
AVERAGING ALONG CUBES

BERNARD HOST AND BRYNA KRA

Abstract. We study the convergence of an average of eight functions, where
the average is taken along cubes whose sizes tend to +∞ and show that this
reduces to proving an ergodic theorem for translations on a 2-step nilsystem.
We derive a combinatorial interpretation for the arithmetic structure inside a
set of integers of positive upper density.

1. Introduction

Nonconventional ergodic averages along arithmetic progressions have been stud-
ied by numerous authors. However, averaging along progressions turns out not to
be the natural setting. Rather, averaging along combinatorial cubes is a more nat-
ural context and here we give a specific example in dimension three. We generalize
our results for higher dimensions in a forthcoming paper [HK02b].

1.1. Background. A subset A of a discrete abelian group G is said to be syndetic
if finitely many translates of A cover G. In particular, if G = Zd, this means
that there exists some L so that A intersects every d-dimensional cube of size L.
Khintchine proved the following result (originally for R actions):

Theorem 1 (Khintchine [K34]). Let (X,B, µ, T ) be an invertible measure-preserving
probability system and let A ∈ B. Then for any ε > 0, the set

{n ∈ Z : µ(A ∩ T nA) ≥ µ(A)2 − ε}
is syndetic.

Bergelson [B00] showed that an analogous result holds for second iteration. More
precisely, Bergelson showed that for any ε > 0, the set of (n, m) ∈ Z2 so that µ

(
A∩

TnA∩Tm(A∩TnA)
)
≥ µ(A)4−ε is syndetic in Z2. Although Khintchine’s Theorem

can be proven without use of an ergodic theorem, such elementary methods do not
seem to suffice for proving higher dimensional results, such as Bergelson’s Theorem.

1.2. Statements of Theorems. We generalize Khintchine’s Theorem to three
dimensions. We show:

Theorem 2. Let (X,B, µ, T ) be an invertible measure-preserving probability system
and let A ∈ B. Then for any ε > 0, the set of (m, n, p) ∈ Z3 so that

µ
(
A∩TmA∩TnA∩Tm+nA∩T pA∩Tm+pA∩Tn+pA∩Tm+n+pA

)
≥ µ(A)8−ε

is syndetic.
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This lower bound is optimal if one only considers bounds dependent on µ(A).
Theorem 2 follows from the following convergence theorems:

Theorem 3. Let (X,B, µ, T ) be an invertible measure-preserving probability system
and let f1, f2, . . . , f7 ∈ L∞(X). Then the average over m ∈ [M, M ′], n ∈ [N, N ′]
and p ∈ [P, P ′] of

(1) f1(T
mx)f2(T

nx)f3(T
m+nx)f4(T

px)f5(T
m+px)f6(T

n+px)f7(T
m+n+px)

converges in L2 as M ′ −M, N ′ −N and P ′ − P tend to +∞.

Theorem 4. Let (X,B, µ, T ) be an invertible measure-preserving probability sys-
tem. For any A ∈ B, the average over m ∈ [M, M ′], n ∈ [N, N ′] and p ∈ [P, P ′]
of

µ
(
A ∩ TmA ∩ TnA ∩ Tm+nA ∩ T pA ∩ Tm+pA ∩ Tn+pA ∩ Tm+n+pA

)

converges to a limit which is greater than or equal to µ(A)8, when M ′−M , N ′−N
and P ′ − P tend to +∞.

We view this as an average taken over the combinatorial cubes (0, m, n, m +
n, p, m + p, n + p, m + n + p).

1.3. Generalization of Khintchine’s Theorem. We now prove Theorem 2, as-
suming Theorems 3 and 4:

Proof of Theorem 2. Let E be the subset of Z3 appearing in Theorem 4. If E is
not syndetic, there exist intervals [Mi, M

′
i), [Ni, N

′
i), [Pi, P

′
i ) with the lengths of the

intervals tending to +∞, such that

E ∩
(
[Mi, M

′
i)× [Ni, N

′
i)× [Pi, P

′
i )
)

= ∅ .

Taking the average along these three-dimensional cubes in Theorem 4, we have a
contradiction. �
1.4. Combinatorial Interpretation. The upper density d of a set A ⊂ N is
defined to be

d(A) = lim sup
N→∞

|A ∩ {1, 2, . . . , N}|
N

.

Using Furstenberg’s correspondence principle [F77], we obtain the following com-
binatorial statement as a corollary of Theorem 2:

Theorem 5. Let A ⊂ Z with d(A) > δ > 0. The set of (m, n, p) ∈ N3 such that

d
(
A ∩ (A + m) ∩ (A + n) ∩ (A + m + n) ∩ (A + p)∩

(A + m + p) ∩ (A + n + p) ∩ (A + m + n + p)
)
≥ δ8

is syndetic.

This theorem is closely related to other combinatorial statements, in particular
Szemerédi’s Theorem. Both theorems are concerned with demonstrating the exis-
tence of some arithmetic structure inside a set of positive upper density. Moreover,
an arithmetic progression of length four can be seen as a cube with m = n = p.
However, the end result is rather different. In our theorem, we have an explicit
lower bound that is optimal, but it is impossible to have any control over the size of
the syndeticity constant. This means that this result does not have a finite version.
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On the other hand, Szemerédi’s Theorem can be expressed in purely finite terms,
but the problem of finding the optimal bound is completely open.

1.5. Outline of the paper. In order to prove a convergence result, we find a
factor of the system that controls the limit behavior and then prove convergence
for this factor. In the terminology of Furstenberg and Weiss [FW96], this factor is
known as a characteristic factor.

For Bergelson’s Theorem, the factor used is the classical Kronecker factor. How-
ever, for convergence of a three-dimensional combinatorial cube, we need the more
complicated and less classical Conze-Lesigne algebra.

In Section 2, we start by introducing the background needed on 2-step nilmani-
folds. In Sections 3 and 4, we present a construction of the Conze-Lesigne algebra
using several measures on certain Cartesian powers of the system. One of the most
important properties of the Conze-Lesigne algebra is that it can be represented as
an inverse limit of 2-step nilmanifolds and we outline how this result is obtained.

Along the way, we have the tools needed to prove Bergelson’s Theorem and
we do so in Section 5. The three-dimensional convergence requires more work, as
it relies on an L2 convergence theorem for seven terms and a weak convergence
theorem for eight terms. In Section 6, we prove a convergence theorem for the
integral of seven terms. In Section 7, we show that the Conze-Lesigne algebra is a
characteristic factor for eight terms and thus reduce the convergence for a three-
dimensional combinatorial cube to a problem of convergence in a 2-step nilmanifold.
We conclude by proving this convergence in Section 8.

1.6. Notation and conventions. By ergodic decomposition, it suffices to prove
the results for ergodic dynamical systems. Throughout, we assume that (X,X , µ, T )
is an ergodic dynamical system.

1.6.1. Ergodic systems. We generally omit the σ-algebra from our notation: the
system is written (X, µ, T ) and we assume implicitly that all sets and functions
that we write are measurable. When needed, the σ-algebra of (X, µ, T ) is written
X . Each Cartesian power of X is endowed with the product σ-algebra.

In a slight abuse of vocabulary, we use the word factor with two different mean-
ings. First we call a factor any T -invariant sub-σ-algebra Z of X . For f ∈ L1(µ),
we write E(f | Z) for the conditional expectation relative to the measure µ. On
the other hand, if (Y, ν, S) is an ergodic system and p : X → Y is a measurable
map with S ◦ p = p ◦ T that maps µ to ν, then we say that (Y, ν, S) is a factor
of (X, µ, T ) with factor map p. The σ-algebra p−1(Y) is then a factor and every
factor can be built in this way. For f ∈ L1(µ), we write E(f | Y ) for the function
on Y defined by

E
(
f | p−1(Y)

)
= E(f | Y ) ◦ p .

We often identify the σ-algebras Y and p−1(Y), writing E(f | Y ) instead of E(f |
p−1(Y)).

1.6.2. Cartesian products and binary indexing. We consider Cartesian products,
X2, X4, X7, and X8 of some space X and so we introduce some notation to
shorten the expressions.

When T is a transformation of X , we write Tk for T × T × . . .× T (k times). In
particular, Idk is the identity on Xk.



