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Abstract. In 1984 Boshernitzan proved an upper bound on the number of

ergodic measures for a minimal subshift of linear block growth and asked if
it could be lowered without further assumptions on the shift. We answer

this question, showing that Boshernitzan’s bound is sharp. We further prove

that the same bound holds for the, a priori, larger set of nonatomic generic
measures, and that this bound remains valid even if one drops the assumption

of minimality. Applying these results to interval exchange transformations,

we give an upper bound on the number of nonatomic generic measures of a
minimal IET, answering a question recently posed by Chaika and Masur.

1. Introduction

Let (X,σ) be a subshift, meaning that X ⊂ AZ, where A is a finite alphabet, and
X is a closed set that is invariant under the left shift σ : AZ → AZ. A classic problem
is to find conditions that imply (X,σ) is uniquely ergodic or, more generally, has
a finite number of ergodic measures. In the 1980’s, Boshernitzan [1] showed that
the complexity of the subshift can be used to obtain such a result. More precisely,
if PX(n) is the number of words of length n which occur in any x ∈ X, he showed
that if (X,σ) is minimal and lim supn→∞ PX(n)/n < 3, then it is uniquely ergodic
(see also related results in [3]). More generally, Boshernitzan showed that if

(1) lim inf
n→∞

PX(n)

n
< k,

then there are at most k − 1 ergodic measures. Some motivation for studying this
problem is generalizing the well-known bound on the number of ergodic measures
for an interval exchange transformation (IET), that had been previously proven,
independently, by Katok and Veech. Boshernitzan’s Theorem applies to a much
broader class of dynamical systems than the interval exchange transformations,
but the bound he obtains is weaker than that of Katok and Veech in the case of
an IET. Boshernitzan asked in [1], and then again in [2], whether his bound could
be lowered in this more general setting. One of our main results answers Bosher-
nitzan’s question: for the class of minimal subshifts whose complexity function
satisfies (1), Boshernitzan’s bound is a sharp bound for the number of nonatomic
ergodic measures. Our technique also shows that the bound is more general than
originally stated: the same bound remains valid (and sharp) even without the as-
sumption of minimality and even if one seeks to bound the (a priori, larger) set of
nonatomic generic measures.

2010 Mathematics Subject Classification. 37B10 (primary), 37A25, 68R15.
Key words and phrases. subshift, automorphism, block complexity.
The second author was partially supported by NSF grant 1500670.

1



2 VAN CYR AND BRYNA KRA

The particular case of minimal interval exchange transformations has been well
studied (for example Katok [10], Keane [12], and Veech [14]). A minimal k-interval
exchange transformation (k-IET) has a natural symbolic cover, its natural coding,
and this subshift satisfies the hypothesis of Boshernitzan’s Theorem. As an ap-
plication, this shows that a minimal k-IET (see Section 4 for the definition) has
at most k − 1 ergodic measures. The optimal bound of bk/2c was proven, inde-
pendently, by Katok [10] and Veech [14]. In a recent paper, Chaika and Masur [4]
studied the broader class of generic measures for an IET and asked whether there
are bounds on the number of such measures. An interesting facet of this problem is
that although several quite different proofs of the bound given by Katok and Veech
for the number of ergodic measures exist in the literature, they all use ergodicity
in an essential way.

If X is a compact metric space, B the Borel σ-algebra, µ a Borel probability
measure on B, and T : X → X is a measurable map preserving the measure µ, a
point x ∈ X is a generic point for the measure µ if for every continuous function
f : X → R,

lim
N→∞

1

N

N−1∑
n=0

f(Tnx) =

∫
f dµ.

The measure µ is generic if it has a generic point. Thus, by the Pointwise Ergodic
Theorem, if the measure µ is ergodic almost every point is generic. However, a
generic measure need not be ergodic. Chaika and Masur [4] constructed a 6-interval
exchange transformation that has a generic, but not ergodic, measure. They asked
if there is a bound on the number of generic measures for a k-IET. We show:

Theorem 1.1. If (X,σ) is a subshift and there exists k ∈ N such that

lim inf
n→∞

PX(n)

n
< k,

then (X,σ) has at most k − 1 distinct, nonatomic, generic measures.

In particular, this applies to interval exchange transformations by passing to the
natural cover. Theorem 1.1 generalizes Boshernitzan’s Theorem [1] in two ways:
there is no assumption of minimality and our bound holds for the more general class
of generic measures. We also give an analogous bound for lim sup (note the technical
assumption is vacuous for minimal subshifts that are not uniquely ergodic).

Theorem 1.2. Suppose (X,σ) is a subshift and there exists k ∈ N such that

lim sup
n→∞

PX(n)

n
< k.

If (X,σ) has a generic measure µ and a generic point xµ for which the orbit closure

{σkxµ : k ∈ Z}
is not uniquely ergodic, then (X,σ) has at most k − 2 distinct, nonatomic, generic
measures.

Recently Damron and Fickenscher [5] proved a related result, showing that any
minimal shift (X,σ) whose complexity function satisfies PX(n) = kn + c for some
constant c, k ≥ 4, and all n sufficiently large has at most k − 2 ergodic measures.

Moreover, we show that these theorems are sharp, even if X is assumed to be
minimal and the measures are required to be ergodic.
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Theorem 1.3. Suppose d > 1 is an integer. There exists a minimal subshift (X,σ)
which has exactly d ergodic measures, zero nonergodic generic measures, and which
satisfies

lim inf
n→∞

PX(n)

n
= d;

lim sup
n→∞

PX(n)

n
= d+ 1.

We include several other examples in Section 5, showing other senses in which
Theorems 1.1 and 1.2 can be said to be sharp.

As an application of Theorem 1.1, we answer Chaika and Masur’s question:

Theorem 1.4. For k > 2, a minimal k-interval exchange transformation has at
most k − 2 generic measures.

For k = 2, a minimal 2-interval exchange is an ergodic rotation, which is uniquely
ergodic. For k = 3 and 4, Theorem 1.4 is sharp upper bound, but we do not know if
it is sharp for k ≥ 5. In particular, we do not know if we can improve the symbolic
result of Theorem 1.1 for systems that arise as the natural coding of an interval
exchange transformation. Similarly, we would like to know if the conclusion of
Theorem 1.4 can be strengthened to replace k − 2 by [k/2]. We also do not know
if there can be a second generic measure in the example of Chaika and Masur, nor
if a 6-interval exchange with three ergodic measures can also have a generic (and
obviously nonergodic) measure.

2. Background and notation

If A is a finite alphabet, a word w in the alphabet is a concatenation of letters in
A and the length |w| of the word is the number (finite or infinite) of letters. A word
w = w1 . . . w` occurs in a word u = u1 . . . uk if there is some m ∈ {1, . . . , k−`} such
that w1 = um, . . . , w` = um+`, and we refer to w as a subword of u. The analogous
definitions hold for a finite word w occurring as a subword of an infinite word u.

A language L is a set of (finite) words such that if w ∈ L, then any subword is
also contained in L. The language determined by a word (finite or infinite) is the
collection of all finite subwords of the word. We let Ln denote all the words in the
language L of length n. If w ∈ L, we write [w] for the cylinder set determined by
w, meaning that

[w] = {u ∈ L : the first |w| symbols of u agree with w}.

We assume that the alphabet A is endowed with the discrete topology and if
x ∈ AZ, we use x(n) to denote the value of x at n ∈ Z. The space AZ is a compact
metric space when endowed with the product topology (and a compatible metric).

A subshift (X,σ) is a closed subset X ⊂ AZ that is invariant under the left shift
σ : AZ → AZ defined by (σx)(n) = x(n+ 1). If L is the language of the system X,
meaning the set of all finite subwords that arise for any x ∈ X, we write L = L(X)
and we write Ln = Ln(X) for the words of length n. We define the complexity
function PX : X → N by

PX(n) = |Ln(X)|.
For a word w ∈ L(X), we write 1[w] for the indicator function of the word

w. We say that x =
(
x(n)

)
n∈Z ∈ X is periodic if there exists m 6= 0 such that
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x(m + n) = x(n) for all n ∈ Z and otherwise it is aperiodic. The point x is
eventually periodic if there exists m 6= 0 and N ∈ N such that x(m+ n) = x(n) for
all n ≥ N .

For a a system (X,σ), the orbit of x ∈ X is defined to be {σnx : n ∈ Z} and the

system is minimal if the orbit closure {σnx : n ∈ Z} = X for any x ∈ X.
For N,m ∈ N, define w(N,m) ∈ LN (X) by

(2) w(N,m) := (x(m), x(m+ 1), . . . , x(m+N − 1))

to be the word of length N that occurs in x starting at location m. We make
use of the following theorem (though stated differently) of Epifanio, Koskas, and
Mignosi [7]:

Theorem 2.1 ([7, Theorem 2.2]). Assume x ∈ AN is not eventually periodic and
fix M,N0 ∈ N. Suppose that for some N ≥ N0, there exist M ≤ m1 < m2 ≤ N
such that wx(N,m1) = wx(N,m2). Then there exists K ≥ m1 such that

(i) (Distinct Words Condition): for all K ≤ k1 < k2 ≤ K +N −N0 we have
wx(N, k1) 6= wx(N, k2);

(ii) (Prefix First Occurrence Condition): for all K ≤ k < K + N − N0 there
exists M ≤ lk ≤ N such that wx(N0, k) = wx(N0, lk).

