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ABSTRACT. We obtain a generalization of Furstenberg’s Diophantine Theorem
on non-lacunary multiplicative semigroups. For example we show that the sets
of sums {(pq™ + pRg)e : n,m € N} and {(pTg™ + 2™)cr : n,m € N} are
dense in the circle T = IR /Z for all irrational o, where (p;,q;) are distinct
pairs of multiplicatively independent integers for : = 1, 2.

1. INTRODUCTION

A basic question in Diophantine approximation is which subsets of the natural
numbers N are allowable denominators. More specifically, for which A C N, given
irrational o and € > 0, can we find n € A and m € Z so that

o —m/n| < e/n?

A sufficient condition that A be a set of denominators is that {na (mod 1) : n € A}
be dense in the circle T = R/Z for all irrational «.

The most basic such result is that {na : n € N} is dense (even uniformly dis-
tributed) in T for all irrational o. We assume throughout that all expressions are
considered on the circle (i. e. modulo 1) and omit explicit reference to this. A
Theorem of G. H. Hardy and J. E. Littlewood’s [6] generalized this result, showing
that for any positive integer k, {n*a : n € N} is dense in T for all irrational a.
H. Furstenberg [5] generalized this to pairs of multiplicatively independent integers.
Positive integers p and ¢ are said to be multiplicatively independent if they are not
both integer powers of the same integer.

Theorem 1.1 (Furstenberg). If p,q > 1 are multiplicatively independent integers,
then {p"q¢™« : n,m € N} is dense in T for all irrational .

Given a positive integer pp, a subset A C T is said to be p-invariant if pa € A
for all @ € A. An equivalent formulation of Theorem 1.1 needed below is that any
closed, infinite subset of T that is both p and g-invariant must be all of T. More
generally, a closed subset of T that is both p and g-invariant is either a finite set of
(necessarily) rational points or is all of T.

More recently, M. Boshernitzan [4] offered an elementary and elegant proof of
this result, and we make use of some of these ideas in the proof of our main theorem.
D. Berend [1], [2] generalized Theorem 1.1 to the torus and provided many other
examples of denominators, based on multiplicative properties of the sequence of
natural numbers. The main result of this paper is a generalization of Theorem 1.1
in an additive sense. We show:
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Theorem 1.2. Let k € N. Let p;,q; € N with 1 < p; < q; fori =1,...,k and
assume that p1 < ps < ... < pr. Assume that the pairs p;, q; are multiplicatively

independent for i = 1,...,k. Then for distinct ay,...,ar € T with at least one
(%) ¢ @:
2
{S o nmen}
i=1

is dense in T.

The assumptions that the p; are non-decreasing and that p; < ¢; only clarify the
expressions we are summing, as arbitrary expressions can be reordered. In terms
of Diophantine approximation, the main interest is when all of the «; are equal, as
then the set of sums forms a set of denominators.

More recently, D. Meiri [7] gave an alternate proof of portions of Theorem 1.2,
using measure theoretic methods.

We start with some simpler sequences of integers that give dense expressions on
the circle.

2. SUMMANDS INVOLVING ONE OF THE INDICES

First we show that we can add expressions solely dependent on one of the indices
to expressions of the form in Theorem 1.1. The lemma has appeared in other forms
previously (see [3]). This proof is joint with E. Glasner.

Lemma 2.1. Let € > 0 and p,q > 1 be multiplicatively independent integers. Let
A be an infinite p-invariant subset of T. Then there exists n € N such that ¢" A s
e-dense.

Proof. Without loss, we can replace A by its closure. We consider all limits taken
in the set of all subsets of T, endowed with the Hausdorff metric. Let

A={¢"A:neN}L

Since A is p-invariant, so is each X € A. Let B = Uxc4X. Then B is infinite, since
it contains A and is closed in T, since A is closed in the Hausdorff topology. Fur-
thermore, B is both p and g-invariant. By the second formulation of Theorem 1.1,
B = T. In particular there exists @ € B so that the closure {p?a :n € N} = T.
By definition, @ € X for some X = lim¢™* A, where the limit is taken along some
sequence {n;}. Since X is p-invariant, X D {p?a :n € N}, and so X = T. Thus
along the sequence n;, ¢"¢A is e-dense for sufficiently large n;. O

Corollary 2.2. Let p,q > 1 be multiplicatively independent integers and let r,, be
any sequence of real numbers. Then for any irrational o

{P"¢"a+ ry n,me N}
s dense in T.