4 BERNARD HOST AND BRYNA KRA

Let E = {0, 1}3. When ε ∈ E appears as a subscript, we write it without
parentheses and without commas. For a point in X8, we write x = (xε; ε ∈ E).
Given eight functions fε, ε ∈ E, on X , we write

⊗
ε∈E fε for the function x 7→∏

ε∈E
fε(xε) on X8.

We also use the notation E∗ = {0, 1}3 \ {(0, 0, 0)}, D = {0, 1}2 and D∗ =
D \ {(0, 0)} with the same conventions as in E for points of X7, X4 and X3 and
for functions on these spaces.

For n = (n1, n2, n3) ∈ Z3 and ε = (ε1, ε2, ε3) ∈ E we write n · ε = ε1n1 + ε2n2 +
ε3n3. We use analogous notations for n · η when n ∈ Z2 and η ∈ D.

For ε ∈ E, we write σ(ε) = (−1)ε1+ε2+ε3 .
With this notation, the average of the set in Theorem 2 becomes

{
n ∈ Z3 : µ

(⋂

ε∈E
Tn·εA

)
≥ µ(A)8 − ε

}
.

To remain in the realm of only relatively disagreeable notations, we restrict
ourselves to real-valued functions, except when explicitly noted. All the theorems
can be easily extended to apply to complex-valued functions.

2. 2-step nilsystems

None of the results in this section is new, but some of them have been rephrased
for use in our set up. We do not include any proofs and refer to Malcev [Ma],
Auslander, Green and Hahn [AGH63], Parry ( [P69], [P70]), Lesigne ( [L89], [L91])
and Leibman [Le02] for references.

The notation introduced here is used throughout the sequel.

2.1. 2-step nilmanifolds. A group G is said to be 2-step nilpotent if its commuta-
tor subgroup [G, G] is included in its center. Throughout this section, G is a 2-step
nilpotent Lie group. We let U denote the commutator subgroup of G.

Let Λ be a discrete, cocompact subgroup of G. We call the compact manifold
X = G/Λ a 2-step nilmanifold. We use (see Malcev [Ma]) :

• The subgroups U and UΛ are closed in G and are Lie subgroups of G.

The group G acts on X by left translation and we write this action as (g, x) 7→ g·x
or x 7→ Tgx. For u ∈ U , the left translation Tu by u is called a vertical translation.

There exists a unique probability measure on X that is invariant under the action
of G, called the Haar measure of X . We denote it by µ.

2.2. 2-step nilsystems. We maintain the notation of the previous section. Let
α be a fixed element of G and T = Tα. The topological system (X, T ) is called
a topological 2-step nilsystem and the system (X, µ, T ) a 2-step nilsystem or a
translation on a nilmanifold.

In the remainder of this Section, (X, µ, T ) is a 2-step nilsystem and G, Λ, α are
as above. X can be represented as a nilmanifold in several ways and we reduce to
a particular representation.

Assume first that (X, µ, T ) is ergodic. Let G0 be the connected component of the
identity in G, G′ the subgroup of G spanned by G0 and α and Λ′ = G′ ∩ Λ. Then
G′ is open in G and Λ′ is a discrete cocompact subgroup of G′. By ergodicity, the
projection of G′ on X is onto and thus we can identify X with G′/Λ′. Therefore,
for an ergodic 2-step nilsystem we can assume:
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(H1) G is spanned by the connected component of the identity and α.

The second reduction is possible for arbitrary 2-step nilsystems. Let Λ′′ be the
largest normal subgroup of G contained in Λ. By substituting G/Λ′′ for G and
Λ/Λ′′ for Λ, we can assume that

(H2) Λ does not contain any nontrivial normal subgroup of G.

We notice that if property (H1) was satisfied in the initial representation of X , then
it is also satisfied in the new one. Thus for any ergodic 2-step nilsystem we can
assume that properties (H1) and (H2) are satisfied.

Property (H2) means that the group G acts faithfully on X . That is, the unique
g ∈ G with g · x = x for every x is the identity element. This implies that Λ ∩ U
is the trivial group and it follows that U is compact. It can be shown that U is
connected and thus is a finite-dimensional torus. Moreover Λ is abelian.

Let us assume that the two properties (H1) and (H2) are satisfied. We fix some
more notation. Let λ denote the Haar measure of U , π be the natural projection
of X = G/Λ on the compact abelian group K = G/ΛU , m be the Haar measure of
K, q : G → K be the natural projection, β = q(α) and let R denote the rotation
by β on K.

The action of U on X commutes with the transformation T . Furthermore, this
action is free, meaning that for x ∈ X and u ∈ U , if u · x = x then u is the
identity element 1 of U . The quotient of X under this action is K. Thus the
topological dynamical system (X, T ) is distal in the sense of Furstenberg [F63].
This observation leads to the following result:

Proposition 6 (Parry [P69]). If (X, µ, T ) is ergodic, then (X, T ) is uniquely er-
godic and minimal.

Unique ergodicity means that µ is the unique measure invariant under T . Mini-
mality means that X does not admit any nonempty closed, invariant proper subset
for this transformation.

The next result is also due to Parry:

Proposition 7 (Parry [P69]). Assume that property (H1) is satisfied.

(a) (X, µ, T ) is ergodic if and only if the rotation (K, m, R) is ergodic.
(b) In this case, the Kronecker factor (see Section 3) of (X, µ, T ) is (K, m, R),

with factor map π : X → K.

2.3. Several commuting transformations. We also need to consider the case
of a Zk-action spanned by k commuting elements of the group. Proposition 6 and
the first part of Proposition 7 generalize in this case.

Proposition 8 (Parry [P69], Leibman [Le02]). Let X = G/Λ be a nilmanifold with
Haar measure µ and let α1, . . . , αk be commuting elements of G. Assume that

(H3) G is spanned by the connected component of the identity and α1, . . . , αk.

Then

(a) The joint action of Tα1 , . . . , Tαk on X is ergodic if and only if the action
induced on K = G/ΛU is ergodic.

(b) In this case, X is uniquely ergodic and minimal for this action.

Finally we make use of a general convergence result of Leibman.
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Theorem 9 (Leibman [Le02]). Let X = G/Λ be a nilmanifold and assume that
α1, . . . , αk are commuting elements of G. Then for any continuous function f on
X, the average over n1 ∈ [M1, N1], n2 ∈ [M2, N2], . . . , nk ∈ [Mk, Nk] of

f(Tn1
α1

Tn2
α2

. . . Tnkαk x)

converges for all x ∈ X when N1 −M1, N2 −M2, . . . , Nk −Mk tend to +∞.

The next Proposition says that the Theorem 3 holds for 2-step nilsystems; it
follows easily from Theorem 9.

Proposition 10. Let (X, µ, T ) be a 2-step ergodic nilsystem and let fε, ε ∈ E∗,
be seven bounded functions on X. Then the averages over n = (n1, n2, n3) ∈
[M1, N1]× [M2, N2]× [M3, N3] of

(2)
∏

ε∈E∗
fε(T

n·εx)

converge in L2(µ) when N1 −M1, N2 −M2 and N3 −M3 tend to +∞.

Proof. We assume first that the functions fε are continuous on X . X7 can be given
the structure of a nilmanifold, as the quotient of the 2-step nilpotent Lie group
G7 by the discrete cocompact subgroup Λ7. Let α7,1, α7,2 and α7,3 be the three
elements of G7 defined by:

α7,1 = (α, 1, α, 1, α, 1, α) ; α7,2 = (1, α, α, 1, 1, α, α) ; α7,3 = (1, 1, 1, α, α, α, α) .

These elements clearly commute. The translations by these elements are the trans-
formations

T7,1 = T × Id×T × Id×T × Id×T ; T7,2 = Id×T × T × Id× Id×T × T

and T7,3 = Id× Id× Id×T × T × T × T

of X7. Let F be the continuous function on X7

F (x̃) =
∏

ε∈E∗
fε(xε) .

For every n = (n1, n2, n3) ∈ Z3 and x ∈ X , writing x̃ = (x, x, x, x, x, x, x) ∈ X7,
we have ∏

ε∈E∗
fε(T

n·εx) = F
(
Tn1

7,1T
n2
7,2T

n3
7,3x̃

)
.

By using Theorem 9 at the point x̃ for the continuous function F , we have that the
average of the functions (2) converges at the point x. The convergence in L2(µ)
follows.

The general case of bounded functions follows from the density of continuous
functions in L2(µ). �

As this Proposition is crucial, in order to make this paper a bit more self-
contained, in Section 8 we sketch a direct proof of the particular case of Theorem 9
used in its proof.

