COMPLEXITY OF SHORT RECTANGLES AND PERIODICITY

VAN CYR AND BRYNA KRA

ABSTRACT. The Morse-Hedlund Theorem states that a bi-infinite sequence n
in a finite alphabet is periodic if and only if there exists n € N such that
the block complexity function P,(n) satisfies P,(n) < n. In dimension two,
Nivat conjectured that if there exist n,k € N such that the n x k rectangular
complexity Py (n, k) satisfies P,(n,k) < nk, then n is periodic. Sander and
Tijdeman showed that this holds for £ < 2. We generalize their result, showing
that Nivat’s Conjecture holds for £ < 3. The method involves translating the
combinatorial problem to a question about the nonexpansive subspaces of a
certain Z2? dynamical system, and then analyzing the resulting system.

1. N1vAT’S CONJECTURE FOR COLORINGS OF HEIGHT 3

1.1. Background and statement of the theorem. The Morse-Hedlund The-
orem [8] gives a classic relation between the periodicity of a bi-infinite sequence
taking values in a finite alphabet A and the complexity of the sequence. For higher
dimensional sequences 1 = (n(i): 7t € Z%) with d > 1 taking values in the finite
alphabet A, a possible generalization is the Nivat Conjecture [9]. To state this
precisely, we define n: Z¢ — A to be periodic if there exists m € Z% with 1 # 0
such that n(i + m) = n(iA) for all 7 € Z¢ and define the rectangular complezity
P,(ni,...,nq) to be the number of distinct ny x ... X ng rectangular colorings
that occur in 7. Nivat conjectured that for d = 2, if there exist n,k € N such
that P,(n,k) < nk, then 7 is periodic. This is a two dimensional phenomenon, as
counterexamples for the corresponding statement in dimension d > 3 were given
in [I1]. There are numerous partial results, including for example [I1], [6, [10] (see
also related results in [2,[BL[5]). In [4] we showed that under the stronger hypothesis
that there exist n,k € N such that P,(n, k) < nk/2, then 7 is periodic.

We prove that Nivat’s Conjecture holds for rectangular colorings of height at
most 3:

Theorem 1.1. Suppose n: Z2 — A, where A denotes a finite alphabet. Assume
that there exists n € N such that P,(n,3) < 3n. Then n is periodic.

If there exists n € N such that P,(n,1) < n, periodicity of n follows quickly from
the Morse-Hedlund Theorem [§]: each row is horizontally periodic of period at most
n and so n! is an upper bound for the minimal horizontal period of 7. When there
exists n € N such that P,(n,2) < 2n, periodicity of n was established by Sander
and Tijdeman [I2]. The extension to colorings of height 3 is the main result of this
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article. By the obvious symmetry, the analogous result holds if there exists n € N
such that P,(3,n) < 3n.

1.2. Generalized complexity functions. To study rectangular complexity, we
need to consider the complexity of more general shapes. As introduced by Sander
and Tijdeman [I1], if S C Z? is a finite set, we define P, (S) to be the number of
distinct colorings in n that can fill the shape S. For example, P, (n, k) = P (Rn ),
where R, = {(z,y) € Z?: 0 <z < n,0 <y < k}. Similar to methods introduced
in [4], we find subsets of R, 3 (the generating sets) that can be used to study peri-
odicity. Using the restrictive geometry imposed by colorings of height 3, we derive
stronger properties that allow us to prove periodicity only using the complexity
bound 3n, rather than 3n/2 as relied upon in [4].

1.3. Translation to dynamics. Asin [4], we translate the problem to a dynamical
one. We define a dynamical system associated with n: Z2 — A in a standard way:
endow A with the discrete topology, X = AZ’ with the product topology, and define
the Z2-action by translations on X by (T%)(Z) := n(Z+a) for @ € Z*>. With respect
to this topology, the maps T%: X — X are continuous. Let O(n) := {T%y: i € 7}
denote the Z2-orbit of n € A% and set X, := O(n). When we refer to the dynamical
system X, we implicitly assume that this means the space X, endowed with the
Z?-action by the translations T%, where @ € Z?. Note that in general O(n) \ O(n)
is nonempty.

