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Abstract. A long standing and almost folkloric conjecture is that
the primes contain arbitrarily long arithmetic progressions. Until
recently, the only progress on this conjecture was due to van der
Corput, who showed in 1939 that there are infinitely many triples of
primes in arithmetic progression. In an amazing fusion of methods
from analytic number theory and ergodic theory, Ben Green and
Terence Tao showed that for any positive integer k, there exist
infinitely many arithmetic progressions of length k consisting only
of prime numbers. This is an introduction to some of the ideas in
the proof, concentrating on the connections to ergodic theory.

1. Background

For hundreds of years, mathematicians have made conjectures about
patterns in the primes: one of the simplest to state is that the primes
contain arbitrarily long arithmetic progressions. It is not clear exactly
when this conjecture was first formalized, but as early as 1770 Lagrange
and Waring studied the problem of how large the common difference
of an arithmetic progression of k primes must be. A natural extension
of this question is to ask if the prime numbers contain arbitrarily long
arithmetic progressions.

Support for a positive answer to this question is provided by the
following simple heuristic. The Prime Number Theorem states that
the number of prime numbers less than the integer N is asymptotically
N/ logN . It follows that the density of primes around a positive large
x ∈ R is about 1/ log x. Thus if we model the sequence of prime
numbers in {1, . . . , N} by choosing integers at random, with an integer
in {1, . . . , N} being chosen with probability 1/ logN , then there ought
to be approximately N2/ logk N progressions of length k consisting of
prime numbers less than or equal to N . Unfortunately, one cannot
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hope to use this sort of argument to show that the primes contain
any particular pattern, since the primes are far from being randomly
distributed: 2 is the only even prime, 3 is the only prime congruent to
0 mod 3, and so on.

In 1923, Hardy and Littlewood [18] made a very general conjecture
(the k-tuple conjecture) about patterns and their distribution in the
primes: if a1, . . . , ak and b1, . . . , bk are nonnegative integers such that
P (x) =

∏k
i=1(aix + bi) is not identically 0 modulo any prime p, then

there are infinitely many integers n such that {ain + bi : 1 ≤ i ≤ k}
consists only of primes. This conjecture includes the twin prime con-
jecture (there exist infinitely many primes p such that p + 2 is also
prime) as a special case and it trivially implies that the primes contain
arbitrarily long arithmetic progressions. Moreover it implies that the
number of k-term arithmetic progressions in the primes bounded by N
is asymptotically ckN

2/ logk N for a certain explicit value of ck.
There are numerous related conjectures about the existence of arith-

metic progressions in certain subsets of the integers. For example, the
famous conjecture of Erdös and Turán [6] states that if A = {a1 <
a2 < . . .} is an infinite sequence of integers with

∑
i 1/ai =∞, then A

contains arbitrarily long arithmetic progressions. A corollary would be
that the primes contain arbitrarily long arithmetic progressions.

The first major progress on arithmetic progressions in the primes
was made by van der Corput [30], who proved in 1939 that the primes
contain infinitely many arithmetic progressions of length 3. Further
progress was only made in 1981, when Heath-Brown [19] showed that
there are infinitely many arithmetic progressions of length 4 consisting
of three primes and an almost prime, meaning either a prime or a
product of two primes. In a slightly different direction are the elegant
results of Balog ([1], [2]) on patterns in the primes. For example, he
shows that for any positive integer k, there exist infinitely many k-
tuples of distinct primes p1 < p2 < . . . < pk such that (pi + pj)/2 is
prime for all i, j ∈ {1, . . . , k}. For k = 2 this implies, in particular, that
the primes contain infinitely many arithmetic progressions of length 3.

Computational mathematicians have also worked on the problem of
finding long arithmetic progressions in the primes. In 1995, Moran,
Pritchard and Thyssen [25] found a progression of length 22 in the
primes. This record was finally broken in 2004, when Frind, Jobling
and Underwood [7] found a progression of length 23 starting with the
prime 56211383760397 and with common difference 44546738095860.

In 2004, Ben Green and Terence Tao announced a major break-
through, with a proof of the general case:
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Theorem 1.1 (Green and Tao [15]). For every integer k ≥ 1, the
prime numbers contain an arithmetic progression of length k.

They [16] also extract a bound on how far out in the primes one must
go in order to guarantee finding an arithmetic progression of length k,
showing that there is a k-term arithmetic progression of primes all of
whose entries are bounded by

2222
22

22
(100k)

.

This bound is considered far from optimal; standard heuristics in num-
ber theory, plus a little calculation, lead to the conjecture [13] that
there is an arithmetic progression of length k in the primes all of whose
entries are bounded by k! + 1.

Green and Tao prove a stronger statement than that given in The-
orem 1.1. They show that not only do the primes contain arbitrarily
long arithmetic progressions, but so does any sufficiently dense subset
of the primes:

Theorem 1.2 (Green and Tao [15]). If A is a subset of prime numbers
with

lim sup
N→∞

1

π(N)
|A ∩ {1, . . . , N}| > 0 ,

where π(N) is the number of primes in {1, . . . , N}, then for every in-
teger k ≥ 1, A contains an arithmetic progression of length k.

For k = 3, this was proved by Green [14].
The theorem of Green and Tao is a beautiful result answering an

old conjecture that has attracted much work. Perhaps even more im-
pressive is the fusion of methods and results from number theory, er-
godic theory, harmonic analysis, discrete geometry, and combinatorics
used in its proof. The starting point for Green and Tao’s proof is the
celebrated theorem of Szemerédi [27]: a set of integers with positive
upper density1 contains arbitrarily long arithmetic progressions. One
of the main ideas is to generalize this, showing that a dense subset of a
sufficiently pseudorandom collection (see Section 7 for the precise defi-
nition) of the integers contains arbitrarily long arithmetic progressions.
There are three major ingredients in the proof. The first is Szemerédi’s
Theorem itself. Since the primes do not have positive upper density,

1The upper density d∗(A) of a subset A of the integers is defined to be

d∗(A) := lim sup
N→∞

|A ∩ {1, . . . , N}|/N .
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Szemerédi’s Theorem can not be directly applied and the second major
ingredient in Green and Tao’s proof is a certain transference principle
that allows one to use Szemerédi’s Theorem in a more general set-
ting. The last major ingredient is the use of specific properties of the
primes and their distribution, based on recent work of Goldston and
Yildirim [17], showing that this generalized Szemerédi Theorem applies
to the primes.

It is impossible to give a complete proof of their theorem in this
limited space, nor even to do justice to the main ideas. Our goal is to
outline the main ingredients and focus on the relation between their
work and recent parallel advances in ergodic theory. The interaction
between combinatorial number theory and ergodic theory began with
Furstenberg’s proof [8] of Szemerédi’s Theorem (see Section 3) and
has led to many new results. Until the present, this interaction has
mainly taken the form of using ergodic theory to prove statements in
combinatorial number theory, such as Szemerédi’s Theorem, its gener-
alizations (including a multidimensional version [9] and a polynomial
version [4]), and the density Hales-Jewett Theorem [10]. Green and
Tao’s work opens a new chapter in this interaction, with ergodic the-
oretic proof techniques being adapted for use in a number theoretic
setting.