3. The Kronecker factor

Throughout, we assume that (X, µ, T ) is an ergodic system.
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3.1. Several constructions of the Kronecker factor. The Kronecker factor
of (X, µ, T ) can be defined in several equivalent ways; we present two classical
methods and some others better adapted for explaining the construction of the
Conze-Lesigne algebra.
(A) Define

K to be the sub-σ-algebra of X spanned by the eigenfunctions of
(X, µ, T ).

By definition, K is a factor and thus there is an associated factor map π : (X, µ, T )→
(K, m, R). The system (K, m, R) is called the Kronecker factor of X . From this
definition, it is classical to deduce that K can be given the structure of a compact
abelian group endowed with Haar measure m and that the transformation R is a
rotation, meaning that R(z) = βz for some fixed element β of K.
(B) Let I2 be the σ-algebra of T2-invariant subsets of X×X . Every set A belonging
to this σ-algebra is equal up to a set of µ× µ-measure 0 to a set of the form

{
(x, y) ∈ X ×X : π(y)π(x)−1 ∈ B

}

for some B ⊂ K. It follows that:

• K is the smallest sub-σ-algebra of X so that every set of I2 is measurable
with respect to K ⊗K.

(C) Before giving other characterizations of the Kronecker factor, we introduce
some objects defined in [HK02b] that we use throughout the sequel.

Define the measure µ4 on X4 to be the relatively independent self-joining of
µ× µ over I2. This means that µ4 is the probability measure on X4 defined by

(3)∫

X4

f00⊗f01⊗f10⊗f11 dµ4 =

∫

X2

E(f00⊗f01 | I2) ·E(f10⊗f11 | I2) d(µ×µ) ,

for f00, f01, f10, f11 ∈ L∞(µ). Note that µ4 is invariant under the transformation
T4 = T × T × T × T .

From this definition and characterization (B) of the Kronecker factor we deduce
another characterization of the Kronecker factor:

• The measure µ4 is relatively independent with respect to K4 and the factor
K of X is minimal with this property.

This means that the integral (3) remains unchanged if E(fε | K) is substituted for
fε for each ε ∈ D and that the factor K is the smallest one with this property.

Define K4 to be the closed subgroup

K4 :=
{
(z, sz, tz, stz) : z, s, t ∈ K

}

of K4, let m4 its Haar measure and let π4 = π × π × π × π : X4 → K4.

• When gε, ε ∈ D, are four bounded functions on K,
∫

X4

(g00 ◦ π)⊗ (g01 ◦ π)⊗ (g10 ◦ π)⊗ (g11 ◦ π) dµ4 =

∫

K4

g00 ⊗ g01 ⊗ g10 ⊗ g11 dm4 .

This formula is easy to check using the definition (3) of µ4 when the functions gε are
characters of K. The general case follows by density. From the last two properties
we deduce:

• m4 is the image of µ4 on K4 under π4.
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• When fε, ε ∈ D, are four bounded functions on X,

(4)

∫

X4

f00 ⊗ f01 ⊗ f10 ⊗ f11 dµ4 =

∫

K4

E(f00 | K) ⊗ E(f01 | K) ⊗ E(f10 | K) ⊗ E(f11 | K) dm4 .

We identify K4 with K × K3 and X4 with X × X3 in the natural way. Note
that the projection of m4 on K3 is equal to m × m × m. Since µ4 is relatively
independent with respect to K4, we deduce:

• The projection of µ4 on X3 is µ× µ× µ.

Let ψ : K3 → K be defined by ψ(z01, z10, z11) = z01z10z
−1
11 . Then if (z00, z01, z10,

z11) ∈ K4, we have that z00 = ψ(z01, z10, z11) and this relation holds m4-almost
everywhere. Since m4 is the projection of µ4 on K4, we have that for any function
f on X measurable with respect to K there exists a function F on X3 with

(5) f(x00) = F (x01, x10, x11) for µ4-almost every x = (x00, x01, x10, x11) ∈ X4.

Furthermore, F is measurable with respect to K3 := K ⊗K ⊗K.
Conversely, if f is a bounded function on X and F is a bounded function on X3

satisfying Equation (5), we have

‖f‖2L2(µ) =

∫

X4

f(x00)F (x01, x10, x11) dµ4(x)

=

∫

X4

E(f | K)(x00)F (x01, x10, x11) dµ4(x) =

∫

X

E(f | K)(x)f(x) dµ(x)

and it follows that f is measurable with respect to K. We summarize:

• A subset A of X is measurable with respect to K if and only if there exists
a subset B of X3 such that A × X3 = X × B up to a set of µ4-measure
zero.

This characterization of the Kronecker factor serves as a model for the characteri-
zation of the Conze-Lesigne algebra.

3.2. More properties of the measure µ4. We establish a few more results about
the measure µ4 which were not needed in the preceding discussion but are used in
the sequel.

The rotations R4,1 := Id×R× Id×R and R4,2 := Id× Id×R×R of K4 clearly
leave the subgroup K4 invariant and thus also leave the Haar measure m4 invariant.
Since µ4 is relatively independent with respect to m4, we have:

• The measure µ4 is invariant under the transformations

T4,1 = Id×T × Id×T and T4,2 = Id× Id×T × T .

From the symmetries of the group K4, in a similar way we can show:

• The measure µ4 is invariant under the group of isometries of the unit
Euclidean square, acting on X4 by permutation of the coordinates.

From the definition (3) of µ4, we have that for any bounded function f on X
∫

X4

f ⊗ f ⊗ f ⊗ f dµ4 =

∫

X2

(
E(f ⊗ f | I2)

)2
d(µ× µ)(6)

≥
(∫

X2

E(f ⊗ f | I2) d(µ× µ)
)2

=
(∫

f dµ
)4

.
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By using this inequality with f = 1A, we deduce:

Lemma 11. For any subset A of X, µ4(A×A×A×A) ≥ µ(A)4.

For f ∈ L∞(µ) the integral (6) is non-negative and we can define

(7) |||f |||4 :=
(∫

X4

f ⊗ f ⊗ f ⊗ f dµ4

)1/4

.

By using formula (4) for µ4 and the definition of K4, we have:

• For f ∈ L∞(µ), |||f |||4 is the `4-norm of the Fourier transform of the func-
tion E(f | K):

|||f |||4 =
(∑

γ∈K̂

∣∣ ̂E(f | K)(γ)
∣∣4
)1/4

.

In particular ||| · |||4 is a semi-norm on L∞(µ).

Furthermore, for g ∈ L∞(µ) we have |||g|||4 = 0 if and only if E(g | K) = 0 and
we deduce another characterization of the Kronecker factor:

• A function f ∈ L2(µ) is measurable with respect to K if and only if it is
orthogonal in L2(µ) to every g ∈ L∞(µ) with |||g|||4 = 0.

Let I4 be the invariant σ-algebra of (X4, µ4, T4). This σ-algebra plays a central
role in the definition of the Conze-Lesigne algebra and is also used in the proof
of convergence. We use two operators of conditional expectation on L2(µ4): the
conditional expectation on the σ-algebra I4 and the conditional expectation on the
σ-algebra K4 := K ⊗K ⊗K ⊗K. These two operators commute.

Lemma 12. Let fη ∈ L∞(µ) for η ∈ D.

(a) If fγ is measurable with respect to K for some γ ∈ D, then E
(⊗

η∈D
fη | I4

)

is measurable with respect to K4.

(b) If E(fδ | K) = 0 for some δ ∈ D, then E
(
E
(⊗

η∈D
fη | I4

)
| K4

)
= 0.

(c) If the conditions in both (a) and (b) are satisfied, then E
(⊗

η∈D
fη | I4

)
= 0.

Proof. (a) Since each of the four coordinates plays the same role in this proof, we
can assume without loss of generality that γ = (0, 0). Since f00 is measurable with
respect to K we have noticed in Section 3 that there exists a function F on X3,
measurable with respect to K3, so that

f00(x00) = F (x01, x10, x11) µ4-a.e.

and we have that
∏

η∈D
fη(xη) = F (x01, x10, x11)

∏

η∈D∗
fη(xη) µ4-a.e. .