The dynamical system X, reflects the properties of . An often used fact is that
if F C Z2 is finite and f € X,,, then there exists @ € Z? such that (T%)|p = fIF,
where by -[  we mean the restriction to the region F'. So, for example, if n satisfies
some complexity bound, such as the existence of a finite set S C Z? satisfying
P,(S) < N for some N > 1, then every f € X, satisfies the same complexity
bound. Moreover, if 7 is periodic with some period vector, then every f € X, is
also periodic with the same period vector. Similarly, if @ € Z2 and F C Z?2, there is
a natural correspondence between a coloring of the form (T~%f)[ and a coloring
fIF + @

Characterizing periodicity of n € AZ* amounts to studying properties of its orbit
closure X,,. In particular, note that 7 is doubly periodic if and only if it has two
non-commensurate period vectors, or equivalently X, is finite.

1.4. Expansive and nonexpansive lines. Restricting a more general definition
given by Boyle and Lind [I] to a dynamical system X with a continuous Z2-action
(T%: i € R?) on X, we say that a line £ C R? is an ezpansive line if there exist
r > 0and § > 0 such that whenever f,g € X satisfy d(T%f, T%g) < § for all i € Z?
with d(@,£) < r, then f = g. Any line that is not expansive is called a nonexpansive
line.

For the system X = A% with the continuous Z2-action on X by translation
(sometimes called the full A-shift), it is easy to see that there are no expansive
lines. However, more interesting behavior arises when we restrict to X,,.

Boyle and Lind [I] proved a general theorem that nonexpansive lines (and, more
generally, subspaces) are abundant. In the context of X, with the continuous Z2-
action on X, by translation, this theorem implies that for infinite X, there exists
at least one nonexpansive line. Rephrased in our context the Boyle and Lind result
becomes:
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Theorem 1.2 (Boyle and Lind [1]). For n: Z?> — A, n is doubly periodic if and
only if there are no nonexpansive lines for the Z%-action by translation on Xy

In [4], we further characterized the situation with a single nonexpansive line:

Theorem 1.3 (Cyr and Kra []). Let n € A%Z. If there ewists R, i such that
P,(Ry 1) < nk and there is a unique nonezpansive line for the Z*-action by trans-
lation on X,,, then n is periodic but not doubly periodic.

Thus Theorem [I.1]follows once we show that there can not be more than a single
nonexpansive line, making its proof equivalent to showing:

Theorem 1.4. If n: Z2 — A and there exists R, . such that P,(Rnx) < nk for
some k < 3, then there is at most one nonexpansive line for the dynamical system
Xy.

The proof of this result occupies the remainder of the paper.

1.5. Conventions. Throughout the paper, we assume that n: Z?> — A, where A
denotes a finite alphabet with |A| > 2 and X,, = O(n) denotes the associated
dynamical system, endowed with the continuous transformations T% for @ € Z2.
We do not explicitly mention this hypothesis again. However, each time we make
an assumption on the complexity, in particular the existence of n € N such that
P,(R,3) < 3n, we make this explicit.

2. GENERATING AND BALANCED SETS

2.1. Generating sets. We review some definitions from [4], adapted to our current
problem.

If S € R?, we denote the convex hull of S by conv(S). We say S C Z? is convex
if S = conv(S) N Z? and in this case we set dS to be the boundary of conv(S). A
boundary edge of S is an edge of the convex polygon convS and a boundary vertex
is a vertex of convS. We denote the set of boundary edges by E(S) and the set of
boundary vertices by V(S). Our convention is that if conv(S) has zero area, then
ES)=0.

If the area of conv(S) is positive, we orient the boundary of S positively. We
also consider infinite, convex sets S with an associated interior, and we orient the
boundary of conv(S) such that the interior is on the left. This allows us to refer
to a directed line as being parallel to a boundary edge of S. We say two directed
lines are parallel if the (undirected) lines they determine are parallel and, as directed
lines, they have the same orientation. We say they are antiparallel if they determine
parallel (undirected) lines, but are endowed with opposite orientations.

Definition 2.1. If S C Z? is convex and if u,v € E(S) and uNv # 0 then the
positive orientation on 9S gives an ordering to the set {u,v}. If v is the larger
(with respect to this ordering) of the two edges, we say that v is the successor edge
to u, and that u is the predecessor edge to v. In this case we define succ(u) := v and
pred(v) := u. If uy,ug,...,u, € E(S) are distinct, we say that {ui,us,...,u,} is
connected if uy Uug U --- Uu, is a connected subset of R2.