For completeness, we include the proof, but it is merely a translation of the proof
in [7] using our hypotheses and emphasizing the stronger conclusion.

Proof. Suppose wx(N,m1) = wx(N,m2). Then the word wx(N + m2 − m1,m1)
is periodic of period m2 − m1. Since x is not eventually periodic, there exists
N ′ ≥ N + m2 − m1 such that wx(N ′,m1) is periodic of period m2 − m1, while
wx(N ′ + 1,m1) is not. Let 1 ≤ p ≤ m2 −m1 be the minimal period of wx(N ′,m1)
and define K := m1 + N ′ − N − p ≥ m1. By minimality of p and the fact that
N ≥ p, if K ≤ i < j ≤ K + p− 1 then wx(N, i) 6= wx(N, j) (and all such words are
periodic of period p).

For contradiction, suppose there exist K ≤ i < j ≤ K + N − N0 such that
wx(N, i) = wx(N, j). Since i, j cannot both be smaller than K + p, it follows that
j ≥ K + p. The word wx(N + (j − i), i) is periodic of period j − i and its prefix of
length p+j− i is periodic of period p. By the Fine-Wilf Theorem [9], it follows that
this prefix is periodic of period gcd(j − i, p). Since this prefix has length at least p,
it follows that wx(N+(j− i), i) is periodic of period gcd(j− i, p) and, in particular,
is periodic of period p. Moreover, K ≤ i ≤ K +N −N0 and so wx(N + (j − i), i)
begins at least p spaces before N ′ + 1 and ends at location

i+N + (j − i) = N + j ≥ N + (K + p) = m1 +N ′ + 1.

Thus the periodicity of wx(N + (j − i), i) contradicts the fact that wx(N ′,m1) is
not periodic of period p, which implies that wx(N, i) 6= wx(N, j) for any M ≤ i <
j ≤ K + n−N0.

Since wx(N ′,m1) is periodic of period p ≤ n and the length N0 prefix of wi(N, i)
is a subword of wx(N ′,m1), the second statement follows. �

3. Main results

Theorems 1.1 and 1.2 follow from the following estimate:
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Theorem 3.1. Let (X,σ) be a subshift which has at least d ≥ 1 distinct, nonatomic,
generic measures. Then

lim inf
n→∞

PX(n)

n
≥ d.

If, in addition, (X,σ) has a generic measure µ and a generic point xµ whose orbit
closure

{σkxµ : k ∈ N}
is not uniquely ergodic, then

lim sup
n→∞

PX(n)

n
≥ d+ 1.

Proof. We show that for arbitrarily small δ > 0, we have

(3) lim inf
n→∞

PX(n)

n
> d− 2dδ

and, under the additional hypothesis of a generic measure and associated generic
point whose orbit closure is not uniquely ergodic,

(4) lim sup
n→∞

PX(n)

n
> d+ 1− 2dδ.

The theorem follows immediately from these estimates.
Fix δ > 0, and for convenience assume that 1/δ ∈ N. Suppose µ1, . . . , µd are

distinct, nonatomic, generic measures for (X,σ) and choose x1, . . . , xd ∈ X such
that for each 1 ≤ i ≤ d, xi is generic for µi. Observe that if x is eventually periodic
and is generic for some measure µ, then µ must be the atomic measure supported
on the (eventual) period of x. Therefore, since µi is nonatomic, xi is not eventually
periodic for all i. By definition of xi, for all w ∈ L(X) we have

(5) lim
N→∞

1

N

N−1∑
k=0

1[w](T
kxi) = µi([w]).

For 1 ≤ j1 < j2 ≤ d, choose words w(j1,j2) ∈ L(X) such that µj1([w(j1,j2)]) 6=
µj2([w(j1,j2)]). Set

(6) ε := min{|µj1([w(j1,j2)])− µj2([w(j1,j2)])| : 1 ≤ j1 < j2 ≤ d}
and set

(7) B :=
δ

16− 4δ
.

By (5), for each 1 ≤ i ≤ d there exists Ni ∈ N such that for all N ≥ Ni and all
1 ≤ j1 < j2 ≤ d, we have

(8)

∣∣∣∣∣ 1

N

N−1∑
k=0

1[w(j1,j2)](T
kxi)− µi([w(j1,j2)])

∣∣∣∣∣ < B · ε.

Set

(9) M := max
1≤i≤d

Ni.

Analogous to notation (2), for 1 ≤ i ≤ d and for N,m ∈ N, define ui(N,m) ∈
LN (X) by

ui(N,m) := (xi(m), xi(m+ 1), xi(m+ 2), . . . , xi(m+N − 1))
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to be the word of length N that occurs in xi starting at location m.
If u,w ∈ L(X) and |u| ≥ |w|, define the frequency with which w occurs as a

subword in u to be

(10) F (u,w) :=
1

|u| − |w|+ 1

|u|−|w|∑
k=0

1[w](T
kx),

where x ∈ [u]. Note that this frequency does not depend on the choice of x ∈ [u],
as it only depends on the first |u| coordinates of x. Suppose

N ≥ 1

δ
· (M + max{|w(j1,j2)| : 1 ≤ j1 < j2 ≤ d})

is fixed and define LN := b(2−δ)Nc and `N := bδNc. By definition, `N−|w(j1,j2)| ≥
M for all w(j1,j2). If 1 ≤ i ≤ d, 1 ≤ j1 < j2 ≤ d, and M ≤ L ≤ LN , then the
frequency with which the word w(j1,j2) occurs in the subword of xi with length `N
and starting from location L is given by (recall that ui(`N , L) is the word of length
`N that starts at location L in xi)

F
(
ui(`N , L), w(j1,j2)

)
=

1

`N − |w(j1,j2)|+ 1

`N−|w(j1,j2)|∑
k=0

1[w(j1,j2)](T
k(TLxi))

=
1

`N − |w(j1,j2)|+ 1

L+`N−|w(j1,j2)|∑
k=L

1[w(j1,j2)](T
kxi)

=
1

`N − |w(j1,j2)|+ 1

L+`N−|w(j1,j2)|∑
k=0

1[w(j1,j2)](T
kxi)−

L−1∑
k=0

1[w(j1,j2)](T
kxi)


=
L+ `N − |w(j1,j2)|+ 1

`N − |w(j1,j2)|+ 1
· 1

L+ `N − |w(j1,j2)|+ 1

L+`N−|w(j1,j2)|∑
k=0

1[w(j1,j2)](T
kxi)

− L

`N − |w(j1,j2)|+ 1
· 1

L

L−1∑
k=0

1[w(j1,j2)](T
kxi).

But by (8),∣∣∣∣∣∣ 1

L+ `N − |w(j1,j2)|+ 1

L+`N−|w(j1,j2)|∑
k=0

1[w(j1,j2)](T
kxi)− µi([w(j1,j2)])

∣∣∣∣∣∣ < B · ε

and since L ≥M , we have∣∣∣∣∣ 1L
L−1∑
k=0

1[w(j1,j2)](T
kxi)− µi([w(j1,j2)])

∣∣∣∣∣ < B · ε.
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Therefore∣∣F (ui(`N , L), w(j1,j2)

)
− µi([w(j1,j2)])

∣∣
≤
L+ `N − |w(j1,j2)|+ 1

`N − |w(j1,j2)|+ 1
·B · ε+

L

`N − |w(j1,j2)|+ 1
·B · ε

=
2L+ `N − |w(j1,j2)|+ 1

`N − |w(j1,j2)|+ 1
·B · ε

≤
2b(2− δ)Nc+ bδNc − |w(j1,j2)|+ 1

bδNc − |w(j1,j2)|+ 1
·B · ε.

By Definition (7) that B = δ
16−4δ , for all sufficiently large N this inequality implies

(11)
∣∣F (ui(`N , L), w(j1,j2)

)
− µi([w(j1,j2)])

∣∣ < ε

2
.

By (6), for all sufficiently large N and all L1, L2 ∈ {M,M + 1, . . . , b(2 − δ)Nc}
we have that if 1 ≤ i1 < i2 ≤ d, then the frequency with which w(i1,i2) occurs in
ui1(`N , L1) is different than its frequency in ui2(`N , L2). Therefore ui1(`N , L1) 6=
ui2(`N , L2). For 1 ≤ i ≤ d define

Wi(N) := {ui(`N , L) : M ≤ L ≤ b(2− δ)Nc} ⊆ L`N (X).

We have shown that for all sufficiently large N , if 1 ≤ i1 < i2 ≤ d, then

(12) Wi1(N) ∩Wi2(N) = ∅.
Fix i with 1 ≤ i ≤ d and fix N sufficiently large such that (12) holds. If the words

(13) ui(N,M), ui(N,M + 1), ui(N,M + 2), . . . , ui(N, b(1− δ)Nc)
are all distinct, then the set

(14) Si := {w ∈ LN (X) : all subwords of w of length `N are elements of Wi(N)}
contains at least b(1 − δ)Nc − M elements. If, on the other hand, the words
in (13) are not all distinct, then there exist M ≤ L1 < L2 ≤ b(1− δ)Nc such that
ui(N,L1) = ui(N,L2). In this case, by Theorem 2.1 there exists K ∈ N such that

(i) (Distinct Words Condition): for all K ≤ k1 < k2 ≤ K + N − `N we have
ui(N, k1) 6= ui(N, k2);

(ii) (Prefix First Occurrence Condition): for all K ≤ k ≤ K + N − `N there
exists `N ≤ lk ≤ N such that ui(`N , k) = ui(`N , lk).