As noted, the 3 dimensional marginal of µ4 is µ × µ× µ and it is classical that
the T3-invariant sets of (X3, µ × µ × µ) are measurable with respect to K3. Thus

E
(⊗

η∈D
fη | I4

)
is measurable with respect to K4.
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(b) As the measure µ4 is relatively independent with respect to m4, the hy-

pothesis implies that E
(⊗

η∈D fη | K4
)

= 0. Since the conditional expectations

commute, the result follows immediately.
(c) This follows immediately from parts (a) and (b). �

4. The Conze-Lesigne algebra

The Conze-Lesigne algebra (or Conze-Lesigne factor) of an ergodic system (X, µ,
T ) was introduced by Conze and Lesigne in a series of papers ( [CL84], [CL87], [CL88]).
Equivalent constructions were given later by Rudolph in [R95], where the term
“Conze-Lesigne algebra” was first used, and by the authors in [HK01]. In [HK02b],
this σ-algebra appears as the second level in an increasing sequence of factors of X .
For differing reasons, none of these constructions is easy to read. The definition in
the papers by Conze and Lesigne is not explicit and is spread over several papers
(the first ones contained a mistake that is corrected in the later ones); the paper
by Rudolph is very technical and [HK02b] deals with a more general setting. We
recall here the definitions, omitting some proofs and sketching some others. Unfor-
tunately, a completely self-contained paper would be too lengthy and technical.

4.1. A measure on X8. As for the Kronecker factor, the Conze-Lesigne algebra
can be defined in several different ways. We give the construction of [HK02b], ex-
plaining along the way the relation between this point of view and the presentations
of Conze and Lesigne ( [CL84], [CL87], [CL88]) and Rudolph [R95].

Recall that I4 is the invariant σ-algebra of (X4, µ4, T4). Define the measure
µ8 on X8 to be the relatively independent self-joining of µ4 over I4. This means
that µ8 is the probability measure on X8 so that if fε, ε ∈ E, are eight bounded
functions on X , then

(8)

∫

X8

⊗

ε∈E
fε dµ8 =

∫

X4

E
(⊗

ε∈E
ε1=0

fε | I4

)
E
(⊗

ε∈E
ε1=1

fε | I4

)
dµ4

for f00, f01, f10, f11 ∈ L∞(µ). Note that these conditional expectations are relative
to the measure µ4 on X4.

The measure µ8 is invariant under the transformation T8 = T×· · ·×T (8 times).
We use two properties of µ8 established in [HK02b]:
• The measure µ8 is invariant under the transformations

T8,1 = Id×T × Id×T × Id×T × Id×T ; T8,2 = Id× Id×T × T × Id× Id×T × T

and T8,3 = Id× Id× Id× Id×T × T × T × T .

• The measure µ8 is invariant under the group of isometries of the Euclidean
cube, acting on X8 by permutation of the coordinates.

4.2. Definition of the Conze-Lesigne algebra. We identify X8 with X ×X7.
For a subset A of X , the subset A×X7 of X8 is invariant under the transformations
T8,1, T8,2 and T8,3. One can show that the converse also holds. We have:
• The σ-algebra of subsets of X8 invariant under the transformations T8,1, T8,2

and T8,3 coincides up to µ8-null sets with the σ-algebra of sets of the form A×X7

for A ⊂ X.
It follows immediately that
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• µ8 is ergodic under the joint action spanned by T8, T8,1, T8,2 and T8,3.
We need a bit more notation. Write a point x of X8 as x = (x000, x̃) with

x000 ∈ X and x̃ = (xε : ε ∈ E∗) ∈ X7. Let X7 be endowed with the measure
µ7, the projection of µ8 on X7 and with the transformations T7,1, T7,2 and T7,3,
induced on X7 by the transformations T8,1, T8,2 and T8,3, respectively. Let J7 be
the σ-algebra of subsets of X7 invariant under these three transformations.

We are now ready to define the Conze-Lesigne algebra. Let B be a subset of
X7. If B is measurable with respect to J7, then X × B is invariant under the
transformations T8,1, T8,2 and T8,3 and there exists a subset A of X with X ×B =
A × X7 up to a set of µ8-measure zero. Conversely, this property clearly implies
that B is measurable with respect to J7. We have:

Lemma 13. Let X7 be endowed with the measure µ7. A subset B of X7 is mea-
surable with respect to J7 if and only if there exists a subset A of X so that
X ×B = A×X7 up to a set of µ8-measure zero.

This property can be rewritten as:

(9) 1A(x000) = 1B(x̃) for µ8-almost every x ∈ X8 .

This motivates the following definition.

Definition 1. The Conze-Lesigne algebra CL of (X, µ, T ) is the σ-algebra of subsets
A of X such that there exists a subset B of X7 for which X × B = A ×X7 up to
a set of µ8-measure zero. (Equivalently, this is the σ-algebra of subsets of X such
that relation (9) is satisfied.)

CL is clearly invariant under T and thus is a factor of X . By the preceding
remarks and the symmetries of the measure µ8, we have:

Lemma 14. For a bounded function f on X, the following are equivalent:

(a) E(f | CL) = 0.

(b)

∫

X8

f(x000)g(x̃) = 0 for every bounded function g on X7.

Furthermore, the measure µ8 is relatively independent with respect to its projection
on CL8, meaning that the integral (8) is unchanged when each function is replaced
by its conditional expectation on CL. Moreover, CL is the smallest factor of X with
this property.

Similar to the Kronecker factor, the Conze-Lesigne algebra has good behav-
ior with respect to factors. More precisely, if q : X → Y is a factor map, then
q−1(CL(Y )) = CL(X)∩q−1(Y), where by CL(X) (respectively, CL(Y )), we mean the
the Conze-Lesigne algebra of X (respectively, of Y ).

Definition 2. We write p : X → CL for the corresponding factor map and we call
CL the Conze-Lesigne factor of X . An ergodic system is a Conze-Lesigne system
if it is equal to its Conze-Lesigne factor.

In particular, this means that the Conze-Lesigne factor of any ergodic system is
a Conze-Lesigne system.

4.3. Invariant functions on X × X and the Conze-Lesigne equation. By
Lemma 14 and the functorial property of Conze-Lesigne algebras, it can be shown
that:
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Lemma 15. The σ-algebra I4 is measurable with respect to CL⊗CL⊗CL⊗CL and
CL is the smallest factor of X with this property.

This characterization of the Conze-Lesigne algebra can be viewed as a reformula-
tion in the vocabulary of [HK02b] of the initial construction of Conze and Lesigne.
For the remainder of this section, we essentially follow in their footsteps.

Since the measure µ4 is defined as a relatively independent joining, Lemma 15
allows us to use the machinery of isometric extensions developed by Furstenberg
in [F63]. Careful analysis leads to the following description of a Conze-Lesigne
system and thus of the Conze-Lesigne factor for any ergodic system:

Lemma 16. Let (X, µ, T ) be a Conze-Lesigne system and let (K, m, R) be its Kro-
necker factor. Then X is an extension of K by a compact connected abelian group
U . Furthermore, for the cocycle ρ : K → U defining this extension, there exists a
map F : K4 → U so that
(10)

ρ(z00)ρ(z01)
−1ρ(z10)

−1ρ(z11) = F (Rz00, Rz01, Rz10, Rz11) F (z00, z01, z10, z11)
−1

for m4-a.e. (z00, z01, z10, z11) ∈ K4.

The first part of the Lemma means that X can be identified with K×U , endowed
with the product of m and the Haar measure of U , and the transformation T is given
by T (z, u) =

(
Rz, uρ(z)

)
. Another way to rephrase the second part of the Lemma

is by saying that the mapping on the left side of Equation (10) is a coboundary of
the system (K4, m4, R4).

The second part of this Lemma has an important consequence when U is a
finite-dimensional torus:

Proposition 17. Let (X, µ, T ) be a Conze-Lesigne system and assume that it is an
extension of its Kronecker factor (K, m, R) by a finite-dimensional torus U . Then
the cocycle ρ : K → U defining this extension satisfies the Conze-Lesigne equation:

For every s ∈ K, there exists a map f : K → U and a constant
c ∈ U so that

(CL) ρ(sz) ρ(z)−1 = f(Rz) f(z)−1 c .

The Equation (CL) is known as the Conze-Lesigne equation.

4.4. Rudolph’s approach. The construction of the Conze-Lesigne algebra in [R95]
is closely related to the preceding one. It uses the eigenfunctions of the Cartesian
square of X . As this system is in general not ergodic, this notion needs an explicit
definition.