If S C Z?, then |S| denotes the number of elements of S. We define the S-words
of  to be
Wy(S) = {(T%)ls: i@ € Z*}.
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Following Sander and Tijdeman [I1], we define the n-complezity of a set S C Z? by
Py(8) == [Wy(S)I.
As in M), we define the n-discrepancy function D, on the set of nonempty, finite
subsets of Z2 by
Dy(8) := Fy(S) = |S]-
For W C Z2, by an n-coloring of W we mean (T%n)[yy for some @ € Z2?, and

when 7 is clear from the context, we omit it from the terminology and refer to a
coloring of W.

Definition 2.2. If §; C Sy C Z? are sets and a € X,;, we say that alg, extends
uniquely to an n-coloring of Sy if for all € X, such that alg, = B[s,, we have
that als, = B1S,. Otherwise, we say that the coloring alg, extends non-uniquely
to an m-coloring of Ss.

Definition 2.3. If S C Z? is a finite set, then = € S is -generated by S if every
n-coloring of S\ {z} extends uniquely to an n-coloring of S. A nonempty, finite,
convex subset of Z2 for which every boundary vertex is n-generated is called an
n-generating set.

We note that if S is an 7-generating set and ¢ € Z?2, then S + ¥ is also an 7-
generating set. Similarly if S is an n-generating set and a € X, then S is also an
a-generating set.

Lemma 2.4. Suppose S C Z? is finite, |S| > 2, and v € S. If x is n-generated by

S, then D, (S\{z}) = D,(S)+1. If x is not n-generated by S, then D,(S\{z}) <
D, (S).

Proof. If x is n-generated by S, then P, (S \ {z}) = P,(S). Then

Dy(S\{z}) = Py(S\{a}) = S|+ 1= Py(5) — S|+ 1= Dy(S) + 1.
If = is not n-generated by S, then P,(S \ {z}) < P,(S). Thus

Dy(S\A{z}) = Py(S\ {z}) = [S[+ 1 < Py(S) = [S] + 1= Dy(S) + 1.
Since D, (S \ {z}) and D, (S) are both integers, D, (S \ {z}) < D,(S). O
Corollary 2.5. Suppose S C Z? is finite and py,...,p; € S. Then D, (S \
{p1,- - ps}) < Dp(S) +J-

2.2. Nonexpansiveness. We reformulate the definition of expansive, and more
importantly nonexpansive, in the context of a particular configuration n. While
this is a priori weaker than Boyle and Lind’s definition of expansiveness introduced
in Section it is easy to check that they are equivalent in the symbolic setting:

Definition 2.6. A line ¢ C R? is a nonexpansive line for n (or just a nonezpansive
line when 7 is clear from the context) if for all » € R, there exist f,, g, € X, such
that f,. # g,, but

[ (@) = g, (i) for all @ € Z* such that d(i, ) < 7.

We say that ¢ is an expansive line for n (or just an expansive line) if it is not a
nonexpansive line.

If £ is a directed line, let H(¢) C R? be the half-plane whose (positively oriented)
boundary passes through the origin and is parallel to . We say that a directed line
¢ is a nonexpansive direction for n (or just a nonexpansive direction when 7 is clear
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from the context) if there exist f,g € X,, such that f # g but fTH @) = 91 H(0)-
We say ¢ is an expansive direction for n (or just an expansive direction) if it is not
a nonexpansive direction for 7.

Remark 2.7. The set of expansive lines (similarly expansive directions, nonexpan-
sive lines, and nonexpansive directions) is invariant under translations in R2.

More generally, the same definitions apply in an arbitrary subshift, and not just
the subshift generated by a single n. We use this to give an example to illustrate
the difference between expansive lines and expansive directions:

Example 2.8. Let X be the Ledrappier 3-dot system [1]:
X = {n € {0, 1}% : na,y) + (e + L,y) +nlz,y — 1) =0 (mod 2)}.

Then X is a closed subshift of {0,1}%",
Let n € X, a < b be integers, and let

S :={(r,y) €Z*: a <y <b}

be a horizontal strip in Z2. By the definition of X, the restriction of 1 to S extends
uniquely to the half-plane

{(z,y) € 2 y <b}.
It does not, however, extend uniquely to all of Z2, meaning that we cannot recover
7 from its restriction to the strip S. As this holds for any horizontal strip (see [1]

Example 2.8]), the z-axis is a nonexpansive line for X.
Set

H™ = {(x,y) €Z*: y <0};
HT = {(z,y) €Z*:y>0}.

Taking the orientation on each of H~ and H™ such that the interior is on the left,
the boundary of H™ is a leftward-oriented horizontal line and the boundary of H
is a rightward-oriented horizontal line. Fixing n € X, we can recover n from its re-
striction to H' (using the rules defining X) but cannot recover 7 from its restriction
to H~. Therefore the leftward orientation on the z-axis is a non-expansive direc-
tion for X, while the rightward orientation on the z-axis is an expansive direction
for X.

