group GY) is algebraically
spanned by {[g;h] : g € G, h € GU~V}.

(2) For every j > 1, the subgroup GYA of G is closed in G.
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Let X = G/A be a k-step nilmanifold with Haar measure u, let t € G and
T: X — X the transformation x +— t - z. Then the system (X, u,T) is called a
k-step nilsystem.

The dynamical properties of nilsystems were studied by Auslander, Green and
Hahn [AGHG63], Parry ([P69], [P70]), Lesigne [L91] and Leibman [Lb02], between
others.

Theorem B.2. Let X = G/A be a nilmanifold with Haar measure p and let
t1,...,ts be commuting elements of G. If the group spanned by the translations
by t1,...,te acts ergodically on (X, ), then X is uniquely ergodic for this group.

This result was shown by Parry [P69] in the case of a single translation, by using
methods of [F61]. A similar proof for the general case can be found in [Lb02].

Theorem B.3. Let X = G/A be a nilmanifold and let t1,...,t; be commuting
elements of G. Then for any continuous function f on X the averages

k
1
=1 Mi<ni<N;

Mj, <np<Ni

converge everywhere on X when N1 — My, ..., N — My, tend to infinity.

This theorem can be viewed as a special case of the general results of M. Ratner
and N. Shah (see [Ra91] and [Sh96]). A proof of this result is given in [L91]
for a single transformation, under the additional hypothesis that the group G is
connected. The preprint [Lb02] contains a similar proof for the general case. We
do not reproduce it here, but indicate the different steps. By distality, for every
x € X, its closed orbit

Y, ={t7" ...tz (na, ... ,ny) € ZF}
is minimal for the the action spanned by the translations by ¢1,...,¢;. The crucial
point is that ¥ can be given the structure of a nilmanifold. By [P69], a minimal
nilmanifold is uniquely ergodic, and the result follows.

We notice that in Theorem B.3 the “cubes” [M1, Ny) X --- x [My, Ni) can be
replaced by an arbitrary Fglner sequence of subsets of Z*.

APPENDIX C. COCYCLES

C.1. Cocycles and extensions. Let (X,u,T) be a system and U a compact
abelian group. We generally assume here that U is written with additive notation.
(The changes needed when multiplicative notation is used are obvious.) A cocycle
with values in U is a measurable map p: X — U. We let C(X,U) denote the
family of U-valued cocycles on X and we write C(X) instead of C(X,T). C(X,U)
is endowed with pointwise addition and the topology of convergence in probability.
It is a Polish group.

The extension of (X, u, T) by U associated to the cocycle p € C(X) is the system
(X xU,puxmy,T,), where T,: X x U — X x U is given by

Ty(x,u) = (Tz,u+ p(z)) .

If (X xU,uxmy,T,) is ergodic, we say that the cocycle p is ergodic. If moreover
(X x U, u x my,T,) has the same Kronecker factor as X, we say that p is weakly
mizing.
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The factor map (z,u) — x is called the natural projection. For v € U, we also
let v denote for the measure preserving transformation of X x U given by

ve(x,u) = (x,v+u).

A transformation of this type is called a vertical rotation or in case of ambiguity,
a vertical rotation above X. We continuously identify the group U with the group
of vertical rotations. The vertical rotations commute with 7, and preserve the
natural projection on X. When p is ergodic, they are exactly characterized by
these properties.

C.2. Cocycles and coboundaries. For p € C(X,U), the coboundary of p is the
cocycle poT — p and when there is no ambiguity, we write it dp. Let C(X) denote
the subgroup of C(X) consisting of coboundaries.

Assume that X is ergodic. Then a cocycle p € C(X,U) is ergodic if and only
if there exists no nontrivial character y € U so that the cocycle y o p € C(X) is a
coboundary.

The following result is found in Moore and Schmidt [MS80]:

Lemma C.1. Let (X,u,T) be a system, U a compact abelian group and p €
C(X,U). Then p is a coboundary if and only if for every x € U, the cocycle
xop: X — T is a coboundary.

Two cocycles p, p' € C(X,U) are said to be cohomologous if p—p' is a coboundary.
In this case, the extensions they define are isomorphic (i.e., there is an isomorphism
between these two systems which preserves the natural projections).