Definition 3. An eigenfunction of (X ×X, µ× µ, T × T ) is a non-zero complex-
valued function f on X×X such that there exists a complex-valued T×T -invariant
function φ with

(11) f(Tx0, Tx1) = f(x0, x1) φ(x0, x1) µ× µ-a.e.

Let f and φ be as in the definition. The set E = {(x0, x1) ∈ X×X : f(x0, x1) 6=
0} is invariant under T × T . By the Poincaré Recurrence Theorem, |φ| = 1 almost
everywhere on E. We can obviously assume that φ = 0 on the complement of E.
The function f ⊗ f̄ , defined on X4 by

f ⊗ f̄(x00, x01, x10, x11) = f(x00, x01) f(x10, x11)
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is invariant under T4. Therefore it is measurable with respect to CL⊗CL⊗CL⊗CL,
for the measure µ4. It follows that f is measurable with respect to CL.

Conversely, Rudolph shows (translated into our vocabulary) that the T4-invariant
subspace of L2(µ4) is spanned by finite sums of functions of the type f ⊗ f̄ , where
f is a bounded eigenfunction. This leads to another characterization of the Conze-
Lesigne algebra:

Every eigenfunction of (X ×X, µ × µ, T × T ) is measurable with
respect to CL ⊗ CL and CL is the smallest factor of X with this
property.

4.5. Conze-Lesigne systems and 2-step nilsystems. It can be shown (and it
can be deduced from the discussion in Section 8) that any ergodic 2-step nilsystem
is a Conze-Lesigne system. However, this result is not needed in this paper. We
use a sort of converse in a fundamental way:

Theorem 18. Every Conze-Lesigne system is the inverse limit of a sequence of
2-step nilsystems.

This result was originally proven by Conze and Lesigne ( [CL84], [CL87], [CL88]);
other proofs can be found in Rudolph [R95] and in [HK02b]. We do not give a
complete proof, but we outline the main steps, starting with the Conze-Lesigne
equation.

Let (X, µ, T ) be a Conze-Lesigne system and let K, U and ρ be as in Lemma 16.
Since U is a connected compact abelian group, it can be represented as an inverse
limit of a sequence of finite-dimensional tori. This means that there exists a de-
creasing sequence {Vi} of closed subgroups of U , with trivial intersection, such that
Ui = U/Vi is a finite-dimensional torus for every i.

For each i, let ρi : K → Ui be the reduction of ρ modulo Vi and let Yi be the
extension of K by Ui associated to the cocycle ρi. For each i, Yi is a factor of X and
thus is a Conze-Lesigne system. Furthermore, X is the inverse limit of the sequence
{Yi}. Therefore it suffices to prove Theorem 18 under the additional hypothesis
that U is a finite-dimensional torus. We henceforth assume that this hypothesis
holds.

The compact abelian group K can be represented as an inverse limit of a sequence
{Kj} of compact abelian Lie groups. By using Proposition 17, it can be shown
that ρ is cohomologous to some cocycle ρ′ which factorizes through Kj0 for some
j0. Therefore, for j ≥ j0, ρ′ factorizes through Kj and we can define Xj as the
extension of Kj associated to this cocycle. Clearly X is the inverse limit of the
sequence {Xj : j ≥ j0}. We conclude that it suffices to restrict to the case that K
is a compact abelian Lie group. Henceforth we assume that this hypothesis also
holds.

Let G be the family of transformations g of X = K × U of the form

g(z, u) =
(
sz, uf(z)

)

where s and f satisfy Equation (CL) for some constant c ∈ U .
It is easy to check that G is a group under composition and that it 2-step

nilpotent. Note that β and ρ satisfy the Equation (CL) with constant 1 and so the
transformation T of X belongs to the group G.
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Let this group of transformations of X be endowed with the topology of conver-
gence in probability. This makes it a locally compact group. By using the classical
characterization [MZ55] of Lie groups, we have that G is actually a Lie group.

The group G acts on X transitively; this is just a reformulation of Proposition 17.
As is easily checked, the stabilizer of an arbitrary point x0 of X is a discrete
cocompact subgroup Λ of G and thus we can identify G with the nilmanifold G/Λ.
Moreover, µ is the Haar measure of X and T is translation by the element (β, ρ) of
G, where β is the element of K defining the rotation R : K → K. Thus, we have
an identification of X with a 2-step nilsystem. Moreover, µ is the Haar measure of
X and T acts on X by translation.

4.6. More about the measure µ8. In the sequel we need a few more properties of
the measures µ8 and µ7 introduced in Section 4 but which were not needed for the
construction of the Conze-Lesigne algebra. These properties are used in Sections 6
and 7.1.

4.7. A seminorm on L∞(µ). By the definition (8) of µ8, for f ∈ L∞(µ) we have

∫

X8

f ⊗ · · · ⊗ f dµ8 =

∫

X4

(
E(f ⊗ f ⊗ f ⊗ f | I4)

)2
dµ4(12)

≥
(∫

X4

f ⊗ f ⊗ f ⊗ f dµ4

)2

= |||f |||84 .

Applying this inequality with f = 1A and using Lemma 11, we have

Lemma 19. For any subset A of X,

µ8(A×A×A×A×A×A×A×A) ≥ µ(A)8 .

Furthermore, the integral in (12) is non-negative and we can define:

(13) |||f |||8 :=
(∫

X8

f ⊗ · · · ⊗ f dµ8

)1/8

.

By using the Cauchy-Schwarz inequality three times and the symmetries of the
measure µ8, we have that for eight bounded functions fε, ε ∈ E, on X ,

(14)
∣∣∣
∫

X8

⊗

ε∈E
fε dµ8

∣∣∣ ≤
∏

ε∈E
|||fε|||8 .

From these inequalities it follows that

• ||| · |||8 is subadditive and thus is a seminorm on L∞(µ).

Let f be a bounded function on X . If E(f | CL) = 0 we have |||f |||8 = 0 by defini-
tion of the seminorm and Lemma 14. Conversely, if |||f |||8 = 0, by the inequality (14)
we have that

∫
X8

f(x000)g(x̃) dµ8(x) = 0 for any bounded function g on X7 and it

follows from Lemma 14 that E(f | CL) = 0. This gives another characterization of
the Conze-Lesigne algebra:

Lemma 20. For f ∈ L∞(µ) we have E(f | CL) = 0 if and only if |||f |||8 = 0.
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4.8. The measure µ7 on X7. Recall that µ7 is the projection of µ8 on X7.

Lemma 21. The measure µ7 is relatively independent with respect to K7.

This means that when fε, ε ∈ E∗, are seven bounded functions on X , the integral

(15)

∫

X7

⊗

ε∈E∗
fε dµ7

is unchanged when each of the functions fε is replaced by its conditional expectation
with respect to K.

Proof. Let fε ∈ L∞(µ) for ε ∈ E∗ and assume that there exists η ∈ E∗ with
E(fη | K) = 0. We have to show that integral (15) is 0. Define f000 = 1. By
definition of µ7 and µ8, this integral equals

∫
E
(⊗

ε∈E
ε1=0

fε | I2

)
E
(⊗

ε∈E
ε1=1

fε | I2

)
dµ4 =

∫
F1 F2 dµ4 .

Assume first that η1 = 0 and consider the first conditional expectation F1. Since
f000 is measurable with respect to K and E(fη | K) = 0, by Lemma 20, F1 = 0 and
the integral above equals 0.

Now assume that η1 = 1. Since f000 is measurable with respect to K, by part
(a) of Lemma 12, F1 is measurable with respect to K4. Since E(fη | K) = 0, by
part (b) of the same Lemma we have that E(F2 | K4) = 0 and so the integral is
also 0. �

Recall that J7 is the σ-algebra on X7 consisting of sets that are invariant under
T7,1, T7,2 and T7,3.

Corollary 22. Let X7 be endowed with the measure µ7. Then J7 is measurable
with respect to CL7.

Proof. Since CL7 is invariant under T7,1, T7,2 and T7,3, the conditional expectations
on CL7 and on J7 commute. Therefore it suffices to prove that the unique f ∈
L2(µ7) measurable with respect to J7 with E(f | CL7) = 0 is the zero function.

Let f be a function with this property. By Lemma 13 there exists a function g
on X such that f(x000) = g(x̃) for µ8-almost every x = (x000, x̃) ∈ X8. This gives:

∫

X7

f2 dµ7 =

∫

X8

g(x000)f(x̃) dµ8(x) .