Expansive (and nonexpansive) lines are closely related to expansive (and nonex-
pansive) directions; this is clarified in Proposition m

We summarize properties of generating sets proved in [4] that we use here. As
the setting is slightly different, for completeness we include proofs:

Proposition 2.9 ([4], Lemmas 2.3 and 3.3). Suppose there exists n € N such that
P, (Ry3) < 3n. Then there exists an n-generating set S C Ry, 3 with the property
that

(1) if 8’ C S is nonempty and convez, then D, (S’) > D,(S) + 1.

Moreover, for any nonexpansive direction £, there is a boundary edge wy € E(S)
that is parallel to £.

(In fact this proposition holds for i such that there exist n, k > 1 with P, (n, k) <
nk, but we do not need this more general result in our setting.)
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Proof. By assumption, D, (R,3) < 0. Let S C R, 3 be a convex set which is
minimal (with respect to the partial ordering by inclusion) among all convex subsets
of R, 3 whose discrepancy is nonpositive. Since |A| > 2, the discrepancy of a set
with a single element is [A| — 1 > 0, and so S contains at least two elements. In
particular for any « € V(S), the set S\ {z} is nonempty and convex. If x € V(S)
is not n-generated by S, then D, (S \ {z}) < D,(S) by Lemma Therefore, by
minimality of S, if z € V(S) then x is n-generated by S. This establishes that S is
an n-generating set. Claim follows from the minimality of S.

Finally, suppose £ is a directed line that is not parallel to any of the edges of S.
Without loss of generality, we can assume that ¢ points either southwest or south
(all other cases are similar). We claim that ¢ is expansive for 7, thereby establishing
the second part of the proposition.

Suppose this does not hold. Let H C R2? be a half-plane whose (positively
oriented) boundary edge is parallel to £. Let ¢y be the translation of ¢ that passes
through (0,0) and for all ¢t € R, set £ := £y + (¢,0). Since ¢ is nonexpansive for 7,
there exist f,g € X,, such that f # g but flg = glg. Let A :={d € Z*: f(u) #
g(@)} and set

tmax :=sup{t € R: £yt N A #£ 0}.
Since f[g = gl i and ¢ points southwest or south, we have that ¢,,,x < co. Since ¢
is not parallel to any of the edges of S, there is a vertex xz, € V(S) and a half-plane
whose boundary is parallel to ¢ such that S\ {z,} is contained in this half-plane
but z; is not. If & NA # 0, let Umax € bt NA. There is a translation of S that
takes ¢ t0 Umax and S\ {z,} is translated to the region on which f and g coincide.
But this is a contradiction of the fact that S is n-generating, as x, is n-generated by
S. If instead ¢;, N A = 0 let d be the distance from z, to the half-plane separating
xp from S\ {z¢}. Let @ € A be a point such that d(@, £, ) < d/2. Then there is
again a translation of S taking xy to @ and S\ {a,} is translated to the region on
which f and g coincide. Once again, this is a contradiction of z, being n-generated.
Thus /¢ is an expansive direction for 7, completing the proof. O

Corollary 2.10. Suppose there exists n € N such that P,(Ry 3) < 3n and S is the
n-generating set constructed in Proposition . Then for any w € E(S), we have

D, (S \w) > Dy(S) + 1.

Proof. If E(S) # 0, then conv(S) has positive area (recall our convention that if
conv(S) has zero area then the edge set is empty), and so by we are done. [

Proposition 2.11. Suppose there exists n € N such that Py(Ry3) < 3n. If { is
a nonexpansive line for n, then at least one of the orientations on { determines a
nonezxpansive direction for n. Ifg is an expansive line for n, then both orientations
on ¢ determine expansive directions for 1.

Proof. Assume ¢ is a nonexpansive line. For each r € N, let f,, g, € X,, be such
that f,. # g, but f,.(@) = g.(@) for all d(u,£) < r. Let

R(r) :=sup{R > 0: f.(4) = g,(1) for all d(u,!) < R}.