Proof. Fix ¢ > 0. Let A = {p"a : n € N}. By Lemma 2.1, there exists m so
that ¢ A is e-dense. Since ¢™A + r,, is a translate of an e-dense set, it is also

e-dense. O

As an immediate corollary, we have that expressions such as

{Pq"a+2"6:n,meN}
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and

{p"¢"a+n’F :n,mecN}
are dense in the circle, so long as p,q > 1 are multiplicatively independent integers
and « is irrational.

Corollary 2.3. Let k € N. Let p;,q; > 1 be pairs of multiplicatively independent

integers fori=1,... k. Let « ¢ Q and B2,...,Bx € Q fori=2,... ,n. Then the
set
2
{p’fqi”aJrEp?q;”ﬁi :n,meN}
i=2

is dense in T.

Proof. Since ; € @, we can choose ls, ... ,ly € N so that pi’ﬁi = f3; (mod 1) for
1=2,...,k. Then

k
{(plf.m,lk)nq;na + Z(pig.....lk)nqlr_nﬁi ‘n,m € N}
=2

is a subset of the original sum and by choice of the [;,
(P ™) ¢ B = ¢ B (mod 1)
for each i. Letting A = {(p"'*)"a : n € N} we can find m € N by Lemma 2.1 so

that {(plf““l")"qTa :n,m € N} is dense. The set considered in the statement of
the corollary contains a translate of this one. O

3. PROOF OF THE MAIN THEOREM

We prove the main theorem via a series of lemmas. Throughout this section, we
assume that p;, ¢; > 1 are pairs of multiplicatively independent integers.
We consider the actions of M; = < p 0 ) and M, = < a0 ) on the
0 po 0 g2
2-torus T2, A subset A C T? is said to be invariant under the action of M if
MAC A.
Given A C T2 and = € T, let

Ay ={teT:(t,z) € A}.

Lemma 3.1. Let A be a non-empty, closed subset of T2, invariant under the ac-
tions of My and M>. Then P = {z € T : A, # 0} is either T itself or is a finite
set of rational points. Furthermore, if r € QQ, then A, is either empty, a finite set
of rational points, or is T itself.

Proof. Since A is non-empty, so is P. Since A is invariant under the actions of M;
and Ms, P is invariant under multiplication by p, and ¢5. By Theorem 1.1, P is
either a finite set of (necessarily) rational points or is all of T.

Given r € @, assume that A, # (. Since r is rational, we can find u € N so that

pyr = ¢ =7 (mod 1).

Then A, is p§- and ¢4-invariant and non-empty. By Theorem 1.1, A, is either a
finite set of rationals or all of T. O

Corollary 3.2. Let A C T? be non-empty, closed and invariant under the actions
of My and M. If all points of AN Q? are isolated in A, then A is finite.
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Proof. Consider A\Q?, the set A with all rational points removed. If this is empty,
we are done. Otherwise A\Q? is a non-empty, closed subset of T2 that is invariant
under the actions of M; and M5 and so satisfies the conditions of Lemma 3.1. It
follows immediately from Lemma 3.1 that any set satisfying the hypotheses must
contain a point in Q2, a contradiction. Thus A is a closed collection of isolated
points in a compact space, and so A is finite. O

Lemma 3.3. Let A be a closed subset of T2, invariant under My and M,. Suppose
that (r,s) € ANQ?. Then there exist n,m € N so that A — (r, s) is invariant under
M7 and MI".

By definition, A — (r,s) = {(x —r,y — s) : (z,y) € A}.
Proof. Since s, r € Q, we can pick n,m € N so that
pir=q7’r =7 (mod 1)
and
phs=¢qy's=s (mod 1).