Thus in this case, the set

(15) Ti := {w ∈ LN (X) : the leftmost subword w of length `N lies in Wi(N)}
contains at least N − `N elements.

By (12), Si1 ∩ Si2 = ∅ whenever i1 6= i2 (and both sets are defined). A similar
statement holds when comparing any Si1 to Ti2 for any i2, or when comparing Ti1
to Ti2 . Thus for each 1 ≤ i ≤ d, we have associated either the set Si or the set Ti
and

PX(N) ≥ d ·min{N − `N , b(1− δ)Nc−M} = d ·min{N −bδNc, b(1− δ)Nc−M}.
Therefore,

PX(N)

N
≥ d ·min{N − bδNc, b(1− δ)Nc −M}

N
,

which is larger than d− 2dδ for all sufficiently large N , thus establishing (3).
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To prove (4) , suppose that there exists 1 ≤ i ≤ d such that the orbit closure of
xi is not uniquely ergodic. Then for any fixed (and sufficiently large) N ∈ N, there
exist infinitely many L ∈ N such that ui(`N , L) /∈ Wi(N). Fix N ∈ N.

If the words

ui(N,M), ui(N,M + 1), ui(N,M + 2), . . . , ui(N, b(1− δ)Nc)
are all distinct, then we define Si as in (14). In this case, choose the smallest L ≥M
for which ui(`N , L) /∈ Wi(N); clearly L > LN . Then each of the words

ui(N,L−N + `N ), ui(N,L−N + `N + 1), . . . , ui(N,L− `N )

has the property that its leftmost subword of length `N is an element of Wi(N),
these words are pairwise distinct (in ui(N,L−N + `N + j) the leftmost occurrence
of a subword of length `N that is not in Wi(N) begins at location L − `N − j).
These N − `N words of length N do not lie in Si, and are not contained in any Sj
or Tj for any j 6= i (as defined in (15)), since their leftmost subword of length `N
is in Wi. Therefore by the bound on the size of Si following (14),

PX(N) ≥ d ·min{N − `N , b(1− δ)Nc −M}
= d ·min{N − bδNc, b(1− δ)Nc −M}+ (N − `N )

and so in this case,

PX(N)

N
≥ d ·min{N − bδNc, b(1− δ)Nc −M}

N
+
N − bδNc

N
.

If N is sufficiently large, this is larger than d+ 1− 2dδ.
Thus we are left with showing that there are infinitely many N ∈ N for which

the words

(16) ui(N,M), ui(N,M + 1), ui(N,M + 2), . . . , ui(N, b(1− δ)Nc)
are all distinct. Fix some N ∈ N and assume that these words are not all distinct.
As before, let L1, L2 ∈ {M,M + 1, . . . , b(1 − δ)Nc} with L1 < L2 be such that
ui(N,L1) = ui(N,L2). Let p be the minimal period of the word ui(N+L2−L1, L1)
and let K be the largest integer for which ui(K,L1) is periodic with period p (note
that K is finite since xi is not eventually periodic). Then the words

(17) ui(K,M), ui(K,M + 1), . . . , ui(K, b(1− δ)Kc)
are all distinct: if j > L1 −M then the word ui(K,M + j) begins with a word
that is periodic of period p and has length exactly K − L1 − j (so no two words of
this form can coincide), and if j ≤ L1 −M then ui(K,M + j) either begins with
a word of length K − L1 + j that is periodic of period p, or has a prefix of length
at most L1 followed by a word of length at least K − L1 > N that is periodic
of period p (which occurs in a different location for each such j). Therefore, for
each N ∈ N there exists K ≥ N such that the words in (17) are all distinct, and
in particular there are infinitely many N such that the words in (16) are distinct.
This establishes (4). �

As immediate corollaries of Theorem 3.1, we have the theorems stated in the
introduction:

Corollary (Theorem 1.1). If (X,σ) is a subshift and there exists k ∈ N such that

lim inf
n→∞

PX(n)

n
< k,
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then (X,σ) has at most k − 1 distinct, nonatomic, generic measures.

Corollary (Theorem 1.2). If (X,σ) is a subshift and there exists k ∈ N such that

lim sup
n→∞

PX(n)

n
< k,

and if (X,σ) has a generic measure µ and a generic point xµ whose orbit closure
is not uniquely ergodic, then (X,σ) has at most k − 2 distinct, nonatomic, generic
measures.

In Section 5, we show that both of these corollaries are sharp. In particular,
the linear growth rate in Theorem 1.1 is optimal, in the sense that a superlinear
growth rate does not suffice for showing that the set of ergodic measures is finite,
and the technical condition of Theorem 1.2 (and in Theorem 3.1) on the existence
of a point whose orbit closure is not uniquely ergodic can not be dropped.

4. The natural coding of an IET

Let k ≥ 1 be an integer and π be a permutation of {1, . . . , k}. Let I = [0, λ)
be an interval and choose 0 = λ0 < λ1 < . . . < λk = λ. The interval exchange
transformation T : [0, λ) → [0, λ) is defined to be the map that is an isometry on
each subinterval [λi−1, λi) for i = 1, . . . , k and rearranges the order of these subin-
tervals according to the permutation π. Without loss of generality, we can assume
that k is the smallest number of subintervals needed to define the transformation
T (otherwise we can join two consecutive subintervals into a single one). We refer
to this interval exchange transformation as a k-IET or just an IET when k is clear
from the context.

Given an interval exchange transformation, there is a natural coding by an as-
sociated dynamical system. For x ∈ I, define x = (xn) ∈ {1, . . . , k}N by setting

xn = i if and only if Tnx ∈ [λi−1, λi).

The language of x is the set of all finite words that appear and the natural coding
of the interval exchange transformation is the symbolic system, endowed with the
shift, that has the same language as x. The natural symbolic cover of an interval
exchange transformation is the subshift that codes every x ∈ I, meaning it is the
symbolic system, endowed with the shift, whose language consists of all finite words
that arise in the orbit of any x ∈ I. While the image of the interval [0, λ) under this
coding is invariant under the shift, it is not necessarily closed, and so we take its
orbit closure to produce a semiconjugacy from the coding to the interval exchange.
For further details, see [11, (Chapter 15, Section 5)].

If a point does not lie in the orbit of one of the endpoints of the subintervals
defining the IET, then it has a unique preimage under the semiconjugacy, and
otherwise it has at most two preimages corresponding to the coding of iterates.

If T is a minimal interval exchange transformation, then any x ∈ I gives rise to
the same language and it suffices to take the orbit of a single point. More generally,
the symbolic coding is not topologically conjugate to T , as up to countably many
points may have multiple preimages (though a point can only have finitely many
preimages). However, since the points with non-unique preimage can only support
an atomic measure, it is a measure theoretic isomorphism for any nonatomic generic
measure on X.
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Namely, we claim that a generic measure for an interval exchange transformation
lifts to a generic measure in the symbolic cover. A basic open set in the symbolic
cover is a cylinder set and thus corresponds to an interval or a finite union of
intervals in [0, λ). Thus it suffices to check the claim for a finite interval J ⊆ [0, λ).
Let x ∈ [0, λ) be a generic point for the measure µ. Choose continuous functions f
and g on [0, λ) such that 0 ≤ f ≤ 1J ≤ g and

∫
g dµ− ε/2 ≤ µ(J) ≤

∫
f dµ+ ε/2.

Then ∣∣∣∣∣ 1

N

N−1∑
n=0

f(Tnx)−
∫
fdµ

∣∣∣∣∣ < ε/2

for all sufficiently large N , and the same holds for g. Thus

1

N

N−1∑
n=0

1J(Tnx) ≤ 1

N

N−1∑
n=0

g(Tnx) ≤ ε/2+

∫
g dµ ≤ ε+

∫
f dµ ≤ ε+ 1

N

N−1∑
n=0

1J(Tnx).

Thus the difference ∣∣∣∣∣µ(J)− 1

N

N−1∑
n=0

1J(Tnx)

∣∣∣∣∣ < ε.

Since this holds for all ε > 0, for any open set J ⊂ [0, λ), we have

lim
N→∞

1

N

N−1∑
n=0

1J(Tnx) = µ(J).

Write φ : (X,σ)→ ([0, λ), T ) for the factor map from the symbolic coding (X,σ)
to the interval exchange ([0, λ), T ). Let L(X) denote the language of the coding
and let µ be a generic measure on ([0, λ), T ) with generic point x. Let x∗ ∈ φ−1(x).
Then for any word w ∈ L(X),

lim
N→∞

1

N

N−1∑
n=0

1[w](σ
nx∗) = lim

N→∞

1

N

N−1∑
n=0

1φ([w])(T
nx) = µ(φ([w])),

since φ([w]) is a finite union of intervals. Since µ is a nonatomic, generic measure,
the pullback φ∗(µ([w])) = φ∗(µ(φ−1(φ([w])))) is also nonatomic, as only countably
many points in ([0, λ), T ) have multiple pre-images and each of these only has
finitely many preimages. (In other words, the pushforward of the pullback of the
measure is the measure itself.) Thus a generic measure for the interval exchange
transformation corresponds to a generic measure in the symbolic coding.

It is well known that an IET has linear complexity (see for example [8]). We
include a proof for completeness:

Proposition 4.1. The natural coding of a minimal k-IET has complexity

P (n) ≤ (k − 1)n+ 1.