By Lemma 14, the measure µ8 is relatively independent with respect to CL8. Since
E(f | CL7) = 0, the conditional expectation on CL8 of the function in the last
integral is 0 and thus the integral is also equal to 0. �

Corollary 23. Let X7 be endowed with the measure µ7. Let fε, ε ∈ E∗, be seven
bounded functions on X and assume that for some η ∈ E∗ we have E(fη | CL) = 0.
Then E(

⊗
ε∈E∗ fε | J7) = 0.

Proof. Let gε, ε ∈ E∗, be seven bounded functions on X , measurable with respect
to CL. By Lemma 21,

∫

X7

⊗

ε∈E∗
fε ·

⊗

ε∈E∗
gε dµ7 =

∫

X7

⊗

ε∈E∗
E(fεgε | K) dµ7 .
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We have E(fηgη | CL) = 0 for some η ∈ E∗. Thus E(fηgη | K) = 0 and the last
integral is 0.

This show that
E(
⊗

ε∈E∗
fε | CL7) = 0

and the statement follows from Corollary 22. �

5. Bergelson’s Theorem

We now prove Bergelson’s two-dimensional generalization of Khintchine’s Theo-
rem [B00]. We consider sequences of averages of the form

(16)
1

(N1 −M1)(N2 −M2)

N1∑

n1=M1

N2∑

n2=M2

f01(T
n1x)f10(T

n2x)f11(T
n1+n2x) ,

where f01, f10, f11 ∈ L∞(X) for some ergodic probability measure-preserving sys-
tem (X,B, µ, T ).

Proposition 24. When N1 −M1 and N2 −M2 tend to +∞, the average (16)
converges to 0 in L2(X) whenever E(fη | K) = 0 for at least one η ∈ D∗.

In other words, the Kronecker factor is characteristic for the convergence in
L2(X) of the average (16).

Proof. Write
un1,n2(x) = f01(T

n1x) f10(T
n2x) f11(T

n1+n2x) .

For k, ` ∈ Z we have
∫

un1+k,n2+`(x) un1,n2(x) dµ(x)

=

∫
(f01 ◦ T k · f01)(T

−n1x) (f10 ◦ T ` · f10)(T
−n2x) (f11 ◦ T k+` · f11)(x) dµ(x) .

Taking the average over n1 and n2, we have that as N1−M1 and N2−M2 tend to
+∞, this converges to

γk,` =

∫
f01 ◦ T k · f01 dµ

∫
f10 ◦ T ` · f10 dµ

∫
f11 ◦ T k+` · f11 dµ .

If E(fη | K) = 0 for some η ∈ D∗, then

1

L2

L−1∑

k,`=0

|γk,`| → 0

as L→∞, and the result follows from the two-dimensional van der Corput Lemma
(see the Appendix for the statement). �

Proposition 25 (Bergelson). The averages (16) converge in L2(µ) to
∫∫

K×K
E(f01 | K)

(
π(x)

)
E(f10 | K)

(
sπ(x)

)
E(f11 | K)

(
stπ(x)

)
dm(s) dm(t) .

Proof. By Proposition 24, it suffices to prove the result when the functions fi are
measurable with respect to the Kronecker factor. By density and linearity, we can
restrict ourselves to the case that these functions are characters of K, and the result
is obvious in this case. �
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By Proposition 25 we have

Theorem 26. If f00, f01, f10, f11 ∈ L∞(µ), then the average for n1 ∈ [M1, N1] and
n2 ∈ [M2, N2] of

(17)

∫
f00(x)f01(T

n1x)f10(T
n2x)f11(T

n1+n2x) dµ(x)

converges to ∫

X4

f00 ⊗ f01 ⊗ f10 ⊗ f11 dµ4

as N1 −M1 and N2 −M2 tend to +∞.

Combining Theorem 26 applied to the characteristic function of a set E and
Lemma 11, we deduce Bergelson’s two-dimensional generalization of Khintchine
recurrence.

6. Convergence for the integral of seven terms

Given seven bounded functions fε, ε ∈ E∗, we consider averages over n1 ∈
[M1, N1], n2 ∈ [M2, N2] and n3 ∈ [M3, N3] of

(18)

∫ ∏

ε∈E∗
fε ◦ Tn·ε dµ

and take the limit when N1 −M1, N2 −M2 and N3 −M3 tend to +∞.

6.1. A characteristic factor for the integral of seven terms.

Lemma 27. Let fη ∈ L∞(µ) for η ∈ D. Then the lim sup as N1−M1 →∞, N2−
M2 →∞, N3 −M3 →∞ of

1

(N1 −M1)(N2 −M2)

N1∑

n1=M1

N2∑

n2=M2

∫ ∣∣ 1

N3 −M3

N3∑

n3=M3

∏

η∈D
fη ◦ Tn·η−n3

∣∣2 dµ

is less than or equal to ∫ ∣∣E
(⊗

η∈D
fη | I4

)∣∣2 dµ4 .

Proof. Without loss of generality, we can assume that each |fη| is bounded by 1.
Fix an integer L > 0. By the finite version of the van der Corput Lemma (see
Appendix), for each n = (n1, n2) the integral in the statement is bounded by

4L

N3 −M3
+

L∑

`=−L

L− |`|
L2

∫ ∏

η∈D
(fη ◦ Tn·η+` · fη ◦ Tn·η) dµ .

Thus the integral is bounded by

L∑

`=−L

L− |`|
L2

lim sup
N1−M1→∞
N2−M2→∞

1

(N1 −M1)(N2 −M2)

N1∑

n1=M1

N2∑

n2=M2

∫ ∏

η∈D
(fη·fη◦T `)◦Tn·η dµ

and by Theorem 26, this is

L∑

`=−L

L− |`|
L2

∫ ⊗

η∈D
(fη · fη ◦ T `) dµ4 .

Taking the limit as L→∞, we obtain the bound. �
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Lemma 28. The Kronecker factor is characteristic for the average of the inte-
gral (18). In other words, this average converges to 0 whenever E(fη | K) = 0 for
at least one η ∈ E∗.

Proof. Assume first that E(fε | K) = 0 for some ε ∈ {(0, 0, 1), (0, 1, 0), (0, 1, 1)}.
Set gη = f0η1η2 for η ∈ D∗ and set g11 = 1. Then g11 is measurable with respect to
K and at least one of the other three gη has 0 conditional expectation on K. By
Lemma 20, E(⊗η∈Dgη | I4) = 0. By Lemma 27,

1

(N1 −M2)(N2 −M2)

N1∑

n1=M1

N2∑

n2=M2

∫ ∣∣ 1

N3 −M3

N3∑

n3=M3

∏

η∈D
gη ◦ Tn·η−n3

∣∣2 dµ→ 0 ,

as N1 −M1 →∞, N2 −M2 →∞ and N3 −M3 →∞. We can rewrite the average
of the integral (18) as the average over n1 ∈ [M1, N1] and n2 ∈ [M2, N2] of

∫ ( 1

N3 −M3

N3∑

n3=M3

∏

η∈D
gη ◦ Tn1η1+n2η2−n3

)( ∏

ε∈E,ε0=1

fε ◦ Tn1ε1+n2ε2
)

dµ .

Applying Cauchy-Schwartz to this average and using the limit above, this average
converges to 0.

By obvious modifications, the same result holds when E(fε | K) = 0 for some
ε ∈ {(1, 0, 0), (1, 0, 1), (1, 1, 0)}.

Finally, we consider the case that E(f111 | K) = 0. By the preceding steps,
we can assume that each of the other functions is measurable with respect to K.
Define hη = f1η1η2 for η ∈ D. Then h00 is measurable with respect to K and
E(h11 | K) = 0. By again using Lemma 20, we have E(⊗η∈Dhη | I4) = 0. We
conclude, as above, by using Lemma 27 and the Cauchy-Schwarz inequality. �

6.2. The limit for seven terms. Let m7 be the projection of the measure µ7 on
K7. It can easily be checked that m7 is the Haar measure of the closed subgroup

K7 =
{
(za, zb, zab, zc, zac, zbc, zabc) : z, a, b, c ∈ K

}

of K7. Thus for seven bounded functions gε, ε ∈ E∗, on K we have
∫ ⊗

ε∈E∗
gε dm7 =

∫

K4

∏

ε∈E∗
gε(zsε11 sε22 sε33 ) dm(z) dm(s1) dm(s2) dm(s3) .