Acknowledgments: I appreciate the many helpful comments I re-
ceived while preparing this manuscript, including those from Keith
Burns, Nikos Frantzikinakis, Bernard Host, Margaret Symington, Ter-
ence Tao, and Mate Wierdl, and especially those from Andrew Granville.

2. Szemerédi’s Theorem

Substituting the set of all integers for the set of primes in Theo-
rem 1.2, one obtains Szemerédi’s Theorem. We state an equivalent
finite version of this theorem:

Theorem 2.1 (Finite Szemerédi [27]). Let 0 < δ ≤ 1 be a real
number and let k ≥ 1 be an integer. There exists N0(δ, k) such that if
N > N0(δ, k) and A ⊂ {1, . . . , N} with |A| ≥ δN , then A contains an
arithmetic progression of length k.

It is clear that this version implies the first version of Szemerédi’s
Theorem, and an easy argument gives the converse implication.

Szemerédi’s [27] original proof in 1975 was combinatorial in nature.
Shortly thereafter, Furstenberg developed the surprising relation be-
tween combinatorics and ergodic theory, proving Szemerédi’s Theo-
rem via a multiple recurrence theorem (see Section 3). More recently,
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Gowers [12] gave a new proof of Szemerédi’s Theorem using harmonic
analysis, vastly improving the known bounds for N0(δ, k) in the finite
version. Although the various proofs, Szemerédi’s, Furstenberg’s, and
Gowers’, seem to use very different methods, they have several features
in common. In each, a key idea is the dichotomy in the underlying space
(whether it be a subset of the integers, a measure space, or the finite
group Z/NZ) between randomness and structure. One then has to
analyze the structured part of the space to understand the intersection
of a set with itself along arithmetic progressions. We start by further
discussing Furstenberg’s proof of Szemerédi’s Theorem using ergodic
theory.

3. Szemerédi’s Theorem and ergodic theory

Furstenberg proved the multiple ergodic theorem:

Theorem 3.1 (Multiple Recurrence [8]). Let (X,X , µ, T ) be a mea-
sure preserving probability system2 and let k ≥ 1 be an integer. For any
set E ∈ X with µ(E) > 0,

(3.1) lim inf
N→∞

1

N

N−1∑
n=0

µ
(
E ∩ T−nE ∩ T−2nE ∩ . . . ∩ T−(k−1)nE

)
> 0.

An obvious corollary is:

Corollary 3.2. Let (X,X , µ, T ) be a measure preserving probability
system and let k ≥ 1 be an integer. For any set E ∈ X with µ(E) > 0,
there exists an integer n ≥ 1 such that

µ
(
E ∩ T−nE ∩ T−2nE ∩ . . . ∩ T−(k−1)nE

)
> 0 .

Furstenberg then made the beautiful connection to combinatorics,
showing that regularity properties of integers with positive upper den-
sity correspond to multiple recurrence results:

Theorem 3.3 (Correspondence Principle [8]). Assume that A is
a subset of integers with positive upper density. There exist a measure
preserving probability system (X,X , µ, T ) and a measurable set E ∈ X

2By a measure preserving probability system, we mean a quadruple (X,X , µ, T ),
where X is a set, X denotes a σ-algebra on X (meaning an algebra X of subsets
of X that is closed under countable unions), µ is a probability measure on (X,X ),
and T : X → X is a measurable map such that µ(A) = µ(T−1A) for all A ∈ X .
Usually, we assume that X is a metrizable compact set and X is its Borel σ-algebra,
meaning the σ-algebra generated by the open sets. In particular, for the spaces
under consideration, L2(X,X , µ) is separable. We always denote the σ-algebra by
the calligraphic version of the letter used for the space.
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with µ(E) = d∗(A) such that for all integers k ≥ 1 and all integers
m1, . . . ,mk−1 ≥ 1,

d∗
(
A∩ (A+m1)∩ . . .∩ (A+mk−1)

)
≥ µ

(
E∩T−m1E∩ . . .∩T−mk−1E

)
.

Taking m1 = n,m2 = 2n, . . . ,mk−1 = (k−1)n, Szemerédi’s Theorem
follows from Corollary 3.2.

Furstenberg’s proof relies on a compactness argument, making it dif-
ficult to extract any explicit bounds in the finite version of Szemerédi’s
Theorem. On the other hand, Theorem 3.1 and its proof gave rise to
a new area in ergodic theory, called “ergodic Ramsey theory.” Ergodic
theoretic proofs have lead to many other results in combinatorics, such
as the multidimensional Szemerédi Theorem [9] and the polynomial
Szemerédi Theorem [4], and some of these generalizations have yet to
be attained by other methods. More recent developments in ergodic
Ramsey theory closely parallel ideas in Green and Tao’s work; we re-
turn to this in Section 5.

To prove Theorem 3.1, Furstenberg showed that in any measure pre-
serving system, one of two distinct phenomena occurs to make the
measure of this intersection positive. The first is weak mixing,3 when
for any set E, µ(E ∩ T−nE) is approximately µ(E)2 for most choices
of the integer n. Then it can be shown that

µ(E ∩ T−nE ∩ T−2nE ∩ . . . ∩ T−(k−1)nE)

is approximately µ(E)k for most choices of n, which is clearly positive
when E is a set of positive measure. The opposite situation is rigidity,
when for appropriately chosen n, T n is very close to the identity. Then
T jnE is very close to E and

µ(E ∩ T−nE ∩ T−2nE ∩ . . . ∩ T−(k−1)nE)

is very close to µ(E), again giving positive intersection for a set E of
positive measure. One then has to show that the average along arith-
metic progressions for any function can be decomposed into two pieces,
one which exhibits a generalized weak mixing property and another
that exhibits a generalized rigidity property. One of the difficulties lies
in proving a structure theorem for the latter situation, showing that

3The system (X,X , µ, T ) is weak mixing if for all A,B ∈ X ,

lim
N→∞

1
N

N−1∑
n=0

∣∣µ (T−nA ∩B
)
− µ(A)µ(B)

∣∣ = 0 .
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this portion of the system can be reduced to a finite series of com-
pact extensions of a one point system (a Furstenberg tower) and then
proving a recurrence statement for this tower.

4. Gowers norms in combinatorics

In his proof of Szemerédi’s Theorem, Gowers [12] defined certain
norms, now referred to as Gowers (uniformity) norms, that capture
behavior along arithmetic progressions. We start with a description of
this key idea, explaining it in the combinatorial setup in this section
and in the ergodic version in the next section. To define the norms, we
introduce some notation.

For a positive integer N , let ZN := Z/NZ. If f : ZN → C is a
function, let E (f(x) |x ∈ ZN) denote the average value of f on ZN :

E (f(x) |x ∈ ZN) =
1

N

∑
x∈ZN

f(x) .

We also use a higher dimensional version of the expectation. For ex-
ample, by E(f(x, y) |x, y ∈ ZN), we mean iteration of the one variable
expectation:

E
(
E(f(x, y) |x ∈ ZN) | y ∈ ZN

)
.

Taking f to be the indicator function of a set E whose average on ZN

is at least δ, in this new terminology Szemerédi’s Theorem becomes:

Theorem 4.1 (Reformulated Szemerédi). Let 0 < δ ≤ 1 be a real
number and let k ≥ 2 be an integer. If N is sufficiently large and
f : ZN → R is a function with 0 ≤ f(x) ≤ 1 for all x ∈ ZN and
E (f(x) |x ∈ ZN) ≥ δ, then

(4.1) E
(
f(x)f(x+ r) . . . f(x+ (k − 1)r) |x, r ∈ ZN

)
≥ c(k, δ)

for some constant c(k, δ) > 0 which does not depend either on f or on
N .