Lemma C.2. Let (X, u,T) and (Y,v,S) be ergodic systems, U a compact abelian
group, p: X — U an ergodic cocycle and W the extension of X by U associated to
p. Assume that W and Y are factors of the same ergodic system K and let L and
M be the factors of K associated to the invariant sub o-algebras L = X V'Y and
M =WV Y, respectively. Then M is an extension of L by a closed subgroup V of
U.

Let v € U and consider v as taking values in S'. Define a function f, on W
by fy(z,u) = v(u). IfE(fy | £) # 0, then f, is measurable with respect to L and
ye vVt

This Lemma is essentially a reformulation of more or less classical results and
similar Lemmas can be found, in particular, in Furstenberg and Weiss [FW96]. We
only give an outline of the proof.

Proof. The system L can be represented as an ergodic joining A of (X, pu,T) and
(Y, v, S). In the same way, M can be represented as an ergodic joining 7 of W and
Y. 7isameasure on W x Y = X x Y x U and the projection of 7 on X x Y is
A. Moreover, 7 is invariant under the transformation of (X x Y') x U associated to
the cocycle o: (z,y) — p(z) of the ergodic system (X x Y, A\, T x 5).

Therefore 7 is an ergodic component of the extension of this system by U, defined
by the cocycle o. Thus it is an extension of this system by a closed subgroup V
of U, the Mackey group of o in the terminology of Furstenberg and Weiss [FW96].
For v € 17, we have v € V= if and only if v 0 ¢ is a coboundary of the system
(X x Y, A\, T x S). That is, if and only if v o p is a coboundary of L.
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Let v € U and assume that E(f, | £) # 0. We have
fw(Tp(xau)) =7(p(z)) - fy(z,u)

and moreover the map (z,y,u) — y(p(z)) is measurable with respect to £. Thus
E(fy [ £)oT =E(fyoT,[L)=~op-E(fy[L).

The function E(f,, | £) - f, is invariant on M and thus is constant by ergodicity.
Therefore f, is measurable with respect to £ and o p is a coboundary on £. By
the first part, v € V4.

O

C.3. Measurability properties. Let X be a system and U a compact abelian
group. Then the coboundaries form a subgroup of C(X, U), which is Borel because
it it the range of the continuous group homomorphism 9: p +— po T — p from the
Polish group C(X,U) to itself ([BK96]).

Lemma C.3. Let (X, u,T) be (non-ergodic) system, (Y,v) a (standard) probability
space, and y — [, a weakly measurable map from Y to the space of probability
measures on X. Assume that

o For every y €Y, the measure u, is ivariant under T'.

® U= fyﬂydl/(y)'
Let (Q, P) be a (standard) probability space and let w — p,, be a measurable map
from Q to C(X,S"). Then:

(1) The set
A={(w,y) €QXY :p, is a coboundary of (X, py,T)}

is a measurable subset of @ X Y.
(2) Forw € Q, p, is a coboundary of (X, u,T) if and only if the set

Ay ={yeY: (w,y) € A}
satisfies v(A,) = 1.

A cocycle p € C(X,S') is a map from X to S* which is defined only p-almost ev-
erywhere. This makes the definition of the set A in the Lemma appear ‘problematic’
and so we begin with an explanation.

We recall that C(X,S?!) is endowed with the topology of convergence in proba-
bility and this topology coincides with the topology of L'. By a classical result (see
for example [Va70], p. 65) there exists a map R: Q x X — S, defined everywhere
and measurable, such that for every w € Q, p,(z) = R(w, z) for p-almost every z.
In the statement above and in the proof below we write p,,(x) instead of the more
precise but heavier notation R(w, ).

Proof. (1) For w € © and an integer n > 0, write

p5 (@) = po(@)pu(T) ... pu(T" ) .
For a bounded function (defined everywhere) on X, we write B, ¢ for the set of
points € X where the averages
N-1

(40) ¥ 2 A @) (")

n=0
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converge as N — +oo. Define the function %,y on B, r to be the limit of these
averages. The set B, ¢ is clearly invariant under 7" and the function ,, ¢ satisfies

(41) Yo, (T2) = g ()pu(z) forz € By .
Define
Cuy=A{z € Buy:tu(x) #0} .
Then C,, ¢ is invariant under 7T'. For every bounded function f on X, the subset

Cr={(w,z) e AxX:zxeCys}

is measurable in  x X.