Let @, € Z? be such that f,.(7,.) # ¢,(¥.) and such that the distance d(%,,f) <
R(r)+1. We have r < R(r) < d(#,,¢) < R(r)+1 < co. By passing to a subsequence,
choose r1,73,... such that @, all lie in the same connected component of R? \ 4.
Define f,, = f,, o T% and similarly §,, = g,, o T%i. Then f,,(0,0) # g..(0,0)
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but f,, (@) = g, (@) for all {@ € Z*: d(i@,¢ — @,,) < R(r;)}. The distance from the
set {@ € Z*: d(@,{ — ¥.,) < R(r;)} to the origin is at most 1, because d(@,,,£) <
R(r;) + 1. By compactness of X,, and passing again to a subsequence (which, by
abuse of notation, we continue to call r1,rs,...), we can assume that the colorings
fri and §,, both converge. By construction, the limits disagree at (0,0) but agree
on the set

(o oo o]

() U@ € 2*: d(ii, ¢ - 5.)) < R(r))},

i=1j=i
which is a halfplane (of distance at most 1 from the origin) bordered by a translation
of £. This implies that at least one orientation on ¢ makes it into a nonexpansive
direction. This establishes the first part of the proposition.

Since half-planes contain arbitrarily wide strips, the second part of the proposi-

tion is immediate. (]

Corollary 2.12. Suppose there exists n € N such that Py(Rn3) < 3n. If{ is a
nonezxpansive line for n, then £ has rational slope.

Proof. Let £ be a nonexpansive line for 77. By Proposition [2.11] at least one of the
orientations on ¢ determines a nonexpansive direction for 7. By Proposition [2.9]
there exists an n-generating set S C R, 3 and there is a (positively oriented) edge
wy € E(S) parallel to £. The two endpoints of w, are both boundary vertices of S,
and so in particular are integer points in R, 3. It follows that the line determined
by ¢ has rational slope. O

Proposition shows that if ¢ is a nonexpansive line for 7, then there is an
orientation on ¢ that determines a nonexpansive direction for . We do not know, a
priori, that both orientations on ¢ determine nonexpansive directions for 7. In the
sequel, this is a significant hurdle: we put considerable effort into the construction
of particular sets (Proposition which can be used to show (Proposition
that when there exists n € N such that P, (R, 3) < 3n, it is indeed the case that
both orientations of a nonexpansive line for 7 determine nonexpansive directions.

Proposition 2.13. Suppose there exists a finite, convex set S C Z? and an edge
w € E(S) such that

D, (S\w) > Dy(S).
Then there are at most lwNS| — 1 n-colorings of S\ w that do not extend uniquely
to an m-coloring of S.

Proof. Since |S\ w| =S| —|wnNS§|,
Py(S\w) =S|+ |wNS|=Dy,(S\w) > Dy(S) =P,(S) — |S|.

Therefore P, (S) < P,(S\w)+|wNS|—1. On the other hand, defining 7: W, (S) —
W, (S \ w) to be the natural restriction, the number of 7-colorings of S \ w that
extend non-uniquely to an n-coloring of S is the number of points in W, (S \ w)

whose preimage under 7 contains more than one element. Since 7 is surjective, this
is at most [Wy,(S)|—|Wy(S\w)|. In other words, it is at most P, (S)—P,(S\w). O

Proposition 2.14. Suppose there exists n € N such that Py(Ry, 3) < 3n. If £ is a
nonexpansive line for n, S C Z?* is a finite set, and x € V(S) is n-generated by S,
then there is no translation of ¢ that separates x from conv(S \ {z}).
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Proof. The argument is a straightforward modification of the proof of (/1)) in Propo-
sition 0

2.3. Balanced sets. We define the types of sets that are used to show that under
the complexity assumption, both orientations of a nonexpansive line for 7 determine
nonexpansive directions:

Definition 2.15. Suppose / is a directed line. A finite, convex set S C Z? is
{-balanced if

(i) There is an edge w € E(S) parallel to ¢;
(ii) Both endpoints of w are n-generated by S;

(ili) The set S satisfies D, (S \ w) > Dy(S);

(iv) Every line parallel to ¢ that has nonempty intersection with S intersects

S in at least |wN S| — 1 integer points.

Note that an ¢-balanced set is not necessarily an 7-generating set.

Definition [2.15] is slightly less general than the definition of an ¢-balanced set
used in [4], where an ¢-balanced set is not necessarily assumed to contain an edge
parallel to ¢ (the first condition).

The main result of this section is Proposition where we use balanced sets
to deduce the periodicity of certain elements of X,,. In [4], we relied on the stronger
assumption that P, (R, 1) < % to show the existence of balanced sets (as well as
other uses related to the existence of generating sets with further properties). Due
to the simplified geometry available in rectangles of height 3, we are able to avoid
the stronger assumption.