At first glance, this appears to be a stronger version than the original
statement of Szemerédi’s Theorem, showing not only the existence of a
single arithmetic progression but of some positive multiple of N2 pro-
gressions. However, using some combinatorial trickery one can quickly
show that the two versions are equivalent.

The average of Equation 4.1 is similar to the average in Equation 3.1,
with the former being over ZN and the latter over Z. These averages
along arithmetic progressions are controlled by certain norms and we
now make this idea precise. The definition of the norms is motivated
by a variation on the classic van der Corput difference theorem:
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Lemma 4.2 (van der Corput Lemma for ZN). If f : ZN → C is a
function, then

|E(f(x) |x ∈ ZN)|2 = E(f(x)f(x+ h) |x, h ∈ ZN) .

Since each of these expectations is a finite sum, the proof of the
lemma is immediate by expanding both sides and using a change of
variable.

The dth-Gowers (uniformity) norm ‖f‖Ud of a function f : ZN → C
is defined inductively. Set

‖f‖U1 := |E(f(x) |x ∈ ZN)|

Thus for d = 1, ‖f‖Ud is only a seminorm.4 For d ≥ 2, we mimic
successive uses of the van der Corput Lemma and define

(4.2) ‖f‖Ud := E
(∥∥ffh

∥∥2d−1

Ud−1 |h ∈ ZN

)1/2d

,

where fh(x) = f(x+h). By definition, ‖f‖Ud is non-negative for d = 1
and therefore also for all higher d. Furthermore, Equation (4.2) shows
that the dth-Gowers norm is shift invariant, meaning that ‖f(x)‖Ud =
‖f(x+h)‖Ud for any h ∈ ZN . To justify the notation and terminology,
we need to check that the Gowers norms are actually norms.

It follows immediately from the definitions and a change of variable
that

(4.3) ‖f‖U1 =
(
E(f(x)f(x+ h) |x, h ∈ ZN)

)1/2

.

The second Gowers norm can also be expressed in familiar terms. Using
the Fourier expansion of f and computing, we have that

‖f‖U2 =

(∑
ξ∈ZN

∣∣∣f̂(ξ)
∣∣∣4)1/4

,

where f̂ denotes the Fourier transform of f . It follows that for d = 2,
‖f‖Ud is nondegenerate and so it is a norm.

For higher d, the situation is more complicated. To see that ‖f‖Ud

is a norm for d ≥ 2, we give an equivalent characterization of the dth-
Gowers norm as a certain average over a d-dimensional cube. This also
allows us to express the definition of the norm in a closed form. We
first need to introduce some more notation.

4A seminorm on a vector space V is a non-negative real valued function such
that ‖f + g‖ ≤ ‖f‖ + ‖g‖ and ‖cf‖ = |c| · ‖f‖ for all f, g ∈ V and all scalars c.
Thus unlike a norm, one may have ‖f‖ = 0 for some f 6= 0.
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We consider {0, 1}d as the set of vertices of the d-dimensional Eu-
clidean cube, meaning it consists of points ω = (ω1, . . . , ωd) with
ωj ∈ {0, 1} for j = 1, . . . , d. For ω ∈ {0, 1}d, define |ω| = ω1 + . . .+ ωd

and if ω ∈ {0, 1}d and h = (h1, . . . , hd) ∈ Zd
N , we define ω · h :=

ω1h1 + . . .+ωdhd. Then if f : ZN → C is a complex valued function, it
follows by inductively applying the definition in (4.2) that

(4.4) ‖f‖Ud := E

 ∏
ω∈{0,1}d

C |ω|f(x+ ω · h) |x ∈ ZN ,h ∈ Zd
N

1/2d

,

where C is the conjugation operator Cf(x) := f(x). Thus the Gowers
norms can be viewed as an average over the cube {0, 1}d.

By repeated applications of the Cauchy-Schwarz Inequality and the
definitions of the norms, one obtains the Gowers Cauchy-Schwarz In-
equality for 2d functions fω : ZN → C:
(4.5)∣∣∣∣∣∣E

 ∏
ω∈{0,1}d

C |ω|fω(x+ ω · h) |x ∈ ZN ,h ∈ Zd
N

∣∣∣∣∣∣ ≤
∏

ω∈{0,1}d

‖fω‖Ud .

From this, one can show that ‖f‖Ud is subadditive and so is a seminorm.
Furthermore, using the Gowers Cauchy-Schwarz Inequality, one has the
chain of inequalities

(4.6) ‖f‖U1 ≤ ‖f‖U2 ≤ . . . ≤ ‖f‖L∞ .

Since ‖f‖Ud is nondegenerate for d = 2, Inequality (4.6) implies that
‖f‖Ud is nondegenerate for all higher d, giving that the dth- Gowers
norm is actually a norm for d ≥ 2.

We can also rewrite the Gowers norms in notation that is closer
in spirit to the ergodic theoretic setup. Consider ZN endowed with
the transformation T (x) = x+ 1 mod N and the uniform measure m
assigning weight 1/N to each element of ZN . Then the definition of
Equation (4.4) becomes:
(4.7)

‖f‖Ud =

∫ ∏
ω∈{0,1}d

C |ω|f(T ω·hx) dm(x)dm(h1) . . . dm(hd)

1/2d

.

These norms are used by Gowers (as well as by Host and Kra [21]
and more recently by Green and Tao [15] and by Tao [28]) to control
the average along arithmetic progressions, meaning the quantity in
Equation (4.1). This type of control can be viewed as a generalized
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version of the von Neumann Ergodic Theorem, which states that the
average of a bounded function on a finite measure space converges in
mean to its integral. We formalize this control, as stated by Tao [28]:

Theorem 4.3 (Generalized von Neumann Theorem [28]). Let
k ≥ 2 be an integer, N be a prime number, and f0, . . . , fk−1 : ZN → C
be functions with ‖f0‖∞, . . . , ‖fk−1‖infty ≤ 1. Then∣∣E(f0(x)f1(x+ n) . . . fk−1(x+ (k − 1)n) |x, n ∈ ZN

)∣∣
≤ min

0≤j≤k−1
‖fj‖Uk−1 .

The proof of this theorem is based on an induction argument, using
the Cauchy-Schwarz Inequality and the van der Corput Lemma for ZN

(Lemma 4.2).
To prove Szemerédi’s Theorem, Gowers [12] studies the indicator

function 1A of a set A ⊂ ZN . As in Furstenberg’s proof, there are
two distinct phenomena to consider. If ‖1A − |A|/N‖Uk−1 is small,
then a constant function is substituted for 1A and the average along
arithmetic progressions is large. If ‖1A − |A|/N‖Uk−1 is large, then
the restriction of 1A to some sufficiently large subset of ZN has many
useful arithmetic properties and the average in Equation (4.1) is once
again large. As in Furstenberg’s proof, a structure theorem is needed
to analyze the second case: here the structure is a nested sequence
of arithmetic progressions. The difficulty in this proof lies in showing
that a usable version of the dichotomy between large and small always
occurs.