We show now that p(B, ¢) = 1. Let X x 8! be endowed with the transformation
associated to the cocycle p,, and let ¢ be the function defined on X xS* by ¢(z,u) =
f(z)u. By applying the ergodic theorem on the system X x S! and the function ¢,
we get that the averages (40) converge almost everywhere. That is, u(Bw,f) = 1.
Therefore, the function t,, s is defined u-almost everywhere, and satisfies (41) u-
almost everywhere. By the same argument, for every y € Y, the same properties
hold with p, substituted for p.

Choose a countable family {f; : j € J} of bounded functions on X that is dense
in L?(p) and dense in L?(p,) for every y € Y. Define

Co=|JCuypandC=]Cy .
jes jeJ
We claim that
(42) A={(w,y) €eQXY : puy(C,)=1}.
Let w € Q and y € YV so that (w,y) € A. There exists f: X — S! so that

pw(z) = f(Tx)f(x) for py-almost every x and by construction, ¢, ;y = f uy-a.e.
Choose a sequence {ji} in J so that f;, — f in L?*(p,). The sequence of functions
{tw,1,, } converges in L?(py) to ¥, ¢ = f, which is of modulus 1. By definition of
these sets, piy (Up—; Cu.f;, ) = 1 and thus finally p,(C) = 1.

Conversely, assume that p,(C,) = 1. This set is the union for j € J of the
invariant sets Cy, r,. Thus we can find a sequence {D;} of measurable subsets of
X, invariant and pairwise disjoint, with

D; C Cy,.y, for every j and U D;=0C, .
jed
Define a function f on C, by f(z) = fj(z) for x € D;. As the sets D; are
invariant, it follows from the construction that for every j and every z € D, we
have ¥, (x) = Y, s, (x) #0. Then 1, 5 # 0 on C,, and so p,-almost everywhere.
By dividing the two sides of Equation (41) by [¢. f|, we get that p,, is a coboundary
of (X, e, T) and that (w,y) € A.
Our claim (42) is proven and the first part of Lemma C.3 follows.

(2) If p,, is a coboundary of (X, u, T), there exists f € C(X,S') with p,, = foT- f,
p-almost everywhere. As p = f ty dv(y), for v-almost every y the same relation
holds p,-almost everywhere and p,, is a coboundary of (X, pi,, T').

Conversely, assume that for v-almost every y the cocycle p,, is a coboundary of
(X, u,T). Define the sets Cy, y, and C,, as above. For v-almost every y we have
(w,y) € A and thus p,(C,) = 1. It follows that p(C,,) = 1. Use the sets D; and the
function f defined above, with the measure ;1 substituted for p,. The function 9., ¢



70 BERNARD HOST AND BRYNA KRA

is defined and non-zero p-almost everywhere and satisfies Equation (41) p-almost
everywhere. Therefore, p is a coboundary of (X, u, T). O

For simplicity, we stated and proved the preceding Lemma only for cocycles with
values in the circle group S'. But it follows immediately from Lemma C.1 that a
similar result holds for cocycles with values in any compact abelian group. (We
recall that implicitly we assume that all compacts abelian groups are metrizable.)

On the other hand, the full form of Lemma C.3 is used only in the proof of The-
orem 9.6. Several times we use a weaker form with a single cocycle, corresponding
to a constant map w — pg:

Corollary C.4. Let (X,u,T), (Y,v) and p, be as in Lemma C.3. Let U be a
compact abelian group and p: X — U a cocycle. Then the subset

A, ={y €Y :pisa coboundary of (X, py,T)}

of Y is measurable. The cocycle p is a coboundary of (X, u,T) if and only if
v(A,) =1.

C.4. Quasi-coboundaries and cocycles on squares. Let (X, u,T) be an er-
godic system, U a torus and p: X — U a cocycle. p is a quasi-coboundary if it is
the sum of a coboundary and a constant.

We recall that p is weakly mixing if and only if there exists no nontrivial character
v of U so that yo p: X — T is a quasi-coboundary.