If the k-IET satisfies the infinite distinct orbits condition (IDOC), then the com-
plexity is exactly P (n) = (k − 1)n+ 1.

Proof. We proceed by induction on n. For n=1, this is the alphabet k and the
result is clear. Assume that P (n) ≤ (k−1)n+1. Fixing a particular word of length
n, the cylinder set defined by this word distinguishes an interval in the exchange,
and by considering the cylinder sets associated to each word of length n, we obtain
a partition of the exchange. Thus we have associated a partition I of the exchange
to the (k− 1)n+ 1 words of length n, and this partition has (k− 1)n+ 2 endpoints.
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Furthermore, these endpoints all arise as iterates of the endpoints of the original
k + 1 endpoints of the interval exchange. Each of the k + 1 original endpoints lies
in some T (I), where T is the exchange map and I is one of the intervals in the
partition I. We note that if the exchange satisfies the IDOC condition, then the
endpoints arise as distinct iterates, each of the original endpoints lies in the interior
of some T (I), but without this condition there may be overlap in the iterates and
this is only an upper bound.

Thus we have M ≤ k − 1 intervals in (T (I))I∈I which cover all of the original
endpoints. These M intervals may each cover more than one of the original end-
points, say m of them, and there are at most m + 1 distinct ways to continue the
orbit of a word of length n. Thus in total, we have (k− 1)n+ 1−M + (k− 1) +M
continuations, which is exactly the bound P (n+ 1) ≤ (k − 1)(n+ 1) + 1.

If the exchange satisfies the IDOC condition, then as the endpoints arise as
distinct iterates, we have that the complexity is exactly P (n) = (k − 1)n+ 1. �

Combining this with Theorem 3.1, we have the statement of Theorem 1.4:

Corollary (Theorem 1.4). For k > 2, a minimal k-IET has at most k− 2 generic
measures.

5. Sharpness

In this section show that the bound in Theorem 3.1 is sharp. We recall the
statement of Theorem 1.3 for convenience.

Theorem (Theorem 1.3). Let d > 1 be fixed. There exists a minimal subshift
(X,σ) such that

lim inf
n→∞

PX(n)

n
= d,

lim sup
n→∞

PX(n)

n
= d+ 1,

and X has exactly d ergodic measures.

Before we delve into the details of the construction, we outline the basic ideas
involved. The ideas of this argument were partly inspired by a construction of a
minimal and not uniquely ergodic subshift by Quas on mathoverflow [13] (see also
Denker, Grillenberger, and Sigmund [6]).

Fixing d > 1 and the alphabet A = {1, . . . , d}, we inductively construct d se-

quences of words {wj1}∞j=1, {wj2}∞j=1, . . . , {w
j
d}∞j=1 in L(AZ). Roughly speaking, the

procedure we use constructs the words in these sequences in the following (some-
what unusual) order: w1

1, w
1
2, . . . , w

1
d, w

2
1, w

2
2, . . . , w

2
d, w

3
1, w

3
2, . . . , w

3
d, . . . That is, we

first construct the first word in each of the sequences, then construct the second
word in each of the sequences, and so on. The words are constructed such that:

(i) If i1, i2 ∈ A and j1 < j2, then wj1i1 occurs as a subword of wj2i2 syndetically1,
with gap size bounded by a constant that depends only on j1.

(ii) For any i ∈ A and j ∈ N, the frequency with which the letter i occurs

in wji (as a percentage of the length of wji ) is greater than an absolute
constant which is greater than 1/2.

1A word occurs v occurs syndetically in a word w with gap g if every subword of w of length
g contains a copy of v as a sub-subword.
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By taking a limit along a subsequence of {wj1}∞j=1, we produce a semi-infinite
word w∞1 , and taking its orbit closure under the shift σ and passing to the natural
two sided extension, we obtain a closed subshift X ⊂ AZ. It follows from the
construction that (X,σ) is minimal and that wji ∈ L(X) for all i ∈ A and j ∈ N.
For fixed i ∈ A, there are arbitrarily long words in L(X) for which the frequency
of the letter i is at least (a constant greater than) 1/2 and so the system (X,σ) has
an ergodic measure assigning the cylinder set [i] measure greater than 1/2. Thus
(X,σ) has at least |A| = d ergodic measures. By carefully choosing the lengths of
the words, we further show that the system (X,σ) satisfies the desired upper and
lower bounds on the complexity. Applying Theorem 3.1, it follows that (X,σ) has
at most d ergodic measures, and so exactly d ergodic measures.

We now make these ideas precise:

Proof of Theorem 1.3. Set A := {1, 2, . . . , d}. Choose κ1, κ2, . . . to be a sequence
of real numbers in (0, 1) such that

∞∏
j=1

κj > 1/2

choose δ1, δ2, . . . to be a strictly decreasing sequence of real numbers in (0, 1) such
that lim

j→∞
δj = 0.

Step 1. (Construction of the sequences {wj1}∞j=1, . . . , {w
j
d}∞j=1): Define the word

w1
1 := 11 · · · 1︸ ︷︷ ︸

length N
[1]

(1,1)

234 · · · d,

where N
[1]
(1,1) ∈ N is chosen such that N

[1]
(1,1) > κ1|w1

1|. Define the words s11 := w1
1

and

p11 := 11 · · · 1︸ ︷︷ ︸
length N

[1]

(1,1)

.

The word s11 represents the suffix of w1
1 that starts with the beginning of w1

1 and
p11 denotes the prefix of w1

1 consisting of its initial block of 1’s (the nomenclature of
suffix and prefix is further clarified in the inductive construction, but note that the
previous level suffix becomes the beginning of the next level prefix). We refer to

the groupings by a length N
[n]
j,k as a block in the word (thus p11 has a single block),

and the change from one block to the following block as a transition (the word w1
2

has one transition) and we refer to words that are not entirely within one block as
transition words.

Next define the word

w1
2 := s11w

1
1w

1
1 · · ·w1

1p
1
1︸ ︷︷ ︸

length N
[1]

(2,1)

222 · · · 2︸ ︷︷ ︸
length N

[1]

(2,2)

333 · · · 3︸ ︷︷ ︸
length N

[1]

(2,3)

· · · ddd · · · d︸ ︷︷ ︸
length N

[1]

(2,d)

,

where N
[1]
(2,1), . . . , N

[1]
(2,d) ∈ N are chosen such that

(18)
|w1

1| < (δ1)2 ·N [1]
(2,1) < (δ1)4 ·N [1]

(2,d) < (δ1)6 ·N [1]
(2,d−1) < (δ1)8 ·N [1]

(2,d−2)

< · · · < (δ1)2d−2 ·N [1]
(2,3) < (δ1)2d ·N [1]

(2,2)
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and N
[1]
(2,2) > κ1|w1

2|. The ordering of the lengths N
[1]
(2,k) is important, with the

index k passing from 1 to d and then down to d− 1 and continuing cycling step by
step down to 2. The choice of the lengths is used only in estimating the growth of
PX(n); the exact choices of the lengths and the estimates of (18) can be ignored
for a first reading of Steps 1 and 2.

Further note that the initial portion of w1
2 is a concatenation of the word w1

1

with itself a large number of times, followed by its prefix word p11. We include p11
so that the word w1

1p
1
12 has already occurred as a subword of the concatenation

w1
1w

1
1 · · ·w1

1, allowing us to make the transition in w1
2 from the block of w1

1’s to the
block of 2’s while keeping the possible new words as low as possible. We iterate
this technique at each step of the construction.

Next we define the word w1
3. To do this, we make use of two auxiliary words.

Let

p12 := s11w
1
1w

1
1 · · ·w1

1p
1
1︸ ︷︷ ︸

length N
[1]

(2,1)

22 · · · 2︸ ︷︷ ︸
length N

[1]

(2,2)

be the prefix of w1
2 that includes everything through the block of 2’s and let

s12 := 22 · · · 2︸ ︷︷ ︸
length N

[1]

(2,2)

33 · · · 3︸ ︷︷ ︸
length N

[1]

(2,3)

· · · dd · · · d︸ ︷︷ ︸
length N

[1]

(2,d)

be the suffix of w1
2 that starts with the block of 2’s. Finally, we define

w1
3 := s11w

1
1w

1
1 · · ·w1

1p
1
1︸ ︷︷ ︸

length N
[1]

(3,1)

s12w
1
2w

1
2 · · ·w1

2p
1
2︸ ︷︷ ︸

length N
[1]

(3,2)

33 · · · 3︸ ︷︷ ︸
length N

[1]

(3,3)

· · · dd · · · d︸ ︷︷ ︸
length N

[1]

(3,d)

,

where N
[1]
(3,1), N

[1]
(3,2), . . . , N

[1]
(3,d) ∈ N are chosen such that

(19)
|w1

2| < (δ1)2 ·N [1]
(3,2) < (δ1)4 ·N [1]

(3,1) < (δ1)6 ·N [1]
(3,d) < (δ1)8 ·N [1]

(3,d−1)

< · · · < (δ1)2d−2 ·N [1]
(3,4) < (δ1)2d ·N [1]

(3,3)

and N
[1]
(3,3) > κ1|w1

3|. Again, the initial block of w1
3 is periodic (based on the word

w1
1), with the period ending when its pattern dictates the next letter should be

2. The second block is periodic (based on the word w1
2) that begins with a block

of 2’s and ends when its pattern dictates the next collection of letters should be
a block of 3’s (w1

3 then continues with a block of 3’s). As in the previous step,
this gives two transitions in w1

3: first from a periodic block of w1
1’s to a periodic

block of w1
2’s and second from a periodic block of w1

2’s to a block of 3’s. The choice
of the prefixes and suffixes guarantee that these transitions introduce the smallest
possible number of new words (the analysis of this number of new words is made
precise in Step 3, where we analyze the growth of the complexity PX(n)).