5. Gowers (semi-)norms in ergodic theory

Furstenberg’s proof of Theorem 3.1 left open the question of the
existence of the limit in the left hand side of Equation (3.1). In [21],
we show that this lim inf is actually a limit:

Theorem 5.1 (Multiple Convergence [21]). Assume that (X,X , µ,
T ) is a measure preserving probability system, k ≥ 1 is an integer, and
f1, f2, . . . , fk are bounded functions on X. Then the averages

(5.1)
1

N

N−1∑
n=0

f1(T
nx)f2(T

2nx) . . . fk(T
knx)

converge in L2(µ) as N →∞.

The existence of the limit for k = 1 is von Neumann’s ergodic theo-
rem, existence for k = 2 was proven by Furstenberg [8], and for k = 3
was proven with a technical assumption by Conze and Lesigne [5] and
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Furstenberg and Weiss [11], and in general by Host and Kra [20]. More
recently, Ziegler [32] has an alternate approach for all k.

The first step in proving Theorem 5.1 is showing that instead of
taking the average in the system (X,X , µ, T ), it suffices to consider
the average over some (ostensibly simpler) system (Y,Y , ν, S). This
amounts to proving a generalized von Neumann Theorem, as in Gowers’
proof. This idea is implicit in Furstenberg’s [8] proof of Szemerédi’s
Theorem and made explicit in the proof of Theorem 5.1.

In [21], we introduced seminorms that generalize the Gowers norms;
although the language is quite different, the form of the definition can
be taken to closely resemble that of the Gowers norms. We consider a
general probability measure preserving space (X,X , µ) with an invert-
ible measurable, measure preserving transformation T : X → X on it.
For a function f ∈ L∞(µ), we define (compare with Equation (4.2))

‖f‖U1 :=

∣∣∣∣∫ f(x) dµ(x)

∣∣∣∣
and inductively we define the dth-seminorm by

(5.2) ‖f‖2d

Ud := lim
N→∞

1

N

N−1∑
n=0

‖fT nf‖2d−1

Ud−1 .

To recover the Gowers norms, we take the space ZN with the trans-
formation x 7→ x+ 1 mod N and the uniform measure assigning each
element of ZN weight 1/N .

Once again, there is an alternate presentation, analogous to that
of Equation (4.7), as the integral with respect to a certain measure
and this second presentation makes many properties of ‖f‖Ud more
transparent. We need some notation to define this measure. (A reader
not interested in the technical definition of this measure can omit this
alternate presentation.)

Assume that (X,X , µ) is a probability space. If f ∈ L1(µ) and
Y ⊂ X is a sub-σ-algebra, then the conditional expectation of f on Y
is the Y-measurable function E(f | Y) such that∫

A

f dµ =

∫
A

E(f | Y) dµ

for all A ∈ Y .
Fix an ergodic5 measure preserving probability system (X,X , µ, T ).

Define X [d] = X2d
and write points of X [d] as x = (xω : ω ∈ {0, 1}d).

5The system (X,X , µ, T ) is ergodic if the only sets A ∈ X with µ(T−1A) = µ(A)
have measure 0 or 1. Every system has a decomposition into ergodic components
and so we can assume that the system being studied in Theorem 5.1 is ergodic.
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Let T [d] = T × T × . . . × T taken 2d times. There is a natural identi-
fication between X [d+1] and X [d] ×X [d], with a point x ∈ X [d+1] being
identified with (x′,x′′) ∈ X [d] ×X [d], where x′ω = xω,0 and x′′ω = xω,1

for each ω ∈ {0, 1}d.
For each integer d ≥ 0, we inductively define a T [d]-invariant measure

µ[d] on X [d]. Define µ[0] := µ. Assume that µ[d] is defined for some
d ≥ 0. Let I [d] denote the T [d]-invariant σ-algebra of (X [d], µ[d], T [d]).
Using the natural identification of X [d+1] with X [d] × X [d], define the
measure preserving (probability) system (X [d+1], µ[d+1], T [d+1]) to be the
relatively independent joining of (X [d], µ[d], T [d]) with itself over I [d]:
this means that the measure µ[d+1] is the measure such that for all
bounded functions F ′ and F ′′ on X [d], we have∫

X[d+1]

F ′(x′)F ′′(x′′) dµ[d+1](x) =

∫
X[d]

E(F ′ | I [d])E(F ′′ | I [d]) dµ[d] .

The measure µ[d+1] is invariant under T [d+1] and the two natural
projections on X [d] are each µ[d]. Using induction, this gives that each
of the 2d natural projections of µ[d] on X is equal to µ. Thus for a
bounded function f on X, the integral∫

X[d]

∏
ω∈{0,1}d

C |ω|f(xω) dµ[d](x)

is real and nonnegative, where as before Cf(x) := f(x). An alternate
definition of the seminorms is:

(5.3) ‖f‖Ud =

∫
X[d]

∏
ω∈{0,1}d

C |ω|f(xω) dµ[d](x)

1/2d

.

To show that these are seminorms, one proceeds in the same manner as
in the combinatorial setup, deriving a version of the Cauchy-Schwarz
Inequality (analogous to Equation (4.5)) and using it to show subad-
ditivity. Positivity follows immediately from definition (5.2). From
the definition of these measures and the Ergodic Theorem, we obtain
that this second definition is equivalent to the first definition given in
Equation (5.2).

The definition of Equation (5.3) can once again be viewed as an aver-
age over the cube {0, 1}d. A convergence theorem for general averages
along cubes is also proved in [21].

The first step in proving Theorem 5.1 is showing that the aver-
ages along arithmetic progressions are once again controlled by the
d-seminorms, meaning an analog of Theorem 4.3:
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Theorem 5.2 (Generalized von Neumann, revisited [21]). As-
sume that (X,X , µ, T ) is an ergodic measure preserving probability
system. Let k ≥ 2 be an integer and assume that f1, . . . , fk are bounded
functions on X with ‖f1‖∞, . . . ‖fk‖∞ ≤ 1. Then

lim sup
N→∞

∥∥∥∥∥ 1

N

N−1∑
n=0

f1(T
nx)f2(T

2nx) . . . fk(T
knx)

∥∥∥∥∥
2

≤ min
1≤j≤k

(j‖fj‖Uk) .

The added factor of j which appears on the right hand side of this
bound and not in Theorem 4.3 is due to the change in underlying
space. In Theorem 4.3, we assumed that N is prime; in this case, for
any integer j that is not a multiple of N , the map n 7→ jn is onto
in ZN , and this is not the case in Z. As for the earlier Generalized
von Neumann Theorem, Theorem 5.2 is proved using induction, the
Cauchy-Schwarz Inequality and a van der Corput lemma. This time
we need a Hilbert space variation of this lemma:

Lemma 5.3 (van der Corput Lemma, revisited [3]). Assume that
H is a Hilbert space with inner product 〈 , 〉 and norm ‖ · ‖, and that
ξn, n ≥ 0, is a sequence in H with ‖ξn‖ ≤ 1 for all n. Then

lim sup
N→∞

∥∥∥∥∥ 1

N

N−1∑
n=0

ξn

∥∥∥∥∥
2

≤ lim sup
H→∞

1

H

H−1∑
h=0

lim sup
N→∞

∣∣∣∣∣ 1

N

N−1∑
n=0

〈ξn+h, ξn〉

∣∣∣∣∣ .
By Theorem 5.2, one can consider an average along arithmetic pro-

gressions on an appropriate factor, rather than the whole space. We
make this notion more precise.