Then (r,s) is fixed under the actions of M7 and MJ*. Since A is invariant under
the actions of MJ* and M7*, A — (r,s) is also invariant under M7 and M. O

For the remainder of this section we define
X ={(p'¢" a1, phq5 az) € T? :n,m € N},

where each coordinate of the vectors is considered modulo 1. Let S be the set of
accumulation points of X. Thus both X and S are invariant under the actions of
M; and Ms, and S is closed.

Finally, let p; = log p2/logpi and ps = loggs/logq;.

Lemma 3.4. Assume S and X are defined as above. If (0,0) € S then one of the
following holds:

(1) (0,0) is isolated in S.

(2) S contains the whole x-axis or the whole y-axis.

(3) For some ¢ > 0, S contains the curve y = cx”, for z > 0, where p = p1 = pa.

Proof. Assume that (0,0) is not isolated in S. There is a sequence (z;, ;) — (0,0)
with (z;,y;) € S. Apply M; and M, repeatedly to the sequence {(z;,y;)}. Both
My and M, expand sufficiently small neighborhoods of the origin, and so in the
limit we obtain a sequence of points in Sy invariant under both M; and M,. Call
the limiting sequence A = {(z;, w;)}. Since each iterate of the original sequence
has the origin as an accumulation point, A also has the origin as an accumulation
point.

M leaves curves of the form y = cx”, where ¢ is a constant, invariant. Thus
if p1 # pa, the only curves left invariant under the actions of both M; and M,
are the z-axis and the y-axis. So for p1 # pa, A contains an infinite set of points
approaching the origin either on the z-axis or on the y-axis.

Let us assume that the approach to (0,0) lies on the y-axis. (The proof for the
approach to (0,0) lying on the z-axis is identical.) Let T be the ordered semigroup
generated by p» and ¢s. Fixing € > 0, pick N large enough so that for all ¢ > N,
tiy1/ti <1+ €. Choose y € Sp with 0 # |y| < €/tny. Then the finite subset of S

{ty:teT ity <t <1/[yl}
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is e-dense on the y-axis, as can be seen by considering the differences (41 — t;)y.
Since S is closed, it contains the entire y-axis.

Lastly, if p = p1 = p2, then A is contained in a curve of the form y = ca” for
some constant ¢. Analogous to the situation when the approach to (0, 0) lies on one
of the axes, we can pick a point within € of (0,0). By applying M; and M3 to this
point, we obtain an e-dense set of points on the curve y = cz”. As € is arbitrary,
the entire invariant curve y = cz” for > 0 contained in S. O

Corollary 3.5. Under the same assumptions, either (0,0) is isolated in S or {x +
y:(z,y) €St="T.

Proof. If (0,0) is not isolated in S, Lemma 3.4 shows that the sum obtained either
contains a translate of an axis or contains all points from a continuous curve. In
either case, the sum is all of T. O

We combine these lemmas to prove Theorem 1.2.

Proof. (Theorem 1.2) Let k = 2. Assume that a; ¢ Q. (The case that as ¢ Q is
analogous.) Theorem 1.1 shows that for any « € T there exist sequences n;, m; — oo
so that p]'¢7"* @1 — x. By compactness, there exists y € T so that (z,y) € S. In
particular, S is infinite.
By Corollary 3.2, there is a non-isolated rational point of S. By Lemma 3.3, we
can assume that this point is (0,0). By Corollary 3.5, { + y: (z,y) € S} = T.
Assume that we have proved the result for a sum of £ — 1 terms. Let

X ={(plq" a1, p595 as, ..., ppqiax) : n,m € N}

and let S be the accumulation points of this set. Without loss of generality assume
that «; ¢ Q. By the proof for k¥ = 2 we have (z,y,z3,...,2;) € S where z is
a fixed point, y is any point in T and xs,...,x; depend on y. In the proof we
showed that S contained an invariant curve, including the two axes as invariant
curves. Defining Sy = S — (2,0,...,0) we have (0,y,z3,...,25) € Sy where y is

an arbitrary point in T and z3,...,z; depend on the choice of y. Taking some
y & Q, the result for k — 1 gives a dense set of sums. The set of sums obtained from
elements of S is a translate of this one, and so is dense. O
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