We start by showing the existence of balanced sets:

Proposition 2.16. Suppose there exists n € N such that Py(R,3) < 3n and
suppose that £ C R? is a nonexpansive direction for n. If n is aperiodic, then there
exists an £-balanced subset.

Proof. Suppose ¢ is a nonexpansive direction for 1. We make some simplifying
assumptions. First, if n = 1 then by the Morse-Hedlund Theorem [§], 7 is periodic
and so we can assume that n > 1. Second, if P, (R, 2) < 2n, then by Sander and
Tijdeman’s Theorem [12], 7 is periodic and so we can assume that P, (R, 2) > 2n,
meaning that

(2) Dy(Ry3) <0< Dy(Ry2).

Finally, we can assume that P, (R(,—1),3) > 3n — 3, meaning that n is chosen to be
the minimal integer satisfying P, (R, 3) < 3n.

We consider three cases depending on the direction of ¢: vertical, horizontal, and
neither vertical nor horizontal.

By Proposition there exists an n-generating set S C R,, 3 and there is an
edge w € FE(S) parallel to £. If |wN S| =2, then S is ¢-balanced and we are done.
Thus it suffices to assume that |wN S| > 3.

Assume £ is vertical. Suppose that ¢ points downward (the case that ¢ points up-
ward is similar). Then since a vertical line cannot intersect a subset of R,, 3 in more
than three places, |w N S| = 3. Observe that (0,0) and (0,2) are both n-generated
by R, 3 since S can be translated into 12, 3 in such a way that w is translated to
the set {(0,0),(0,1),(0,2)}. In this case R, 3 is ¢-balanced.
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Assume £ is horizontal. Suppose that ¢ points leftward (the case that ¢ points
rightward is similar). For 0 <a <b<n—1, set

Sjap) = RuoU{(7,2): a <2 < b}

Let S be a minimal set of this form (with respect to the partial ordering by inclusion)
satisfying Dn(g") < D, (R, 3); say S = Slag,bo] for some ag < by. Suppose first that
ao = bo. If (ag, 2) is n-generated by S, Propositioncontradicts the fact that the
leftward horizontal is a nonexpansive direction for n. If (ag,2) is not n-generated
by S, then D, (R, 2) < Dn(g) < D,(Rp3); a contradiction of (2). Therefore we
can assume ag < by and D,,(g) < Dy(Rn3) < Dy(Ryz2). By minimality and
Lemma the points (ag,2) and (bo,2) must both be 7-generated by S. In this
case S is an (-balanced set.

Assume £ is neither vertical nor horizontal. Making a coordinate change of the
form (x,y) — (£x, £y) if necessary, we can assume that ¢ points southwest. A line
parallel to ¢ cannot intersect R,, 3 in more than three places and so |wNS| = 3. Since
¢ is not horizontal, w N'S can have at most one integer point at any y-coordinate
and thus w N S has exactly one integer point at each of the three y-coordinates
in R, 3. Therefore there exists an integer a > 0 such that (—a,—1) is parallel to
£. Tt follows immediately that a < n/2. Since a translation of any 7-generating
set is also 7-generating, without loss of generality we can assume the bottom-most
integer point on w is (0,0).

We claim that any n-coloring of R,, 3 extends uniquely to an 7-coloring of the
set R, 3U{(-1,0),(-2,0),...,(—a,0)}. Set Ty := R, 3 and for 0 < i < a, define

T;:=Rp3U {(=1,0),(=2,0),...,(=1,0)}.

Then the set S— (i, 0) is contained in 7; and (S\{(0,0)})— (%, 0) is contained in T;_;.

Since S — (¢,0) is an n-generating set, the color of vertex (—i,0) can be deduced

from the coloring of S\ {(0,0)} — (¢,0). Thus for 0 < i < a, every 7-coloring of

T;-1 extends uniquely to an 7-coloring of T;. Inductively, every n-coloring of R, 3

extends uniquely to an n-coloring of T, and the claim follows (see Figure .
Therefore, P,(T,) = P,(R,,3) and we obtain

D, (T,) = Dy(Rp3) —a < —a.