We continue inductively. Let i < d be fixed and suppose we have constructed
words w1

1, . . . , w
1
i , p

1
1, . . . , p

1
i , s

1
1, . . . , s

1
i . Define the word (note that many of the
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words we define are too long to fit in a single line, and the line break is arbitrary)

w1
i+1 := s11w

1
1w

1
1 · · ·w1

1p
1
1︸ ︷︷ ︸

length N
[1]

(i+1,1)

s12w
1
2w

1
2 · · ·w1

2p
1
2︸ ︷︷ ︸

length N
[1]

(i+1,2)

· · ·

s1iw
1
iw

1
i · · ·w1

i p
1
i︸ ︷︷ ︸

length N
[1]

(i+1,i)

(i+ 1)(i+ 1) · · · (i+ 1)︸ ︷︷ ︸
length N

[1]

(i+1,i+1)

· · · dd · · · d︸ ︷︷ ︸
length N

[1]

(i+1,d)

,

where N
[1]
(i+1,1), . . . , N

[1]
(i+1,d) ∈ N are chosen such that

(20)

|w1
i | < (δ1)2 ·N [1]

(i+1,i) < (δ1)4 ·N [1]
(i+1,i−1) < (δ1)6 ·N [1]

(i+1,i−2)

< (δ1)8 ·N [1]
(i+1,i−3) < · · · < (δ1)2i ·N [1]

(i+1,1) < (δ1)2i+2 ·N [1]
(i+1,d)

< (δ1)2i+4 ·N [1]
(i+1,d−1) < · · · < (δ1)2d−2 ·N [1]

(i+1,i+2) < (δ1)2d ·N [1]
(i+1,i+1)

and N
[1]
(i+1,i+1) > κ1|w1

i+1|. Again, the lengths are chosen to control the growth of

the complexity, and the index k in N
[1]
(i+1,k) is taken in a cyclical order. Also define

a prefix and a suffix of w1
i+1 by

p1i+1 := s11w
1
1w

1
1 · · ·w1

1p
1
1︸ ︷︷ ︸

length N
[1]

(i+1,1)

s12w
1
2w

1
2 · · ·w1

2p
1
2︸ ︷︷ ︸

length N
[1]

(i+1,2)

· · · s1iw1
iw

1
i · · ·w1

i p
1
i︸ ︷︷ ︸

length N
[1]

(i+1,i)

(i+ 1)(i+ 1) · · · (i+ 1)︸ ︷︷ ︸
length N

[1]

(i+1,i+1)

s1i+1 := (i+ 1)(i+ 1) · · · (i+ 1)︸ ︷︷ ︸
length N

[1]

(i+1,i+1)

(i+ 2)(i+ 2) · · · (i+ 2)︸ ︷︷ ︸
length N

[1]

(i+1,i+2)

· · · dd · · · d︸ ︷︷ ︸
length N

[1]

(i+1,d)

so that p1i+1 is the prefix of w1
i+1 that includes everything through the block of

(i+1)’s and s1i+1 is the suffix of w1
i+1 the begins with the block of (i+1)’s. By

induction, this defines words w1
1, . . . , w

1
d, p

1
1, . . . , p

1
d, s

1
1, . . . , s

1
d.

For each i ∈ A, it follows immediately from the construction that:

(a) Every letter in A appears in w1
i ;

(b) The frequency with which the letter i occurs in w1
i is at least κ1, by choice of

the integer N
[1]
(i+1,i+1) and the relations given in (20).

We continue to define the sequences of words inductively. Assuming that we
have already defined words wj1, w

j
2, . . . , w

j
d, p

j
1, . . . , p

j
d, s

j
1, . . . , s

j
d, we define

wj+1
1 := sj1w

j
1w

j
1 · · ·w

j
1p
j
1︸ ︷︷ ︸

length N
[j+1]

(1,1)

sj2w
j
2w

j
2 · · ·w

j
2p
j
2︸ ︷︷ ︸

length N
[j+1]

(1,2)

· · · sjdw
j
dw

j
d · · ·w

j
dp
j
d︸ ︷︷ ︸

length N
[j+1]

(1,d)

,

where

(21)
|wjd| < (δj+1)2 ·N [j+1]

(1,d) < (δj+1)4 ·N [j+1]
(1,d−1) < (δj+1)6 ·N [j+1]

(1,d−2)

< (δj+1)8 ·N [j+1]
(1,d−3) < · · · < (δ1)2d−2 ·N [j+1]

(1,2) < (δ1)2d ·N [j+1]
(1,1)

and N
[j+1]
(1,1) > κj+1|wj+1

1 |. Define prefixes and suffixes by

pj+1
1 := sj1w

j
1w

j
1 · · ·w

j
1p
j
1︸ ︷︷ ︸

length N
[j]

(1,1)

sj+1
1 := wj+1

1 .
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We have analogs of properties (a) and (b) for the base case of the construction: each

of the words wj1, w
j
2, . . . , w

j
d occurs as a subword of wj+1

1 and the frequency with

which the letter 1 occurs in wj+1
1 is at least

∏j+1
k=1 κk, provided that the frequency

with which it occurs in wj1 was at least
∏j
k=1 κk.

Continuing inductively, for i < d, we define the word (note the change in super-
script half way through)

wj+1
i+1 := sj+1

1 wj+1
1 wj+1

1 · · ·wj+1
1 pj+1

1︸ ︷︷ ︸
length N

[j+1]

(i+1,1)

sj+1
2 wj+1

2 · · ·wj+1
2 pj+1

2︸ ︷︷ ︸
length N

[j+1]

(i+1,2)

· · ·

sj+1
i wj+1

i · · ·wj+1
i pj+1

i︸ ︷︷ ︸
length N

[j+1]

(i+1,i)

sji+1w
j
i+1 · · ·w

j
i+1p

j
i+1︸ ︷︷ ︸

length N
[j+1]

(i+1,i+1)

· · · sjdw
j
d · · ·w

j
dp
j
d︸ ︷︷ ︸

length N
[j+1]

(i+1,d)

,

where

(22)

|wj+1
i | < (δj+1)2 ·N [j+1]

(i+1,i) < (δj+1)4 ·N [j+1]
(i+1,i−1) < (δj+1)6 ·N [j+1]

(i+1,i−2)

< (δj+1)8 ·N [j+1]
(i+1,i−3) < · · · < (δj+1)2i ·N [j+1]

(i+1,1)

< (δj+1)2i+2 ·N [j+1]
(i+1,d) < (δj+1)2i+4 ·N [j+1]

(i+1,d−1) < · · ·

< (δj+1)2d−2 ·N [j+1]
(i+1,i+2) < (δj+1)2d ·N [j+1]

(i+1,i+1)

and N
[j+1]
(i+1,i+1) > κj+1|wj+1

i+1 |, and define the prefixes and suffixes by

pj+1
i+1 := sj+1

1 wj+1
1 wj+1

1 · · ·wj+1
1 pj+1

1︸ ︷︷ ︸
length N

[j+1]

(i+1,1)

sj+1
2 wj+1

2 · · ·wj+1
2 pj+1

2︸ ︷︷ ︸
length N

[j+1]

(i+1,2)

· · ·

sj+1
i wj+1

i · · ·wj+1
i pj+1

i︸ ︷︷ ︸
length N

[j+1]

(i+1,i)

sji+1w
j
i+1 · · ·w

j
i+1p

j
i+1︸ ︷︷ ︸

length N
[j+1]

(i+1,i+1)

and

sj+1
i+1 := sji+1w

j
i+1 · · ·w

j
i+1p

j
i+1︸ ︷︷ ︸

length N
[j+1]

(i+1,i+1)

sji+2w
j
i+2 · · ·w

j
i+2p

j
i+2︸ ︷︷ ︸

length N
[j+1]

(i+1,i+2)

· · · sjdw
j
d · · ·w

j
dp
j
d︸ ︷︷ ︸

length N
[j+1]

(i+1,d)

.

Again, we point out that the words wj1, w
j
2, . . . , w

j
d occur as subwords of wj+1

i+1 , and

the frequency with which the letter i+1 occurs in wj+1
i+1 is at least

∏j+1
k=1 κk, provided

that the frequency with which it occurs in wji+1 was at least
∏j
k=1 κk.

By induction, we obtain sequences {wj1}∞j=1, {w
j
2}∞j=1, . . . , {w

j
d}∞j=1 satisfying:

(a) For any j > 2, any 1 ≤ k < j − 2, and any i1, i2 ∈ A, the word wki1 occurs in

each of the words wk+1
1 , wk+1

2 , . . . , wk+1
d by construction. Each of the words

(23) wk+2
1 , . . . , wk+2

d , pk+2
1 , . . . , pk+2

d , sk+2
1 , . . . , sk+2

d ,

contains at least one of the words wk+1
1 , wk+1

2 , . . . , wk+1
d and so wki1 occurs in

each of these words. Since wji2 is a concatenation the words appearing in (23),

it follows that wki1 occurs in wji2 syndetically, and the maximal gap length is at
most

gk := max{|wk+2
l | : l ∈ A} ∪ {|pk+2

l | : l ∈ A} ∪ {|sk+2
l | : l ∈ A} = |wk+2

d |;
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(b) For any i ∈ A and any j ∈ N, the frequency with which the letter i occurs as

a subword of wji is at least
∏j
k=1 κk ≥

∏∞
k=1 κk > 1/2.