A proof of the following result can be found in Moore and Schmidt [MS80]:

Lemma C.5. Let (X,u,T) be an ergodic system, U a torus and p: X — U a
cocycle. If the map (z,2") — p(z) — p(a’): X x X — U is a coboundary of (X x
X, ux pu, T xT), then p is a quasi-coboundary.

We note that the analogous result does not hold for a cocycle with values in an
arbitrary compact abelian group.

Lemma C.6. Let (X, u,T) be an ergodic system, U a compact abelian group and
p € C(X,U) a cocycle. Assume that the map (z,z') — p(x): X x X — T is a
coboundary on (X X X, u X pu, T x T). Then p is a coboundary.

Proof. By Lemma C.1, we can reduce to the case that U is the circle group S!.
Write (Z,t) for the Kronecker factor of X and 7: X — Z for the natural projection.
By hypothesis, there exists a function f: X x X — S' with

f(T.T7T$I)f(.T7.T/) = p(l‘) .

The function defined on X x X x X by (z,2',2") — f(z,2")f(z,2") is invariant
under T' X T'x T and thus is measurable with respect to Z x Z x Z. It follows that
the function f is measurable with respect to X x Z. Taking the Fourier transform
of f with respect to the second variable, we can write

(43) fa,a') =" gy(@)y(m()) .
762
Then

flaa) T = 3 gy(w) g0(a) 1 (w(@)) Br(a") -

v,0€Z
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As this function is invariant under 7' x T x T, by unicity of the Fourier transform
we get that for every v,60 € Z,

9+(Tz) go(T'x) g, () go () = (1)(2) .

The function = — g,(x) go(z) is an eigenfunction of X for the eigenvalue ~y(t)6(t)
and so there exists a constant c,,¢ with

9+(2) go(x) = ¢y,0v(m(@)) 6(m(2)) -

Finally, there exists a function ¢ on X and for every v € U there exists a constant
¢y so that

gv(x) =Cy d(x) y(m(z)) -

Using the values of the functions g, in Equation (43), there exists a function g
on Z with f(z,2') = ¢(x)g(n(z) — m(2’)). As f is of modulus 1, the functions
g and ¢ have constant modulus and so we can assume that |¢| = 1. We have

p(x) = o(Tx)p(x)). 0

The next Lemma uses the definition and properties of the measures p!*! intro-
duced in Section 3. The notation 5,[1’“] was introduced in Section 2.1.

Lemma C.7. Let (X, u,T) be an ergodic system, 1 < ¢ < k integers and let «
be an (-face of Vi,. Let U be a compact abelian group and p: X¥' — U a cocycle.
If the cocycle p o §Lk] = XM — U is a coboundary of (X, u®, TW) | then p is a
coboundary of (X, plfl, T14).

Proof. We begin by the case £ = 0. Here p is a cocycle on X. Assuming that for
some vertex € of Vj, the cocycle x — p(z) is a coboundary of X ¥, we have to show
that p is a coboundary on X. By permuting coordinates, we can restrict to the
case that € is the vertex O.

We proceed by induction on k. For k = 1, the result is exactly Lemma C.6. Take
k > 1 and assume that the result holds for k. Assume that the cocycle x — p(zo)
is a coboundary of X[+l We use the ergodic decomposition (4) of pl¥l and the
formula (5) for ¥+, By Corollary C.4, for almost every w the cocycle x — p(zo)
is a coboundary on the Cartesian square of (X [k],uyf ],T[k]). This cocycle depends
only on the first coordinate of this square and by Lemma C.6 we get that the
map X’ +— p(zg) is a coboundary of the system (X[k],,ui[f],T[k]). As this holds for
almost every w, the map x’ — p(z}) is a coboundary of the system (X ¥ [+l TIk])
by Corollary C.4. By the induction hypothesis, p is a coboundary of X. This
completes the proof when ¢ = 0.

Consider the case that £ > 0. We use the ergodic decomposition given by For-
mula (5) for pl¥ and by Lemma 3.1 we get

k—1
14

We use Corollary C.4 and the first part of the proof with k — ¢ substituted for k
and (Xm,,ug],T[é]) substituted for (X, u,T). The result follows. O
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C.5. Cocycles and group of automorphisms. Let (X, i) be a probability space,
G a compact abelian group and (g, ) — ¢-z an action of G on X by measure pre-
serving transformations. This action is said to be free if there exists a probability
space (Y, v) and a measurable bijection j: Y x G — X, mapping v x m¢ to p, with
jly,gh) =g-j(h) fory € Y and g,h € G.