For a measure preserving system (X,X , µ, T ), the word factor is used
with two different but equivalent meanings. First, it is a T -invariant
σ-algebra of X . (Strictly speaking, this is a sub-σ-algebra, but through-
out we omit the use of the word “sub”.) Secondly, if (Y,Y , ν, S) is a
measure preserving system, a map π : X → Y is a factor map if π maps
µ to ν and S ◦ π = π ◦ T . Then Y is said to be a factor of X and the
two definitions coincide up to the identification of Y with π−1(Y). For
f ∈ L1(µ), we view E(f | Y) as a function on X and let E(f |Y ) denote
the function on Y defined by E(f |Y )◦π = E(f | Y). It is characterized
by ∫

Y

E(f |Y )(y) · g(y) dν(y) =

∫
X

f(x) · g(π(x)) dµ(x)

for all g ∈ L∞(µ).
The seminorms are used to define factors of the system (X,X , µ, T ).

One presentation of these factors is by defining their orthogonal com-
plements: for d ≥ 1, define Zd−1 to be the σ-algebra of X such that for
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f ∈ L∞(µ):

‖f‖Ud = 0 if and only if E(f | Zd−1) = 0 .

Thus a bounded function f is measurable with respect to Zd−1 if and
only if

∫
fgdµ = 0 for all functions g ∈ L∞(µ) with ‖g‖Ud−1 = 0. This

motivates an equivalent definition of the factors Zd with respect to a
dual norm. Namely, defining the dual norm ‖f‖(Ud)∗ by

(5.4) ‖f‖(Ud)∗ := sup
g∈L∞(µ)

{∫
X

fg dµ : ‖g‖Ud ≤ 1

}
,

we have that the space of functions with finite (Ud)∗ norms is a dense
subset (in L2) of the bounded functions that are measurable with re-
spect to Zd−1.

Letting Zj denote the factor associated to the σ-algebra Zj, we have
that Z0 is the trivial factor and Z1 is the Kronecker factor, meaning the
σ-algebra which is spanned by the eigenfunctions of T . Furthermore,
the sequence of factors is increasing (compare with Equation (4.6)):

Z0 ← Z1 ← Z2 ← . . .← X

and if T is weakly mixing, then Zd is the trivial factor for all d.
Theorem 5.2 states that the factor Zd−1 is a characteristic factor for

the average of Equation (5.1), meaning that the limit behavior of the
averages in L2(µ) remains unchanged when each function is replaced
by its conditional expectation on this factor. Thus it suffices to prove
convergence when one of the factors Zd is substituted for the original
system. For a progression of length k, this amounts to decomposing a
bounded function f = g+h with g = f−E(f | Zk−1). The function g is
the uniform component and has zero k−1 seminorm and so contributes
zero to the average along arithmetic progressions. The second term h
is the anti-uniform component and belongs to the algebra of functions
measurable with respect to the factor Zk−1 and must be analyzed via a
structure theorem for the characteristic factors. This decomposition of
an arbitrary bounded function into uniform and anti-uniform compo-
nents is unique. In the combinatorial setting, a similar decomposition
(see Section 6) can only be carried out approximately. Ergodic theory
is more precise than combinatorics in describing the second component
of this decomposition.

When the description of a characteristic factor is “simple”, one has
a better chance of proving convergence in this factor. For the given de-
composition, the description of the characteristic factor is as an inverse
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limit of nilsystems, meaning that it can be approximated arbitrarily
well by a rotation on a homogeneous space of a nilpotent Lie group.6

6. Quantitative ergodic theory

Tao [28] gave a new proof of Szemerédi’s Theorem, along the lines
of Furstenberg’s original proof, but proving it in the finite system ZN

rather than for an arbitrary measure space. This allows him to ex-
tract explicit bounds for N0(δ, k) in the finite version (Theorem 2.1),
although the bounds are nowhere near as good as those obtained by
Gowers [12].

Once again, a generalized von Neumann Theorem (analogous to The-
orems 4.3 and 5.2) is used to start the proof. Then, as in the ergodic
setup, an arbitrary bounded function f on ZN is decomposed into
pieces, each of which can be analyzed. This time the decomposition
is into a term with small Gowers norm and a structured component,
with the wrinkle that one also has to deal with a small error term.
The first term corresponds to a uniform component f − E(f | Z) for a
well chosen σ-algebra Z (similar to the use of a characteristic factor
in the ergodic setup) which has small Gowers norm and makes a small
contribution to the average in Equation (4.1). Since the space being
used is ZN , the σ-algebra Z is nothing more than a finite partition of
ZN : elements of a σ-algebra are unions of elements (also called atoms)
of some partition of ZN and a function is measurable with respect to
this σ-algebra if it is constant on each element of the partition. The
second term is the conditional expectation of f relative to Z, meaning
that it is the function measurable with respect to Z defined by

E(f |Z)(x) =
E(1A(x)f(x) |x ∈ ZN)

E(1A(x) |x ∈ ZN)
,

where A is the atom of Z containing x. This component is analyzed
using a form of recurrence similar to that needed for a Furstenberg
tower.

The second component of the decomposition, called the anti-uniform
functions by Tao, is essentially dual to the uniform component where

6If G is a k-step nilpotent Lie group and Γ is a discrete cocompact subgroup,
then a ∈ G naturally acts on G/Γ by left translation by Ta(xΓ) = (ax)Γ. The
Haar measure µ is the unique Borel probability measure on G/Γ that is invariant
under this action of G by left translations. For a fixed element a ∈ G, the system
(G/Γ,G/Γ, Ta, µ) is a k-step nilsystem. The structure theorem in [21] states that
the factor Zk−1, which is a characteristic factor for the average along an arithmetic
progressions of length k, is an inverse limit of such (k − 1)-step nilsystems.
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the anti-uniform (dual) norm ‖g‖(Ud)∗ is defined by (compare with
Equation (5.4))

‖g‖(Ud)∗ := sup
f : ZN→C

{|〈f, g〉| : ‖f‖Ud ≤ 1} .

The contribution of this term to the average is bounded from below by
van der Waerden’s Theorem,7 with the idea being that these functions
lie in a sufficiently compact space so that a finite coloring argument can
be used. Applying this idea to a function with positive expectation,
the average along arithmetic progressions is positive.

This proof follows Furstenberg’s proof closely. One advantage is the
elimination of the compactness argument, leading to explicit bounds on
the size of the set needed to guarantee the existence of a progression of
length k. The structure theorem corresponds to the tower of compact
extensions used by Furstenberg and does not need an understanding
of the precise structure of the chosen σ-algebra, such as the nilsystems
in the structure theorem of Host and Kra. However, a more precise
understanding of this structure should clarify the apparent link between
the anti-uniform functions of level k appearing in Tao’s proof and the
k-step nilsystems used to prove Theorem 5.1.

7. Arithmetic progressions in the primes

Green and Tao continue in this vein to prove the existence of arith-
metic progressions in the primes. The starting point is clear: study
the averages of Equation (4.1) for the indicator function of the primes.
However, since the primes have density 0, any function that is 0 other
than on the primes can not be bounded without its average on ZN be-
coming arbitrarily small as N tends to infinity. Since such a function
cannot be bounded independently of N , Szemerédi’s Theorem can not
be applied directly.