We further note that given the freedom with which the lengths are chosen, we

can assume that N
[j]
(i,k) divides N

[j+1]
(i,k) for all i, k ∈ A and all j ∈ N. We make this

assumption for the remainder of the proof.

Step 2. (Construction and ergodic properties of the subshift (X,σ)): Observe that

wj1 is the leftmost subword of wj+1
1 for all j ∈ N, and so we can define a (one-sided)

infinite word w∞1 by declaring that for all j, the leftmost subword of w∞1 of length

|wj1| is wj1. Then for any i ∈ A and any j ∈ N, the word wji occurs as a subword of

w∞1 syndetically. Moreover, every subword of w∞1 occurs as a sub-subword of wj1
for some j. Therefore all subwords of w∞1 occur syndetically.

Let X ⊂ AZ be the set of all bi-infinite sequences whose language is comprised
only of subwords of w∞1 , meaning it is the natural extension of the closure of w∞1
under σ. Since all words in L(X) occur syndetically in every element of X, (X,σ)

is minimal. Moreover, wji ∈ L(X) for all i ∈ A and j ∈ N. Therefore, for fixed
i ∈ A, there are arbitrarily long words in L(X) for which the frequency with which
the letter i occurs is at least

∏∞
k=1 κk > 1/2. For each such word wni , if yn ∈ [wni ]

and

µn :=
1

n

|wn
i |−1∑
k=0

δσk(yn),

then any weak-* limit point ν of the sequence (µn) is a σ-invariant probability
measure supported on X such that ν([i]) > 1/2 (such a construction of ν is, for
example, a standard way to prove the Krylov-Bogolyubov Theorem). Consequently,
as the ergodic measures are the extreme points in the (convex) set of invariant
probability measures on X, there exists an ergodic measure µi supported on X for
which µi([i]) > 1/2. It follows that µi([j]) < 1/2 for all j 6= i and so µj 6= µi for
any j 6= i. Thus (X,σ) has at least d ergodic measures. If we can show that

lim inf
n→∞

PX(n)

n
< d+ 1,

then there are at most d ergodic measures by Theorem 3.1; hence exactly d.
Thus we are left with showing that:

lim inf
n→∞

PX(n)

n
= d,

lim sup
n→∞

PX(n)

n
= d+ 1.

Step 3. (Analysis of the growth rate of PX(n)): Let n > |w2
1| be a fixed integer.

We estimate the number of words in Ln(X), which is, by definition, PX(n). By
construction,

|w1
1| < |w1

2| < · · · < |w1
d| < |w2

1| < |w2
2| < · · · < |w2

d| < |w3
1| < · · ·

We make the convention that wjd+1 := wj+1
1 , wjd+2 := wj+1

2 , and so on (with the

analogous convention for N
[j]
(i1,i2)

when i2 > d). Therefore, there exist i1 ∈ A and

j1 ∈ N such that

|wj1i1 | ≤ n < |w
j1
i1+1|.
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With this convention, observe that

wj1+1
i1+1 := sj1+1

1 wj1+1
1 · · ·wj1+1

1 pj1+1
1︸ ︷︷ ︸

length N
[j1+1]

(i1+1,1)

sj1+1
2 wj1+1

2 · · ·wj1+1
2 pj1+1

2︸ ︷︷ ︸
length N

[j1+1]

(i1+1,2)

· · ·

sj1+1
i1

wj1+1
i1
· · ·wj1+1

i1
pj1+1
i1︸ ︷︷ ︸

length N
[j1+1]

(i1+1,i1)

sj1i1+1w
j1
i1+1 · · ·w

j1
i1+1p

j1
i1+1︸ ︷︷ ︸

length N
[j1]

(i1+1,i1+1)

· · · sj1d w
j1
d · · ·w

j1
d p

j1
d︸ ︷︷ ︸

length N
[j1]

(i1+1,d)

,

where

(24) n < |wj1i1+1| < |w
j1
i1+2| < · · · < |w

j1
d | < |w

j1+1
1 | < · · · < |wj1+1

i1
|.

It follows from the construction that if i2 ∈ A and j2 ∈ N is such that |wj2i2 | ≥
|wj1+1
i1+1 |, then wj2i2 can also be written as a concatenation of words from the sets

{wj1+1
1 , wj1+1

2 , . . . , wj1+1
i1

, wj1i1+1, w
j1
i1+2, . . . , w

j1
d } = {wj1+1

i1
, wj1i1+1, . . . , w

j1
i1+d−1}

and

{pj1+1
i : 1 ≤ i ≤ i1} ∪ {pj1i : i1 < i ≤ d} ∪ {sj1+1

i : 1 ≤ i ≤ i1} ∪ {sj1i : i1 < i ≤ d}.

Moreover, there are restrictions on the order in which these words may be concate-
nated in wj2i2 :

(i) If i1 + 1 ≤ i < i1 + d, then the only words that may be concatenated with

wj1i are wj1i itself and pj1i s
j1
i+1w

j1
i+1;

(ii) The only words that may be concatenated to the right end of wj1i1+d(=

wj1+1
i1

) are wj1+1
i1

itself and pj1+1
i1

sj1i1+1w
j1
i1+1.

Therefore, by (24), the only words of length n that appear as subwords of wj2i2 are
those which appear as subwords of words from the set:

(25)
{
wj1i w

j1
i : i1 < i ≤ i1 + d

}
∪
{
wj1i p

j1
i s

j1
i+1w

j1
i+1 : i1 < i < i1 + d

}
∪{

wj1i1+dp
j1
i1+d

sj1i1+1w
j1
i1+1

}
,

with superscripts following the convention that if the subscript is larger than d,
increment the superscript by 1. Since all words in Ln(X) occur as subwords of wj21
for all sufficiently large j2, we have that all words in Ln(X) appear as subwords of
the 2d words in the set in (25).

We now analyze the words that appear in (25) by decomposing them into words

of length comparable to n. By construction, if 1 ≤ m ≤ d then wj1i1+m can be
written as a concatenation of words from the set (recall the divisibility of the
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lengths assumed at the end of Step 1)

(26)

{wj1i1+1} ∪
d⋃
k=2

{
sj1i1+k−1w

j1
i1+k−1 · · ·w

j1
i1+k−1p

j1
i1+k−1︸ ︷︷ ︸

N
[j1]

(i1+k,i1+k−1)

, sj1−1i1+k
wj1−1i1+k

· · ·wj1−1i1+k
pj1−1i1+k︸ ︷︷ ︸

N
[j1]

(i1+k,i1+k)

,

sj1−1i1+k+1w
j1−1
i1+k+1 · · ·w

j1−1
i1+k+1p

j1−1
i1+k+1︸ ︷︷ ︸

N
[j1]

(i1+k,i1+k+1)

, . . . , sj1−1d−1 w
j1−1
d−1 · · ·w

j1−1
d−1 p

j1−1
d−1︸ ︷︷ ︸

N
[j1]

(i1+k,d−1)

,

sj1−1d wj1−1d · · ·wj1−1d pj1−1d︸ ︷︷ ︸
N

[j1]

(i1+k,d)

, sj11 w
j1
1 · · ·w

j1
1 p

j1
1︸ ︷︷ ︸

N
[j1]

(i1+k,1)

, sj12 w
j1
2 · · ·w

j1
2 p

j1
2︸ ︷︷ ︸

N
[j1]

(i1+k,2)

, . . . , sj1i1w
j1
i1
· · ·wj1i1 p

j1
i1︸ ︷︷ ︸

N
[j1]

(i1+k,i1)

}

obeying the analogous rules for concatenation (wj1i1+1 may be concatenated with

itself or any block that begins with sj1i1+2, and any word that ends with pj1i1+k may

be concatenated with a word that begins sj1i1+k+1, again understood cyclically).
In turn, the words of length n that occur in words produced from this set are,
themselves, words that occur when words from the set

(27)
{
wj1i1+1, s

j1−1
i1+2w

j1−1
i1+2 · · ·w

j1−1
i1+2p

j1−1
i1+2︸ ︷︷ ︸

N
[j1]

(i1+2,i1+2)

, . . . ,

sj1−1d wj1−1d · · ·wj1−1d pj1−1d︸ ︷︷ ︸
N

[j1]

(i1+2,d)

, sj11 w
j1
1 · · ·w

j1
1 p

j1
1︸ ︷︷ ︸

N
[j1]

(i1+2,1)

, . . . , sj1i1w
j1
i1
· · ·wj1i1 p

j1
i1︸ ︷︷ ︸

N
[j1]

(i1+2,i1)

}

are concatenated (with the analogous rules for concatenation). Moreover,

(28) |wj1−1i1+2 | < |w
j1−1
i1+3 | < · · · < |w

j1−1
d | < |wj11 | < · · · < |w

j1
i1
| ≤ n < |wj1i1+1|

and

(29) n < |wj1i1+1| < N
[j1]
(i1+2,m)

for all 1 ≤ m ≤ d (again, if i1 + 2 > d then increment the superscript of N
[j1]
(i1+2,m)

by one and reduce the subscript by d). In particular, every word in the set (25) can
be obtained by concatenating words from the set (26) and any word of length n
that occurs in a word in (25) can also be found in a word obtained by concatenating
words from (27).