The vertical rotations introduced in Section C.1 are free actions. The action of
a compact abelian group on itself by translations is free. The restriction of a free
action to a closed subgroup is free.

The next Lemma says that a free action of a compact abelian group G is ‘coho-
mologically’ free. It is a classical result, but we give a proof for completeness.

Lemma C.8. Let {S, : g € G} be a free action of the compact abelian group G on
the probability space (X, p) and let g — ¢, be a measurable map from G to C(X,S")
so that

(44) Ggh = dg - (dn 0 g) for every g,h € G .
Then there exists ¢ € C(X,SY) so that ¢, = (¢ o Sy) - & for every g € G.

Proof. For g € G, let S, be the unitary operator on L*(u) given by S,f(z) =
¢g(x)f(g - x). The hypothesis (44) means that {S, : ¢ € G} is a unitary represen-
tation of the compact abelian group G in L?(u). Therefore, L?(u) is the Hilbert
sum of the spaces H,, v € CAv', where

H,={f€eL*(u):Syf =~(g) f for every g € G} .

If f € H,, the function |f| is invariant under the action of G and thus so is the
set {x € X : f(xz) # 0}. Therefore, there exists a partition X = J,, X,, of X

into invariant sets and there exists for every n a character ~,, € G and a function
fn € H,, with f,(z) # 0 for x € X,,. As the action of G is free, for every n there
exists a function h,: X — 8! with hy, 0 g = v, (g9)hy for every g € G. The function
¢ defined on X by
ful@)
d(x) = hp(z)
| fn(2)]

satisfies the announced property. O

for x € X,

Lemma C.9. Let (X, u,T) be an ergodic system, U a compact abelian group and
let (u,x) — wu-x be a free action of U on X by automorphisms. Let p € C(X) be
a cocycle so that po S, — p is a coboundary for every w € U. Then there exists an
open subgroup Uy of U and a cocycle p', cohomologous to p, with p’' oS, = p' for
every u € Up.

Proof. By hypothesis, for every u € U there exists f € C(X) with
(45) poSy—p=foT—f.

Asin Appendix A, for f € C(X) and u € U we write S,, 5 for the measure preserving
transformation of X x T given by S, s(x,t) = (Suz,t + f(z)). The skew product
group U x C(X) consists in all transformations of this kind. Let K be the subset of
U x C(X) consisting in the transformations S, s, where u, f satisfy Equation (45).
Clearly, K is a closed subgroup of U x C(X). By hypothesis, the natural projection
p: K — U is onto and its kernel is {S; . : ¢ € T}, which is a group homeomorphically
isomorphic to T. By Corollary A.2, K is compact. We identify ker(p) with T.
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As p is a homomorphism to an abelian group, its kernel T contains the commu-
tator subgroup K’ of K. But T is obviously included in the center of &. Thus K is
a < 2-step nilpotent group, and the commutator map I x K — T is bilinear. This
map is also continuous and is trivial on K x T and on T x . Thus it induces a
continuous bilinear map K/T x /T — T. As K/T can be identified with U, this
map can be viewed as a bilinear map from U x U to T and by duality we see it as a
continuous group homomorphism from U to U. As U is discrete, the kernel of this
last homomorphism is an open subgroup Uy of U. Following these identifications
back, we get that p~1(Up) is abelian.

The compact abelian group p~*(Up) admits T as a closed subgroup, with quotient
equal to Up. Thus it is isomorphic to Uy @ T. This means that the restriction of
p to p~1(Up) admits a cross section which is a continuous group homomorphism.
This cross section has the form v — S, ¢, and u — f, is a continuous map from
Up — C(X), with

(46) forall w € Uy, pou—p=fuoT — fu;
(47) for all u,v € Uy, fuw(x) = fulx) + fu(Suz) .