Proposition 29. Let fε ∈ L∞(µ). The average of the integral (18) converges to
∫

X7

⊗

ε∈E∗
fε dµ7 .

Proof. Using Lemma 21, this last integral can be rewritten as
∫

K7

⊗

ε∈E∗
E(fε | K) dm7 ,

By Lemma 28, it suffices to prove the result when all fε are measurable with respect
to K. By density we can restrict to the case that each fε is a character of K, and
the result is obvious in this case. �
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7. Reduction for the L2 convergence with seven terms

We now study averages over n1 ∈ [M1, N1], n2 ∈ [M2, N2] and n3 ∈ [M3, N3] of

(19)
∏

ε∈E∗
fε(T

n·εx)

and take the limit as N1 −M1, N2 −M2 and N3 −M3 tend to +∞.

7.1. A characteristic factor for the three-dimensional cube.

Lemma 30. The factor CL of X is characteristic for the convergence in L2(µ)
of the average of the product (19). This means that this average converges to 0 in
L2(µ) whenever E(fε | CL) = 0 for some ε ∈ E∗.

Proof. For n = (n1, n2, n3) ∈ Z3, set

un =
∏

ε∈E∗
fε ◦ Tn·ε

and apply the 3-dimensional van der Corput Lemma (see Appendix). For k ∈ Z3,
we have ∫

un+kun dµ =

∫ ∏

ε∈E∗
(fε ◦ T k·ε · fε) ◦ Tn·ε dµ .

By Proposition 29, for k = (k1, k2, k3) ∈ Z3 and n = (n1, n2, n3), the averages for
n1 ∈ [M1, N1], n2 ∈ [M2, N2] and n3 ∈ [M3, N3] of

∫
un+kun dµ

converge to γk, where

γk =

∫

X7

∏

ε∈E∗
fε(T

k·εxε) fε(xε) dµ7 =

∫

X7

F (T k1
7,1 T k2

7,2 T k3
7,3x) F (x) dµ7(x)

and

F (x) =
∏

ε∈E∗
fε(xε)

for x = (xε; ε ∈ E∗) ∈ X7. Thus the average of γk with k1, k2, k3 ∈ [0, K] converges
to the square of the L2(µ7)-norm of E(F | J7). The result follows from Corollary 23.

�

7.2. Reduction to nilsystems for Theorem 3. Let fε, ε ∈ E, be seven bounded
functions on X . By Lemma 30, the difference between the average of the prod-
uct (19) and the same average with E(fε | CL) substituted for each fε, converges
to 0 in L2(µ). Therefore, in order to prove Theorem 3 it suffices to prove it when
all the functions are measurable with respect to CL. Thus we can restrict to the
case that the system itself is a CL-system, meaning that the system is equal to its
Conze-Lesigne algebra.

Furthermore, a CL-system is an inverse limit of 2-step nilsystems. By density, it
suffices to prove Theorem 3 for such systems. This is done in Section 8 (Proposi-
tion 10).
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7.3. The integral with eight terms.

Theorem 31. Let fε, ε ∈ E, be eight bounded functions on the ergodic system
(X, µ, T ). Then the average for n1 ∈ [M1, N1], n2 ∈ [M2, N2] and n3 ∈ [M3, N3] of

(20)

∫

X

∏

ε∈E
fε(T

n·εx) dµ(x)

converges to ∫

X8

⊗

ε∈E
fε dµ8

when N1 −M1, N2 −M2, and N3 −M3 tend to +∞.

This Theorem is proven in Section 8 when the system is a 2-step nilsystem. We
now explain how to deduce the general case.

By Lemma 30, the difference between the average in (20) and the same average
with each function fε replaced by E(fε | CL) converges to zero. By Lemma 14, the
above integral remains unchanged under this modification of the functions. Thus
it suffices to prove the Theorem with CL substituted for X and so we can assume
without loss that X is a Conze-Lesigne system. In this case the system is the inverse
limit of a sequence of 2-step nilsystems and the result follows by density. �

Combining Lemma 19 and the above theorem, we have the statement of Theo-
rem 4.

8. Convergence for a nilsystem

We are left with showing that Theorem 31 holds for ergodic 2-step nilsystems.
The proof uses a precise description of the measures µ4 and µ8 introduced in

Section 4 in the particular case of a 2-step nilsystem. This discussion allows us also
to sketch a proof of Theorem 9 in the particular case we consider.

Throughout this section, (X, µ, T ) is an ergodic 2-step nilsystem and we maintain
the notation of Section 2. We assume that the hypotheses (H1) and (H2) are
satisfied.

8.1. The nilmanifold X4. Define

G4 =
{
g = (g00, g01, g10, g11) ∈ G4 : g00g

−1
01 g−1

10 g11 ∈ U
}

;

Λ4 =
{
λ = (λ00, λ01, λ10, λ11) ∈ Λ4 : λ00λ

−1
01 λ−1

10 λ11 = 1
}

= Λ4 ∩G4 .

Using the nilpotency of G, it is easy to check that G4 is a subgroup of G4 and it
is clearly 2-step nilpotent. It is also easy to verify that it is a closed Lie subgroup.
The commutator subgroup of G4 is clearly included in U4 and we claim that it
equals U4. For g ∈ G, the three elements (g, g, g, g), (1, g, 1, g) and (1, 1, g, g) of
G4 belong to G4. Taking the commutators of elements of this kind, we get that
for u ∈ U , the four elements (u, u, u, u), (1, u, 1, u), (1, 1, u, u) and (1, 1, 1, u) of U 4

belong to the commutator subgroup of G4 and the claim follows.
Λ4 is a discrete cocompact subgroup of G4, with Λ4 ∩ U4 = {1}. There is a

natural embedding of the nilmanifold G4/Λ4 in X4. We identify this nilmanifold
with its image

(21) X4 =
{
x = (x00, x01, x10, x11) ∈ X4 : π(x00)π(x01)

−1π(x10)
−1π(x11) = 1

}

in X4.
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Lemma 32. µ4 is the Haar measure of X4.

Proof. Let µ′4 be the Haar measure of X4. The transformations T4, T4,1 and T4,2

of X4 are the translations by the elements

α4 = (α, α, α, α) ; α4,1 = (1, α, 1, α) and α4,2 = (1, 1, α, α)

of G4, respectively, and these three elements belong to G4. Therefore, these trans-
formations are translations on the nilmanifold X4 = G4/Λ4 and in particular leave
the measure µ′4 invariant.

We claim that µ′4 is ergodic for the action spanned by these transformations. We
use Proposition 8. Fist we observe that the hypothesis (H3) of this Proposition is
satisfied because G and α satisfy hypothesis (H1). Let q4 : G4 → K4 be the map

q4(g00, g01, g10, g11) =
(
π(g00), π(g01), π(g10), π(g11)

)
.

Then q4 is a continuous group homomorphism, its range is the subgroup K4 of K4

defined in Section 3 and its kernel is (Λ4U4) ∩ G4 = Λ4U
4. Thus we can identify

G4/U4Λ4 with K4.
Under this identification, the transformations induced by T4, T4,1 and T4,2 on

K4 are the rotations by β4 = (β, β, β, β), β4,1 = (1, β, 1, β) and β4,2 = (1, 1, β, β),
respectively, where as usual, β = q(α). The rotation R by β on K is ergodic and
thus the subgroup spanned by β is dense in K. It follows that the subgroup spanned
by β4, β4,1 and β4,2 is dense in K4 and so the joint action of these rotations on K4

is ergodic.
The hypotheses of Proposition 8 are satisfied and our claim is proven.
By Proposition 6, µ′4 is the unique measure on X4 invariant under T4, T4,1

and T4,2. The measure µ4 also is invariant under these transformations and it
follows immediately from its definition (4) and the definition (21) of X4 that it is
concentrated on X4. Therefore µ4 = µ′4. �

8.2. The nilmanifold X8. Define

H = {(h, hu, hv, huv) : h ∈ G; u, v ∈ U} .

It is easy to verify that H is a normal subgroup of G4. Furthermore, it is a closed
Lie subgroup of G4. Define

G8 =
{
(g00, g01, g10, g11, h00g00, h01g01, h10g10, h011g11) :

(g00, g01, g10, g11) ∈ G4 ; (h00, h01, h10, h11) ∈ H
}

.