For i1 + 2 ≤ i < i1 + d+ 1, define

qi := · · ·wj1−1i wj1−1i wj1−1i pj1−1i sj1−1i+1 w
j1−1
i+1 wj1−1i+1 wj1−1i+1 · · ·

to be the bi-infinite word whose restriction to the set of nonnegative indices is the
infinite concatenation sj1−1i+1 w

j1−1
i+1 wj1−1i+1 wj1−1i+1 · · · , and whose restriction to the set of

negative indices is the infinite concatenation · · ·wj1−1i wj1−1i wj1−1i pj1i1+1 (note that
the dependence of qi on j1 suppressed in our notation). Similarly define

qi1+d+1 := · · ·wj1i1+1w
j1
i1+1w

j1
i1+1p

j1
i1+1s

j1−1
i1+2w

j1−1
i1+2w

j1−1
i1+2w

j1−1
i1+2 · · ·

The set of words length n that arise by concatenating words from the set (27) is
precisely the set of words of length n that appear in qi1+1, qi1+2, . . . , qi1+d, by (29).
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By the estimates in (19), (20), (21), and (22), we have that

|wj1−1i | < δj1 · |w
j1
i1
| ≤ δj1 · n

for all i1 + 1 < i < d+ i1. It follows that:

(i) If i1 + 1 < i < i1 + d − 1, then the number of words of qi of length n
is at least n + 1 (since qi is aperiodic) and at most n + 2δj1n, as there
are at most δj1n words in each block (periodic part) of qi and at most n
transition words obtained from words that overlap the origin;

(ii) The number of words of qi1+d−1 of length n is at least n+ 1 and at most

n+ δj1n+ |wj1i1 |;
(iii) The only new words of qi1+d are the n+ 1 transition words which appear

in wj1i1 · · ·w
j1
i1
pj1i1︸ ︷︷ ︸

N
[j1]

(i1+2,i1)

sj1i1+1w
j1
i1+1 as well as words that appear in wj1i1+1w

j1
i1+1;

(iv) The only new words of qi1+d+1 are the n+1 transition words which appear

in wj1i1+1p
j1
i1+1 s

j1−1
i1+2w

j1−1
i1+2 · · ·w

j1−1
i1+2︸ ︷︷ ︸

N
[j1]

(i1+2,i1+2)

.

Thus we are left with counting subwords of wj1i1+1w
j1
i1+1 that have not already ap-

peared.
Write

wj1i1+1 := sj11 w
j1
1 · · ·w

j1
1 p

j1
1︸ ︷︷ ︸

length N
[j1]

(i1+1,1)

sj12 w
j1
2 · · ·w

j1
2 p

j1
2︸ ︷︷ ︸

length N
[j1]

(i1+1,2)

· · ·

sj1i1w
j1
i1
· · ·wj1i1 p

j1
i1︸ ︷︷ ︸

length N
[j1]

(i1+1,i1)

sj1−1i1+1w
j1−1
i1+1 · · ·w

j1−1
i1+1p

j1−1
i1+1︸ ︷︷ ︸

length N
[j1]

(i1+1,i1+1)

· · · sj1−1d wj1−1d · · ·wj1−1d pj1−1d︸ ︷︷ ︸
length N

[j1]

(i1+1,d)

.

Then by (22) and the observation that |wj1i1+1| < N
[j1]
(i1+1,i1+1)/δj1 for all sufficiently

large j1, we have

|wj1i1 | < δj2 ·N
[j1]
(i1+1,i1)

< N
[j1]
(i1+1,i1)

/δj1 < δj1 ·N
[j1]
(i1+1,i1−1) < N

[j1]
(i1+1,i1−1)/δj1

< δj1 ·N
[j1]
(i1+1,i1−2) < N

[j1]
(i1+1,i1−2)/δj1 < δj1 ·N

[j1]
(i1+1,i1−3) < N

[j1]
(i1+1,i1−3)/δj1

< · · · < δj1 ·N
[j1]
(i1+1,1) < N

[j1]
(i1+1,1)/δj1 < δj1 ·N

[j1]
(i1+1,d) < N

[j1]
(i1+1,d)/δj1

< δj1 ·N
[j1]
(i1+1,d−1) < N

[j1]
(i1+1,d−1)/δj1 < · · · < δj1 ·N

[j1]
(i1+1,i1+2)

< N
[j1]
(i1+1,i1+2)/δj1 < δj1 ·N

[j1]
(i1+1,i1+1) < |w

j1
i1+1| < N

[j1]
(i1+1,i1+1)/δj1 .

Thus there are four possibilities:

(i) |wj1i1 | ≤ n < N
[j1]
(i1+1,i1)

;

(ii) N
[j1]
(i1+1,i1)

≤ n < N
[j1]
(i1+1,i1−1) (indices taken modulo d);

(iii) N
[j1]
(i1+1,i1−1) ≤ n < N

[j1]
(i1+1,i1+1) and there exists i2 ∈ A \ {i1, i1 + 1} such

that

N
[j1]
(i1+1,i2)

≤ n < N
[j1]
(i1+1,i2−1) (indices taken modulo d);

(iv) N
[j1]
(i1+1,i1+1) ≤ n < |w

j1
i1+1| (by condition (29)).
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In case (i), there are no words of length n in wj1i1+1w
j1
i1+1 that were not previously

counted (all blocks in its decomposition are of length larger than n). In this case
we have the estimate

(30) PX(n) ≤ (d− 1)δj1n+ |wj1i1 |+ dn.

In particular, since |wj1i1 | < δj1N
[j1]
(i1+1,i1)

, we are in case (i) when n =

⌊
|wj1

i1
|

δj1

⌋
and

so equation (30) holds. This implies that

PX

(⌊
|wj1i1 |
δj1

⌋)
≤ (d+ dδj1) ·

⌊
|wj1i1 |
δj1

⌋
.

This situation arises infinitely often (once for each δj) and since δj
j→∞−−−→ 0,

lim inf
n→∞

PX(n)

n
≤ d.

Combining this with the fact that (X,σ) has at least d distinct nonatomic ergodic
measures and applying Theorem 3.1, we have that

lim inf
n→∞

PX(n)

n
= d.

In particular, this implies that there are exactly d ergodic measures.
In case (ii), we have

N
[j1]
(i1+1,i1)

≤ n < N
[j1]
(i1+1,i1−1)

and n < N
[j1]
(i1+1,k) for all k ∈ A \ {i1}. In this case, the only new words of length n

that arise in wj1i1+1w
j1
i1+1 are the n−N [j1]

(i1+1,i1)
transition words that arise in

sj1i1−1w
j1
i1−1 · · ·w

j1
i1−1p

j1
i1−1︸ ︷︷ ︸

length N
[j1]

(i1+1,i1−1)

sj1i1w
j1
i1
· · ·wj1i1 p

j1
i1︸ ︷︷ ︸

length N
[j1]

(i1+1,i1)

sj1−1i1+1w
j1−1
i1+1 · · ·w

j1−1
i1+1p

j1−1
i1+1︸ ︷︷ ︸

length N
[j1]

(i1+1,i1+1)

,

where a word is a transition word if it completely contains the middle block (all
other blocks have length larger than n and so contribute no new words). Thus, in
case (ii),

(31) PX(n) ≤ dn+ 2dδj1n+
(
n−N [j1]

(i1+1,i1)

)
≤ (d+ 1)n+ 2dδj1 .

In case (iii),

(32) n ≥ N [j1]
(i1+1,i2)

> δj1 ·N
[j1]
(i1+1,i2+1) > δj1 ·N

[j1]
(i1+1,i2+2) > · · · > δj1 ·N

[j1]
(i1+1,i1)

and

n < N
[j1]
(i1+1,i2−1) < N

[j1]
(i1+1,i2−2) < · · · < N

[j1]
(i1+1,i1+1)

by (19), (20), (21), and (22). Therefore the only new words of length n that arise

in wj1i1+1w
j1
i1+1 are the transition words that arise in

sj1i2−1w
j1
i2−1 · · ·w

j1
i2−1p

j1
i2−1︸ ︷︷ ︸

length N
[j1]

(i1+1,i2−1)

sj1i2w
j1
i2
· · ·wj1i2 p

j1
i2︸ ︷︷ ︸

length N
[j1]

(i1+1,i2)

· · · sj1i1w
j1
i1
· · ·wj1i1 p

j1
i1︸ ︷︷ ︸

length N
[j1]

(i1+1,i1)

sj1−1i1+1w
j1−1
i1+1 · · ·w

j1−1
i1+1p

j1−1
i1+1︸ ︷︷ ︸

length N
[j1]

(i1+1,i1+1)

.
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That is, this word decomposes into blocks such that the first and last of which have
length larger than n; the transition words are those that fully contain one of the
blocks of length smaller than n. There are at most(

n−N [j1]
(i1+1,i2)

)
+N

[j1]
(i1+1,i2+1) +N

[j1]
(i1+1,i2+2) + · · ·+N

[j1]
(i1+1,i1−1) +N

[j1]
(i1+1,i1)

such blocks. By (32), this is at most n−N [j1]
(i1+1,i2)

+ dδj1n. So in case (iii),

(33) PX(n) ≤ dn+ 2dδj1n+ n−N [j1]
(i1+1,i2)

+ dδj1n ≤ (d+ 1)n+ 3dδj1n.