Instead, Green and Tao begin with the closely related von Mangoldt
function Λ(n), where

Λ(n) =

{
log p if n = pm for some m ∈ N and a prime p

0 otherwise ,

and make use of the fact that this function is more natural analytically
than Λ. Although the von Mangoldt function is supported on the
primes and their powers, the powers are sparsely enough distributed so

7Van der Waerden’s Theorem [31] states that if the integers are partitioned
into finitely many pieces, then one of these pieces contains arbitrarily long arith-
metic progressions. This theorem motivated Erdös and Turán [6] to conjecture
Szemerédi’s Theorem.
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that they only contribute a small error term in the calculations. This
function has had many uses in number theory; for example, the unique
factorization theorem for integers is equivalent to the statement

log n =
∑
d|n

Λ(d) for all positive integers n ,

and the Prime Number Theorem is equivalent to the statement

1

N

∑
1≤n≤N

Λ(n) = 1 + o(1) .

(Throughout, by o(1), we mean a quantity that tends to 0 as N →∞,
and when this quantity depends on other constants, we include them
as subscripts on o.)

The function Λ mostly avoids giving weight to arithmetic progres-
sions congruent to a mod q when a and q are not relatively prime. Such
arithmetic progressions are more dense when q has many small prime
factors, making Λ too irregularly distributed for their purposes. There-
fore Green and Tao are forced to modify Λ, quotienting out the small
primes and make it more evenly distributed over all congruence classes.
They then majorize the modified function by something pseudorandom
and much of the work is carried out for pseudorandom functions. The
precise definition and modification is given below, but the idea is that
the values of a pseudorandom function should be distributed so that
using any statistic to measure the values, one gets approximately the
same measurement as that arising from a random set of the same den-
sity.

The goal then becomes to extend Szemerédi’s Theorem, showing that
not only does a dense subset of the integers contain arbitrarily long
arithmetic progressions, but a dense subset of a pseudorandom collec-
tion of integers also contains arbitrarily long arithmetic progressions.
Green and Tao do this by “transferring” Szemerédi’s Theorem to a
more general setting: the hypothesis in Theorem 4.1 that f : ZN → R
satisfies 0 ≤ f(x) ≤ 1 is replaced by f being bounded by a more
general function ν : ZN → R+ with certain useful properties. (More
precisely, for each N ∈ N we have a function ν = νN : ZN → R+.)
The function ν : ZN → R+ is assumed to be a measure,8 meaning that
E(ν(x) |x ∈ ZN) = 1+o(1), and ν is also assumed to be pseudorandom.
They show:

8As noted by Green and Tao, the name measure is a misnomer, and ν should
more accurately be called a density relative to the uniform measure on ZN .
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Theorem 7.1 (Transference Theorem [15]). Let 0 < δ ≤ 1 be a real
number and let k ≥ 2 be an integer. If N is sufficiently large, ν : ZN →
R+ is a k-pseudorandom measure, and f : ZN → R is function with
0 ≤ f(x) ≤ ν(x) for all x ∈ ZN and E(f(x) |x ∈ ZN) ≥ δ, then

(7.1) E
(
f(x)f(x+r) . . . f(x+(k−1)r) |x, r ∈ ZN

)
≥ c(k, δ)−ok,δ(1) ,

where the constant c(k, δ) is the same as that in Theorem 4.1.

Other than the bounds on f , the only additional modification caused
by bounding f by a pseudorandom measure instead of the constant
function 1 is the introduction of the error term ok,δ(1), which tends to
0 as N →∞. The dependence of this error is only on k and δ.

Before giving an indication of the proof of Theorem 7.1, we make
the notion of a pseudorandom measure more precise. (A reader not
interested in the technical details can skip the next few paragraphs.)
The measure ν : ZN → R+ is said to be k-pseudorandom if ν satisfies
a k-linear forms condition and a k-correlation condition.

To define the linear forms condition, fix k, the length of the arith-
metic progression and assume that N is prime and larger than k. As-
sume that we have m linear forms ψi, 1 ≤ i ≤ m, with m ≤ k · 2k−1

and t variables with t ≤ 3k − 4. (The exact values of these constants
are not important for the proof; the importance lies in showing that a
particular choice of a pseudorandom function satisfies these conditions.
For this, it only matters that the values depend on nothing but k.) Let
L = (Lij) be an m× t matrix, whose entries are rational numbers with
numerator and denominator bounded in absolute value by k. By choice
of N , we can view the entries of L as elements of ZN (recall that N
is prime). Assume further that each of the t columns of L are not
identically zero and that the columns are pairwise independent. Let
ψi(x) = bi +

∑t
j=1 Lijxj denote the m linear forms, where x ∈ Zt

N and

bi ∈ ZN for 1 ≤ i ≤ m. The measure ν : ZN → R+ is said to satisfy
the (m, t, L)-linear forms condition if

E
(
ν (ψ1(x)) . . . ν(ψm(x)) |x ∈ Zt

N

)
= 1 + om,t,L(1) ,

where the dependence on N is assumed to be uniform in the choice
of the linear forms ψi and so in particular uniform in the choice of
the bi. The case m = 1 with ψ(x) = x corresponds to the measure ν
with E(ν) = 1 + o(1), and this is the bound used in the Reformulated
Szemerédi Theorem (Theorem 4.1). For higher m, the values of the
measure ν evaluated on linear forms up to a certain complexity are, on
average, independent. If there were no restriction on the complexity,
the measure would be close to the ergodic theoretic notion of weak
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mixing, meaning its values along any distinct linear forms would be,
on average, independent.

We now define the correlation condition. The measure ν : ZN → R+

is said to satisfy a 2k−1-correlation condition if for each m with 1 ≤
m ≤ 2k−1, there exists a weight function τ = τm : ZN → R+ with

E(τ q | z ∈ ZN) ≤ C(m, q)

for a constant C(m, q), for all 1 ≤ q <∞, and that

E
(
ν(x+ h1)ν(x+ h2) . . . ν(x+ hm) |x ∈ ZN

)
≤

∑
1≤i<j≤m

τ(hi − hj)

for all h1, h2, . . . , hm ∈ ZN .
The correlation condition arises in Goldston and Yildirim’s [17] work

and is used for specific estimates applied to the prime numbers. Al-
though the linear forms condition does not arise in their work, fortu-
nately their estimates also apply to ν satisfying this condition.

In some sense, the Transference Theorem can be thought of as a
generalization of Furstenberg’s Multiple Recurrence Theorem. In the
ergodic set up, a natural choice of measure is the uniform one, assigning
each integer in {1, . . . , N} the equal weight 1/N . This measure is in-
variant with respect to the shift map x 7→ x+1 mod N . In Green and
Tao’s generalization, the measure behaves in a pseudorandom manner
with respect to the shift. For a certain choice of R (discussed below),
to each number in {1, . . . , N} having no prime factors less than R, the
new measure assigns the weight logR/N , and in order to make the
measure more regular, it assigns an appropriately chosen small value
to each of the other numbers in {1, . . . , N}.

Lending credence to the idea that Szemerédi’s Theorem should hold
for a function bounded by a pseudorandom measure is the fact that a
pseudorandom measure is close to the constant function 1 in Gowers
norm:

Lemma 7.2 ([15]). Fix an integer k ≥ 1, let N > k be a prime number,
and assume that ν : ZN → R+ is a k-pseudorandom measure. Then

‖ν − 1‖Ud = o(1)

for all 1 ≤ d ≤ k − 1.