Since the action of U on X is free, by Equation (47) and Lemma C.8, there exists
feC(X) so that f, = fou— f for every u € Uy. Write p’ = p— foT + f. This
cocycle is cohomologous to p and by Equation (46), p’ o u = p’ for u € Uy. O

Lemma C.10. Let (X,pu,T) be an ergodic system, U a compact abelian group and
(u,z) — u-z a free action of U on X by automorphisms. Let p € C(X) be a cocycle,
so that pou — p is a quasi-coboundary for every w € U. Then there exists a closed
subgroup Uy of U so that U/Uy is toral and there exists a cocycle p', cohomologous
to p, with p' oS, = p’ for every u € Uy.

Proof. The beginning of the proof is similar to the proof of Lemma C.9. For every
u € U, there exists f € C(X) and a constant ¢ € T so that

(18) pou—p=foT—ftc.

Let H be the subset of U x C(X) consisting in transformations S, s so that u
and f satisfy Equation (48) for some c. Clearly, H is a closed subgroup of U K
C(X). By hypothesis, the projection p: H — U is onto and its kernel is {S7 ; :
f is an eigenfunction of X}. Thus ker(p) is homeomorphically isomorphic to the
group A(Z) of affine functions on the Kronecker factor Z of X (for this notation
see Section 8.4). This group can be identified with T & Z and in particular, it is
locally compact. By Corollary A.2, H is locally compact.

A direct computation shows that the commutator subgroup K’ of K is included
in the subgroup T of H. Thus K = H/T is a locally compact abelian group. We
write ¢: KX — U for the continuous group homomorphism induced by p.

For S, ; € H, the constant ¢ appearing in Equation (48) is well defined and the
map : Sy,r — c induces a continuous group homomorphism from H to T. This
homomorphism is trivial on T and it induces a character ¢ of X = H/T.

By the Structure Theorem of Locally compact Abelian Groups, K admits an
open subgroup £ isomorphic to K @ R%, where K is a compact abelian group and
d > 0 is an integer. We identify £ with K @ R? and write Ky = K Nker(¢) and Uy
for the closed subgroup ¢(Kp) of U.

For u € Uy, there exists by definition f € C(X) so that S, 5 € H and ¢(S, ) = 0.
In other words, u and f satisfy Equation (48) with ¢ = 0, meaning, they satisfy
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Equation (45). By Lemma C.9, there exist an open subgroup U; of Uy and a cocycle
o', cohomologous to p, with p’ ou = p’ for every u € Uj.

It remains to show that U/U; is a toral group. As £ is open in K and ¢ is an
open map, ¢(L£) is an open subgroup of U and thus U/q(L) is finite. ¢(£)/q(K) is
a quotient of £/K = R? and is compact and thus it is a torus. K/K is isomorphic
to ¢(K), which is a closed subgroup of T and so is equal to T or is finite. ¢(K)/Ug
is a quotient of K /Ky and so it is either finite or isomorphic to T. Finally, Uy/U;
is open and the proof is complete. 0

APPENDIX D. THE VAN DER CORPUT LEMMA

We use several extensions of the classical van der Corput inequality, as found
for example in [KNT74]. Both deal with sequences in a Hilbert space. Here H is a
Hilbert space, with norm ||-|| and inner product (- | -). Let Re(z) denote the real
part of the complex number z.

Lemma D.1 ([Be87]). Let {x,} be a sequence in H. For integers N and H with
1 < H < N we have

2 al 2
n=1

N H-1 N—h
SHN+H-1) |lza)*+2(N+H-1) H—h) > Re(wn | Tnin) -
n=1 h:l n=1

Taking limits in this inequality, we get:

Lemma D.2. Let {x,} be a bounded sequence in H. We have

N N
I%njgop“%;xn < hmsup ths;lop’ nzl T | :vn+h>’ .

We need also a similar result for multidimensional sequences. The following
Lemma can be found in the proof of Lemma A6 of [BMCO00]. Here we write n =
(n1,...,n) for a point in Z*.

Lemma D.3. Let {z, : n € Z*} be a bounded sequence in H. Assume that for
every h = (hy,...,hy) € ZF

k
1
H E Re(@ntn | Tn) — W
- N;—M;
i=1 M;<ni<Ni,
M, <np<Nj
as My — Ny, ..., Ny — M} — +o00, and that

ORI

—H<h:<H, =1

_H<h,<H
as H — +o0o. Then

— 0

HHN —M; Z on

M1<ni1<DNi,
My, <np <Ny,
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as Ny — My, ..., Ny — My — +o0.
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