Then G8 is a closed Lie subgroup of G8. It is clearly 2-step nilpotent and it can be
checked that G8 is the set of g = (gε; ε ∈ E) ∈ G8 that satisfy the four properties:

g000 g−1
001 g011 g−1

010 g110 g−1
111 g101 g−1

100 = 1 ; (g000, g001, g010, g011) ∈ G4 ;

(g000, g001, g100, g101) ∈ G4 ; (g000, g010, g100, g110) ∈ G4 .

Define

Λ8 = Λ8 ∩G8 ;

U8 = U8 ∩G8

=
{
u = (uε; ε ∈ E) : u000 u−1

001 u011 u−1
010 u110 u−1

111 u101 u−1
100 = 1

}
.
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Λ8 is a discrete cocompact subgroup of G8. Write X8 for the nilmanifold G8/Λ8.
There is a natural embedding of X8 in X8 and we identify X8 with its image in
X8.

Proceeding as in the preceding section, it can be checked that the commutator
subgroup of G8 is U8. Note that U8 ∩ Λ8 = {1}.

Lemma 33. µ8 is the Haar measure of the nilmanifold X8.

Proof. We proceed as in the proof of Lemma 32. Let µ′8 be the Haar measure of
X8.

The four elements

α8 = (α, α, α, α, α, α, α, α) ; α8,1 = (1, 1, 1, 1, α, α, α, α)

α8,2 = (1, 1, α, α, 1, 1, α, α) ; α8,3 = (1, α, 1, α, 1, α, 1, α)

of G8 belong to G8 and thus the corresponding transformations T8, T8,1, T8,2 and
T8,3 are translations on the nilmanifold X8 = G8/Λ8.

We show that µ′8 is ergodic for the joint action of these transformations. Note
that hypothesis (H3) of Proposition 8 is satisfied. Let q8 = G8 → K8 be the map

q8

(
gε : ε ∈ E

)
=
(
q(gε) : ε ∈ E

)
.

Then q8 is a group homomorphism. Its kernel is (Λ8U8)∩G8 and it is not difficult
to check that this group is equal to Λ8U8. The range of q8 is the closed subgroup

K8 =
{
(z000, z001, z010, z011, cz000, cz001, cz010, cz011) :

(z000, z001, z010, z011) ∈ K4, c ∈ K
}

=
{
(z, za, zb, zab, zc, zac, zbc, zabc) : z, a, b, c ∈ K

}

of K8. Thus we can identify G8/Λ8U8 with K8. Under this identification, the
transformations induced by T8, T8,1, T8,2 and T8,3 on K8 are the rotations by the
elements β8, β8,1, β8,2 and β8,3, the images of α8, α8,1, α8,2 under q. The joint
action of these transformations on K8 is clearly ergodic.

By Proposition 8, the joint action of T8, T8,1, T8,2 and T8,3 on X8 is ergodic. By
Proposition 6, µ′4 is the unique measure on X8 invariant under these transforma-
tions. Since the measure µ4 is also invariant under these transformations, we are
left with proving that it is concentrated on X8.

It can be checked that HΛ4 is a closed subgroup of G4. Let Y denote the compact
space G4/HΛ4 and let θ be the natural projection of X4 = G4/Λ4 onto Y . Since
α4 ∈ H , the mapping θ is invariant under T4.

Recall that the measure µ8 is the relatively independent self-joining of µ4 over
the T4-invariant σ-algebra I4. Since the measure µ4 is concentrated on X4, the
measure µ8 is concentrated on X4 ×X4. Furthermore, the mapping θ is invariant
and so we have that θ(x′) = θ(x′′) for µ8-almost every x = (x′,x′′) ∈ X4 × X4.
Therefore the measure µ8 is concentrated on the set

{
x = (x′,x′′) ∈ X4 ×X4 : θ(x′) = θ(x′′)

}
.

However, this set is actually equal to X8 and so we have the statement of the
Lemma. �
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8.3. Proof of Theorem 31 for a 2-step nilsystem. The measure µ8 is ergodic
with respect to the joint action of the translations T8,1, T8,2, T8,3 and T8 (see Sec-
tion 4.2). By Proposition 8, X8 is uniquely ergodic for this action. Let fε, ε ∈ E, be
eight continuous functions on X . Since the diagonal ∆8 = {(x, x, x, x, x, x, x, x) :
x ∈ X} is included in X8, the average over n1 ∈ [M1, N1], n2 ∈ [M2, N2], n3 ∈
[M3, N3] and p ∈ [A, B] of

∏

ε∈E
fε
(
T p+n·εx)

converges uniformly to
∫
⊗ε∈Efε dµ8 when N1−M1, N2−M2, N3−M3 and B−A

tend to +∞.
Taking the integral, the announced result holds for continuous functions. The

general case follows by density. �

8.4. Sketch of a proof of Theorem 9 in a particular case. We sketch a proof
of Theorem 9 for translations T8,1, T8,2 and T8,3 on the nilmanifold X8.

For x ∈ X , write

X8,x = {x = (xε; ε ∈ E) ∈ X8 : x000 = x} .

These sets form a closed partition of X8. We give each of them the structure of a
nilmanifold. Define

G′8 = {g = (gε; ε ∈ E) ∈ G8 : g000 = 1} .

It is a closed Lie subgroup of G8 and we note that for every x ∈ X , left translations
by elements of this group leave X8,x invariant and act transitively on this space.
It is now easy to identify X8,x with a nilmanifold G′8/Λ′x for a discrete cocompact
subgroup Λ′x of G′8. Let µ8,x be the Haar measure of X8,x. This measure is invariant
under G′8 and so invariant under the transformations T8,1, T8,2 and T8,3, which are
translations by elements of G′8. We have

(22) µ8 =

∫

X

µ8,x dµ(x) ,

since the right hand side of this equation is a measure on X8 and it is invariant
under the action of G8.

We give a second interpretation of this formula. Let π000 : X8 → X be the
first projection. The family of measures (µ8,x; x ∈ X) is a regular version of the

conditional probability measure given the σ-algebra π−1
000(X ) Recall that this σ-

algebra coincides with J8 up to µ8-null sets (see Section 4.2). Thus Equation (22)
can be viewed as the ergodic disintegration of µ8 for the action spanned by T8,1,
T8,2 and T8,3.

It follows that for µ-almost every x, the measure µ8,x is ergodic for this action.
By Proposition 8 applied to the nilmanifold X8,x, we have that for µ-almost every
x, X8,x is uniquely ergodic for the action spanned by the three transformations
T8,1, T8,2 and T8,3. Therefore, for any continuous function F on X8,x, for µ-almost
every x ∈ X , the average over n1 ∈ [M1, N1], n2 ∈ [M2, N2] and n3 ∈ [M3, N3] of

F (Tn1
8,1T

n2
8,2T

n3
8,3x)

converges to
∫

F dµ8,x. The result follows. �
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Appendix A. Van der Corput Lemma

See Bergelson [B86] for details about the van der Corput Lemma. We use a finite
version of the Hilbert space version of this Lemma.

Proposition 34. Assume that {xn} is a sequence in a Hilbert space with norm
‖xn‖ ≤ 1 for all n ∈ Z. Let L, M and N be integers with L > 0 and N > M . Then

∥∥ 1

N −M

N−1∑

n=M

xn
∥∥2 ≤ 4L

N −M
+

L∑

`=−L

L− |`|
L2

1

N −M

N−1∑

n=M

〈xn, xn+`〉 .

We also use an infinite version of the van der Corput Lemma for dimensions 1,
2 and 3. We state it only for three dimensions, as the other cases are similar and
simpler.

Proposition 35. Assume that {un1,n2,n3 : n1, n2, n3 ∈ Z} is a bounded triple
sequence of vectors in a Hilbert space. If

lim
K→∞

1

K3

K−1∑

k1,k2,k3=0

| lim
N−M→∞

1

(N −M)3

N−1∑

n1,n2,n3=M

〈xn1 ,n2,n3 , xn1+k1,n2+k2,n3+k3〉|

is 0, then

lim
NM→∞

‖ 1

(N −M)3

N−1∑

n1,n2,n3=M

xn1,n2,n3‖ = 0 .
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[L84] E. Lesigne. Résolution d’une équation fonctionelle. Bull. Soc. Math. France, 112 (1984),
177–19.
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Sys., 9-1 (1989), 115–126.
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