Observe that any line parallel to ¢ that intersects {(0,2), (1,2),...,(a—1,2)} must
intersect T, in precisely one integer point. Inductively applying Proposition [2.14]
we have that for each 0 < i < a, the point (i,2) is not n-generated by the set
T, \{(0,2),...,(:—1,2)} and so D, (T, \ {(0,2),...,(i—1,2)}) < D, (T5). Setting
To =Ty \ {(0,2),(1,2),...,(a—1,2)}, it follows that D, (7,) < —a. Define

So =T, \{(0,n—a),(0,n—a+1),...,(0,n—1)}.

By Corollary 2.5 D, (So) < Dy(T,) 4+ a < 0. (See Figure [I)). Moreover, every line
parallel to ¢ that has nonempty intersection with Sy intersects it in at least two
places.

We claim that Sy contains an ¢-balanced subset. Let wg € E(Sp) be the edge
of Sy that is parallel to ¢, and let ¢y be the translation of ¢ that has nonempty
intersection with wyq.
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The shaded region T> contains S — (2, 0). Points not n-generated are removed.

BNk

Rational lines parallel to ¢ intersecting

the shaded set Sp contain at least 2 in-

teger points.
FIGURE 1. Steps in the proof of Proposition when / is neither
vertical nor horizontal.

For 0 < i <n-—1,let ¢ := £y + (4,0). Then for all i, {; NSy # 0 and every
element of Sy is contained in exactly one of £y, ..., ¢, 1. Let

n—1
Ui = U éj OSO
Jj=1

and observe that Uy = Sy. Thus D, (Uy) < 0. If D, (U,—1) <0, then U,,_1 contains
an n-generating set. Since U,_1 is a convex subset of a single line, the Morse-
Hedlund Theorem [§] implies that 7 is periodic, a contradiction. Therefore we have
that D, (U,—1) > 0 and there is a maximal index 0 < imax < m — 1 such that
Dn(Uimax) <0.

Write £;_.. NSy = {q1,42,q3}, where ¢; is the bottom-most element and g3 is
the top-most. (Note that we have reduced to the case that [wNS| = 3.) If both ¢;
and g3 are n-generated by U, ., then U, _,_is {-balanced and we are done (here we
are using the fact that every line parallel to ¢ that has nonempty intersection with
Sp intersects it in at least two places). Otherwise, suppose g3 is not n-generated by
U,.... (we argue similarly if ¢; is not n-generated). Set

S1 = Ui, \{a3}-

Since this removes a non-generated vertex from a set of nonpositive discrepancy, it
follows that D,,(S1) < D, (U;,...) < 0. We claim that both ¢; and ¢» are n-generated
by Si. Say, for example, that g is not n-generated by S;. Then D, (S; \ {g2}) <0
and g1 is n-generated by S1\{g2}, as otherwise D, (U;,..+1) < Dy(S1) < Dy (Ui,...)
contradicting maximality of iy,ax. By Proposition[2.14] this contradicts the fact that

max

max
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£ is a nonexpansive direction for . The same argument holds if ¢; is not 7-generated
and so we conclude that both ¢; and g2 are n-generated by S;. Therefore Sy is an
{-balanced set. O

Definition 2.17. Given a nonexpansive direction £ and an ¢-balanced set S*, define
the associated border B;(S*) to be the thinnest strip with edges parallel to ¢ that
contains S*. If wy € F(S) is the edge of S’ that is parallel to ¢, then By(S*\ wy)
denotes the thinnest strip with edges parallel to ¢ that contains S\ wy.

Note that if 7 is aperiodic and there exists n € N satisfying P, (R, 3) < 3n, then
Proposition m guarantees the existence of the set S* and the boundary edge wy.

Proposition 2.18. Suppose 1 is aperiodic, there exists n € N such that P (R, 3) <
3n, ¢ is a nonexpansive direction for n, and H is a half-plane whose boundary is
parallel to L. Then if f,g € X, are such that f # g but fIH = g[H, then both f
and g are periodic with period vector parallel to £.

Furthermore, if in addition there exists an (-balanced set S¢, w, € E(S%) is the
edge of S* parallel to £, and By(S*) and By(S*\w¢) are the associated borders, then
for any @ € Z2:

(i) If the restriction (TUf) [By(S%\ wy) does not extend uniquely to an 7-
coloring of Be(S*), then the period of (T"f) [By(SY\ wy) s at most [we N
Z2| _ 1}.

(ii) If the restriction (Tﬁf)[Be(Sé \ wy) extends uniquely to an n-coloring of
By(S"), then the period of (T" f) [By(S%\ wy) s at most 2|w, N 72| - 2.