Finally, in case (iv), the only new words are the transition words that occur in

sj1−1i1+1w
j1−1
i1+1 · · ·w

j1−1
i1+1p

j1−1
i1+1︸ ︷︷ ︸

length N
[j1]

(i1+1,i1+1)

sj1−1i1+2w
j1−1
i1+2 · · ·w

j1−1
i1+2p

j1−1
i1+2︸ ︷︷ ︸

length N
[j1]

(i1+1,i1+2)

· · ·

sj1i1w
j1
i1
· · ·wj1i1 p

j1
i1︸ ︷︷ ︸

length N
[j1]

(i1+1,i1)

sj1−1i1+1w
j1−1
i1+1 · · ·w

j1−1
i1+1p

j1−1
i1+1︸ ︷︷ ︸

length N
[j1]

(i1+1,i1+1)

sj1−1i1+2w
j1−1
i1+2 · · ·w

j1−1
i1+2p

j1−1
i1+2︸ ︷︷ ︸

length N
[j1]

(i1+1,i1+2)

· · ·

sj1i1w
j1
i1
· · ·wj1i1 p

j1
i1︸ ︷︷ ︸

length N
[j1]

(i1+1,i1)

,

where now a word is a transition word if it completely contains any of the blocks of

length smaller than N
[j1]
(i1+1,i1+1). However, by (19), (20), (21), and (22), we have

δj1n ≥ δj1N
[j1]
(i1+1,i1+1) > N

[j1]
(i1+1,k)

for all k ∈ A \ {i1 + 1}, and so there are at most n + dδj1n such words. Thus for
case (iv), we have

(34) PX(n) ≤ dn+ 2dδj1n+ n+ dδj1n = (d+ 1)n+ 3dδj1n.

It follows from (30), (31), (33), and (34) that

lim sup
n→∞

PX(n)

n
≤ d+ 1

and therefore is equal to d+ 1 by Theorem 3.1. �

We end with several constructions showing various senses in which our results
cannot be improved. We first review some standard facts about Sturmain shifts.
A Sturmian shift (Y, σ) is a minimal subshift of {0, 1}Z whose complexity function
satisfies PY (n) = n+ 1 for all n ∈ N. Any Sturmian shift is uniquely ergodic, and
for any α ∈ (0, 1) \Q, there exists a Sturmian shift (Yα, σ) whose unique invariant
probability measure µ satisfies µ([0]) = α. In particular, there are uncountably
many distinct Sturmian shifts.

We first show that the technical condition (that there exists a generic measure
µ and a generic point xµ such that the orbit closure of xµ is not uniquely ergodic)
cannot be dropped from the second statement in Theorem 3.1:

Proposition 5.1. For d ≥ 1, there exists a subshift (X,σ) which has precisely d
ergodic measures, zero nonergodic generic measures, and whose complexity function
satisfies PX(n) = dn + d for all n ∈ N. This subshift has the property that every
x ∈ X is generic for some ergodic measure and the orbit closure of any point is
uniquely ergodic.
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Proof. Fix d ∈ N and fix a Sturmian shift (Y, σ) on the alphabet {0, 1}. Let
A := {01, 11, 02, 12, . . . , 0d, 1d} and for 1 ≤ i ≤ d let Yi ⊂ AZ be the image of (Y, σ)
under the 1-block code that sends 0 7→ 0i and 1 7→ 1i. Let

X :=

d⋃
i=1

Yi ⊂ AZ

and observe that X is closed and σ-invariant. Moreover, we have PX(n) = dn+ d
for all n ∈ N. Each subshift Yi ⊂ X supports a unique ergodic measure and so
there are at least d ergodic measures for (X,σ). Conversely, for each x ∈ X there
exists 1 ≤ i ≤ d such that x ∈ Yi. Since Yi is uniquely ergodic, x is generic for the
(unique) ergodic measure supported on Yi. Thus there can be no other measures
that have a generic point. �

Finally we show that the assumption of linear growth in Theorem 1.1 is optimal,
in the sense that there is no analog of Theorem 1.1 with an assumption of a super-
linear growth rate and conclusion that the set of ergodic measures is finite for all
subshifts whose complexity function grows at most at that rate.

Proposition 5.2. Let (pn)∞n=1 be a sequence of real numbers such that

lim inf
n→∞

pn
n

=∞.

Then there exists a subshift (X,σ) which has infinitely many nonatomic ergodic
measures and is such that for all but finitely many n, we have PX(n) ≤ pn.

Proof. For each n ∈ N, there exists a set Fn ⊂ {0, 1}n such that |Fn| = n+ 1 and
for uncountably many α ∈ (0, 1), we have Ln(Yα) = Fn. For N ≤ n, let XN (Fn)
be the set of words of length N that arise as a subword of a word in Fn. Clearly if
Ln(Yα) = Fn then LN (Yα) = XN (Fn). Let G1 ⊂ {0, 1} be such that for infinitely
many n ∈ N we have G1 = X1(Fn). Inductively, we assume that we have defined
Gi ⊂ {0, 1}i for all 1 ≤ i < j such that

(i) For all 1 ≤ j1 < j2 < j we have Gj1 = Xj1(Gj2);
(ii) There are infinitely many n for which Gj−1 = Xj−1(Fn).

We then choose Gj ⊂ {0, 1}j such that among those n for which Gj−1 = Xj−1(Fn),
there are infinitely many n for which Gj = Xj(Fn). In this way, we obtain an
infinite sequence G1,G2, . . . such that if 1 ≤ j1 < j2, then Gj1 = Xj1(Gj2) and there
are uncountably many α ∈ (0, 1) for which Lj2(Yα) = Gj2 .

For each n ∈ N, set

An := {α ∈ (0, 1) : Ln(Yα) = Gn}.
Then by construction, An is uncountable for all n ∈ N,

A1 ⊇ A2 ⊇ A3 ⊇ · · ·
and for infinitely many n ∈ N we have An 6= An+1. (If not, there exist distinct
α1, α2 ∈ ∩An, and so Ln(Yα1

) = Ln(Yα2
) for all n, contradicting the fact that the

frequency with which the letter 0 occurs as a subword of any word in Ln(Yαi
) tends

to αi for i = 1, 2.)
We now construct the subshift. Find N1 ∈ N such that for all n ≥ N1 we

have pn > 2n + 2. Choose the smallest M1 ≥ N1 for which AM1+1 6= AM1
and

let α1 ∈ AM1
\ AM1+1. Set X1 := Yα1

and observe that PX1
(n) = n + 1 for all

n. Now find N2 ∈ N such that for all n ≥ N2 we have pn > 3n + 3. Find the
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smallest M2 ≥ N2 for which AM2+1 6= AM2
and let α2 ∈ AM2

\ AM2+1. Set X2 :=
Yα1 ∪ Yα2 . Then, by construction, α2 ∈ AM1 and so LM1(Yα2) = LM1(Yα1) but
since α2 ∈ AM2 ⊂ AM1+1 we know that LM1+1(Yα2) 6= LM1+1(Yα1). Consequently
PX2

(n) = n + 1 for all n ≤ M1 and n + 1 < PX2
(n) ≤ 2n + 2 for all n > M1.

Now recursively suppose we have chosen integers M1 < M2 < · · · < Mi such
that for each 1 ≤ k ≤ i we have pn > (k + 1)n + (k + 1) for all n ≥ Mk and
moreover that AMk+1 6= AMk

. Suppose further that we have chosen α1, . . . , αi
such that αk ∈ AMk

\ AMk+1 for each k. Finally suppose Xi := Yα1 ∪ · · · ∪ Yαi .
Then, by construction, we have PXi(n) ≤ kn + k for all n ≤ Mk. Find Ni+1 ∈ N
such that pn > (i + 2)n + (i + 2) for all n ≥ Ni+1 and let Mi+1 be the smallest
integer larger than Ni+1 for which AMi+1

6= AMi+1+1. Let αi+1 ∈ AMi+1
\AMi+1+1.

Define Xi+1 := Yα1
∪ · · · ∪ Yαi

∪ Yαi+1
. Since αi+1 ∈ AMi+1

⊂ AMi
we know

that Lk(Xi) = Lk(Xi+1) for all k ≤ Mi and since αi+1 ∈ AMi+1 we know that
LMi+1(Xi) 6= LMi+1(Xi+1). Consequently, we have PXi+1(n) = PXi(n) for all
n ≤ Mi and PXi+1

(n) ≤ (i + 1)n + (i + 1) for all n > Mi. By construction,
pn > (i + 1)n + (i + 1) for all n ≥ Mi. Therefore our recursive construction
continues for all i ∈ N.

Thus we obtain a sequence of subshifts

X1 ⊂ X2 ⊂ X3 ⊂ · · ·

such that for all i ∈ N and all n ≥ N1, we have PXi
(n) < pn. Setting

X :=

∞⋃
i=1

Xi,

we have that Ln(X) =
⋃∞
i=1 Ln(Xi) for all n ∈ N. Therefore, for all n ≥ N1, the

complexity satisfies PX(n) < pn. On the other hand, for all i ∈ N we have Yαi
⊂ X

and there is an ergodic probability supported on Yαi
. Since Yαi

6= Yαj
for all i 6= j

by construction, X has infinitely many ergodic measures. �
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