The broad outline of the proof of Theorem 7.1 is similar to that of
Tao’s proof of Szemerédi’s Theorem sketched in the last section, but
both the technical details and the combination of ideas from seemingly
unrelated areas of mathematics make it a significantly more ambitious
undertaking. The innovation is the reduction of Theorem 7.1 to Sze-
merédi’s Theorem. The key argument, again, is a structure theorem,
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but this time not only is there an error term in the decomposition, but
the decomposition is only valid on most of the space. Green and Tao
show:

Theorem 7.3 (Decomposition Theorem [15]). Let k ≥ 2 be an
integer, let 0 < ε � 1 be a small parameter, and let N = N(ε) be
sufficiently large. Assume that ν : ZN → R+ is a k-pseudorandom
measure and that f ∈ L1(ZN) is a function satisfying 0 ≤ f(x) ≤ ν(x)
for all x ∈ ZN . Then there exists a σ-algebra Z and an exceptional set
Ω ∈ Z with E(ν(x)1Ω(x) |x ∈ ZN) = oε(1) such that

‖1ΩC E(ν − 1 | Z)‖L∞ = oε(1)

and

‖1ΩC (f − E(f | Z))‖Uk−1 ≤ ε1/2k

,

where ΩC denotes the complement of Ω.

This means that outside a small subset Ω of ZN , a function f that is
bounded by a pseudorandom measure can be decomposed into a sum
of a uniform function g and an anti-uniform function h, plus a small
error term. The function g has small Gowers norm and corresponds
to f − E(f | Z) in the ergodic theoretic setup, while the non-negative
function h is bounded and corresponds to E(f | Z). Other than the er-
ror terms, this parallels the ergodic theoretic decomposition associated
to a characteristic factor described in Section 5 and the decomposition
used by Tao described in Section 6.

The proof of the Decomposition Theorem follows a complicated it-
erative procedure, designed to produce the σ-algebra Z. Starting with
the trivial σ-algebra B = {∅,ZN}, if the function f −E(f |B) has small
Uk−1 norm, the algorithm terminates. If not, an appropriate addition
is made to the σ-algebra B, taking care to increase E(f |B), yet keep
it uniformly bounded. This process is repeated until f − E(f |B) is
sufficiently small and the algorithm terminates.

The next ingredient in the proof of Theorem 7.1 is analogous to the
generalized von Neumann Theorem; it gives a way to control the contri-
bution of the Gowers uniform portion in the decomposition, meaning a
way to bound the contribution coming from a function with small Gow-
ers norm. Once again, the bound on the functions changes: instead of
being bounded by the constant 1, the functions are now bounded point-
wise by 1 plus a pseudorandom measure.

Theorem 7.4 (Pseudorandom Generalized von Neumann The-
orem [15]). Let k ≥ 2 be an integer, let N be a prime number, and
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assume that ν : ZN → R+ is a k-pseudorandom measure. Assume that
f0, . . . , fk−1 ∈ L1(ZN) are functions such that

|fj(x)| ≤ ν(x) + 1 for all x ∈ ZN , 0 ≤ j ≤ k − 1 .

Then∣∣E(f0(x)f1(x+ n) . . . fk−1(x+ (k − 1)n) |x, n ∈ ZN

)∣∣
= O

(
min

0≤j≤k−1
‖fj‖Uk−1

)
+ o(1) .

We are now ready to outline the proof of Theorem 7.1, still gloss-
ing over many technical details. We fix a function f that is bounded
by a pseudorandom measure and that has positive expectation on ZN .
Using the Decomposition Theorem, the expectation on the left hand
side of Equation (7.1), which is the average along arithmetic progres-
sions, is larger than the same expectation with 1ΩCf substituted for
f , where Ω is some small set. Ignoring the error term, we now use the
decomposition of this new function into g + h, where g is the Gowers
uniform portion and h is some bounded function. Much like the idea
of a characteristic factor in ergodic theory, we now want to discard the
Gowers uniform portion g and replace our function by h. Making the
substitution g + h for 1ΩCf , the expectation on the left hand side of
Equation (7.1) can be expanded as a sum of 2k expectations of the form

E(f0(x)f1(x+ n) . . . fk−1(x+ (k − 1)n |x, n ∈ ZN) ,

where each fi is equal either to g or to h. All terms but one contain
an occurrence of g in it and each term containing a g is small by the
Pseudorandom Generalized von Neumann Theorem. We are left only
with a single term making a large contribution to the expectation,
which is the only term with nothing but occurrences of the function h.
The good news is that now this function h is bounded and so the usual
Szemerédi Theorem applies. Furthermore, f and h have approximately
the same expectation, and in particular the expectation on ZN of h
is also positive. Thus by Szemerédi’s Theorem, the expectation in
Equation (7.1) with f replaced by h is positive. Therefore, the same
result holds for f .

Lastly we give an indication of the choice of the function f and
measure ν needed to use the Transference Theorem for the primes.
The function f is a variation on the von Mangoldt function, cut off
at a certain point, in order to make a function that is (vaguely speak-
ing) supported on primes of magnitude logN . Unfortunately, it does
not suffice to simply use a multiple of this function for ν, since as we
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noted earlier, the primes, and therefore any multiple of the von Man-
goldt function, are not uniformly distributed across all residue classes,
whereas a pseudorandom function is. Instead, the measure ν is taken
to have its support (again, vaguely speaking) on numbers n such that
all the prime factors of n − 1 are greater than some integer R. One
can view this measure as approximately logR times the characteristic
function of such numbers.

In the third century B.C., the scholar Eratosthenes came up with
a simple algorithm for listing all the prime numbers up to a given N ,
referred to as the sieve of Eratosthenes. Given a list of the numbers
between 1 and N , starting with 2, erase all multiples of 2 up to N ,
other thatn 2 itself. Call the remaining set P2. Returning to the
beginning, take the first number greater than 2 and erase all of its
multiples up to N , again other than the number itself. In general, the
level R almost primes PR(N) are defined to be the set of all numbers
between 1 and N that contain no nontrivial factors less than or equal
to R. Thus if R =

√
N , we have that P√N(N) consists exactly of the

prime numbers up to N . Mertens [24] proved that the size |PR(N)| is
approximately cN/ logR for some positive constant c. Combining this
with the estimate from the Prime Number Theorem that the number of
primes up to N is approximately N/ logN , we have that the density of
primes in the almost primes PR(N) is about a multiple of logR/ logN .
Therefore if R is a small power of N , then the primes have positive
density in the level R almost primes. This motivates the function and
measure Green and Tao use. For completeness, we give the technical
definitions.

Let W be the product of the primes up to some ω = ω(N), where
ω(N) tends to infinity sufficiently slowly so that Λ̃ has mean one
(ω(N) = log logN suffices). Taking place of the indicator function
of the primes is the modified von Mangoldt function Λ̃, defined by

Λ̃(n) =

{
φ(W )

W
log(Wn+ 1) when Wn+ 1 is prime

0 otherwise .

Thus the function Λ̃ is supported on the set

QW = {n ∈ Z : Wn+ 1 is prime} .
It suffices to find an arithmetic progression in QW , since if

{x, x+ n, . . . , x+ (k − 1)n}
is an arithmetic progression in QW , then

{Wx+ 1,W (x+ n) + 1, . . . ,W (x+ (k − 1)n) + 1}
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is an arithmetic progression in the primes with common difference Wn.
This modification is needed because the primes bounded by x are not
uniformly spread out in arithmetic progressions. For example, there is
only one prime congruent to 0 mod 2, while there are approximately
x/ log x congruent to 1 mod 2. Furthermore, if a and q are relatively
prime integers, the number of primes in the arithmetic progression a
mod q up to x is approximately x

log x
· 1

φ(q)
. If one considers integers n

with n ≡ a mod q and for which Wn+1 is prime, then there are none
only when q and Wa + 1 are not relatively prime and this can only
happen when q and W are relatively prime. This means that q has
no small prime factors and the set QW is more uniformly distributed
among the arithmetic progressions.

Green and Tao do not show directly that Λ̃ is k-pseudorandom, but
instead majorize it by a measure ν whose values are more uniformly
distributed and then are able to show that ν is k-pseudorandom. Be-
fore defining the measure ν, we need one more variation on the von
Mangoldt function. The truncated von Mangoldt function is defined to
be

ΛR(n) =
∑

d|n,d≤R

µ(d) log(R/d) ,

where µ is the Möbius function.9 The restriction d ≤ R is needed to
guarantee that the log remains positive. This is a cut off version of
the von Mangoldt function, since if R > n then ΛR(n) = Λ(n). This
useful approximation to Λ(n) has been widely used in analytic number
theory, notably by Selberg [26] to give strong upper bounds for the
number of primes predicted by an application of the Hardy-Littlewood
k-tuple Conjecture. More recently, Goldston and Yildirim [17] use it
in their work on gaps in the primes.

Fix R = Nk−12−k−4
. (One can think of this choice of R as N ε for

some ε < 1.) The measure ν : ZN → R+ is defined for 0 ≤ n < N to
be

ν(n) =

{
φ(W )

W
(ΛR(Wn+1))2

log R
for N/(2k(k + 4)!) ≤ n ≤ 2N/(2k(k + 4)!)

1 otherwise ,

9The Möbius function µ(n) is defined by µ(1) = 1, µ(n) = 0 if n is not a square
free integer and µ(n) = (−1)r if n is a square free integer and has r distinct prime
factors.
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where {0, 1, . . . , N−1} is naturally identified with ZN and φ denotes the
Euler totient function.10 We make a few comments on this definition.
The bounds on n are designed to avoid counting progressions that are
not progressions Z because they wrap around 0 in ZN , and the factors
φ(w)/w guarantee that one has the correct average as N →∞. Since
we are interested in majorizing Λ̃, the function ΛR is evaluated at
Wn+ 1.

One can quickly verify that this choice of ν majorizes the modified
von Mangoldt function Λ̃. The last major step is verifying that ν
is k-pseudorandom. This relies on techniques from analytic number
theory, using and extending recent results of Goldston and Yildirim [17]
on finding small gaps between primes. An alternate approach to this
portion of the proof is given by Tao in [29], using only elementary
properties of the primes and basic properties of the Riemann ζ function.

8. Further directions

At this time, Green and Tao’s Theorem seems out of the reach of
ergodic theory. All combinatorial number theorems that have been
proved using ergodic theory rely on some variant of Furstenberg’s Cor-
respondence Principle, which only applies to sets of integers with posi-
tive upper density. However, the many similarities between Green and
Tao’s approach and proofs in ergodic theory suggest that a connection
exists. The ultimate goal would be to use translations of the proof
techniques of Green and Tao to obtain new convergence results in er-
godic theory; in particular one may be able to use ergodic theory to
show the existence of some patterns in certain subsets of density zero.

Tao’s proof [28] of Szemerédi’s Theorem removes the compactness
argument needed in Furstenberg’s proof and replaces it by a lengthy
induction. This induction only needs finitely many steps, but the num-
ber of steps is not explicitly known. A better understanding of the
structure theorem used would probably improve the bounds that Tao
extracts with this method. It seems that finding the exact link between
the anti-uniform functions of level k and the k-step nilsystems found in
the work of Host and Kra [21] would clarify the connections between
the two fields and probably lead to new and interesting developments.

A natural question arises from these considerations. Bergelson and
Leibman [4] used ergodic theory to establish a polynomial Szemerédi

10The Euler totient function φ(n) is defined to be the number of positive integers
less than or equal to n that are relatively prime to n, with 1 being counted as
relatively prime to all numbers.
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type theorem 11 and perhaps it is possible to carry out a similar pro-
gram to that of Green and Tao for this situation. Namely, prove a
transference polynomial Szemerédi Theorem and show that not only
do subsets of the integers with positive upper density contain poly-
nomial patterns, but also dense subsets of pseudorandom sets contain
polynomial patterns. This would prove, for example, that there exist
infinitely many triples (p, k, n) of integers with p, n ≥ 1 and k > 1 such
that p, p+n, p+n2, . . . , p+nk consists only of prime numbers. Finding
polynomial patterns in the primes seems to have the added difficulty
of lifting the result from ZN to Z.

One can also hope to use some variation of Green and Tao’s method
to study the existence of other patterns in the primes, such as pairs of
primes p, p+ 2 (the twin prime conjecture) or pairs of primes p, 2p+ 1.
Closer in spirit to arithmetic progressions, one might look for infinitely
many pairs (p, d) with p a prime and d a positive integer such that
p, p+ 2d, p+ 4d, 2p+ d are all prime.
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588.

[13] A. Granville. Personal communication.
[14] B. Green. Roth’s Theorem in the primes. To appear, Ann. Math.
[15] B. Green and T. Tao. The primes contain arbitrarily long arithmetic pro-

gressions. To appear, Ann. Math.
[16] B. Green and T. Tao. A bound for progressions of length k in the primes.

Preprint.
[17] D. Goldston and C. Y. Yildirim. Small gaps between primes, I. Preprint.
[18] G. H. Hardy and J. E. Littlewood. Some problems of “partitio numerorum”

III: on the expression of a number as a sum of primes. Acta Math., 44
(1923), 1–70.

[19] D. R. Heath-Brown. Three primes and an almost prime in arithmetic pro-
gression. J. Lond. Math. Soc. (2), 23 (1981), 396–414.

[20] B. Host and B. Kra. Convergence of Conze-Lesigne Averages. Erg. Th. &
Dyn. Sys., 21 (2001), 493–509.

[21] B. Host and B. Kra. Nonconventional ergodic averages and nilmanifolds.
Ann. Math.161 (2005), 397–488.

[22] B. Host and B. Kra. Convergence of polynomial ergodic averages. Isr. J.
Math.149 (2005), 1–19.

[23] A. Leibman. Convergence of multiple ergodic averages along polynomials
of several variables. Isr. J. Math.146, 303–316.

[24] F. Mertens. Ein Beitrag zur analytischen Zahlentheorie. Journal für Math.,
78 (1874), 46–62.

[25] A. Moran, P. Pritchard and A. Thyssen. Twenty-two primes in arithmetic
progression. Math. Comp., 64 (1995), 1337–1339.

[26] A. Selberg. The general sieve method and its place in prime number theory.
Proc. ICM, vol 1, Cambridge (1950), 286–292.
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