Proof. We assume that ¢ is a nonexpansive direction and there exists n € N with
P,(R,3) < 3n. Let S be an (-balanced set (which exists by Proposition ,
wy € E(S*) be the edge of S* parallel to ¢ and let By(S*) and B,(S*\ w,) be
the associated borders. By definition, S* \ wy is contained in B,(S*\ wy). Find
A € SLy(Z) such that A(f) points vertically downward and define 7: Z? — A by
fj=mnoA~1 and St = A(S*). Observe that 7 is aperiodic if and only if 7 is aperiodic,
and that S is A(¢)-balanced for 7.

Let f,g € X, be as in the statement of the proposition. Let fi=foAl
G:=go A and w, := A(wy). It suffices to show that for any @ € Z* , f,§ are
vertically periodic and that (Tﬁf) rA(Bz (S°\ wy)) satisfies the claimed bounds on
its period.

The proof proceeds in three steps. First we show that the restriction of f to the
strip By(S*\ wy) is periodic. Next we use this fact to show that f itself is periodic.
Finally we use the periodicity of f (with some as yet unknown period) to establish
the claimed bounds on the period of (T%f) [By(SE\ wy)-

Step 1: Showing fng(Se \ wy) @ periodic. For i € Z, let

H; = {(z,y) € Z*: x >i}.

By translating the coordinate system if necessary and using the nonexpansiveness
of ¢, we can assume that A(H) = Hy. Furthermore, there exists a translation (7,0)

such that (T~ f)1p, = (T-09g) 1y, but (T~ )iy # (T-0g) 10,
Without loss of generality, we can assume that i = 0. Set B := A(B,(S*\ w¢)) and
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without loss of generality, assume that B C Hy and B ¢ H;. Choose L € N such
that

(3) B={(z,y)€Z*:0<x<L}.
For i € Z, set R R
C; =8+ (O,Z) and D; := S¢ \711@ + (O,Z)

We claim that for all ¢ € Z, the 7-coloring f I D, does not extend uniquely to an
n-coloring of C;. If; on the other hand, it does extend uniquely, then f [ B extends
uniquely to an 7-coloring of B U C; for some i € Z. Since any translation of an
¢-balanced set is also ¢-balanced, the top-most vertex of the edge of C;; 1 parallel to
A(?) is 7j-generated by C;1. This is the only element of C;4 that is not contained
in BUC;, and so f[B extends uniquely to an n-coloring of B U C; U C;41. By
induction, f|p extends uniquely to an 7-coloring of B U Uj>i Cj;. The bottom-
most vertex of the edge of C; parallel to A({) is also n-generated by C;, and so a
similar induction argument shows that f1 B extends uniquely to an 7-coloring of
BUUjEZ C;. This contradicts the fact that f[HO = gl H, but thL1 #glH_, and
so the claim follows. Equivalently, for all j € Z, the fj-coloring (T4 f)| D, does
not extend uniquely to an 7j-coloring of Cp.

By Proposition there are at most [w;NS!|—1 = |w,NS*|—1 many colorings
of Dy that extend non-uniquely to an 7-coloring of Cy. Thus

({(Twﬂ‘)f) 1Dy:i € Z}

For each integer 0 < x < L, where L is defined as in , let p, be the bottom-most
element of SN {(z,7): j € Z}. Set

< |wzﬂS€\ — 1.

|weNSt|—2
Vi={py: 0<ax<L}and U := U V+(0,9).
y=0
Since S¢ is A(£)-balanced, U C Dy. (See Figure . Define a: Z — W,(V) by
a(j) == (T f)y. Patterns of the form alfm,m+1,...,m+ |w, NS — 2} are
in one-to-one correspondence with colorings of the form (T(O’m) f )]7. The number
of such coloringss is at most the number of coloringss of the form (7(%™) f) [ Do
which is at most |wy N S¢| — 1. By the Morse-Hedlund Theorem [§], « is periodic

with period at most |w, N S*| — 1. Therefore f[B is vertically periodic with period
at most |wy N S*| — 1 as well.

Step 2: Showing f is periodic. For i € Z, set
We claim that for any ¢ > 0, we have that f[Bﬂ, is vertically periodic and the

periods satisfy the bounds in the statement of the proposition. For i = 0, we have
already shown that f]p, is vertically periodic of period at most |w, N S| —1. We

proceed by induction and suppose that for all 0 < ¢ < k, we have that f IB_; is
periodic and

(i) The period of JFFB_i is at most 2w, N S| — 2;
(ii) If for all j € Z, the 7j-coloring (T~ (=59 f)| ge \ 1, does not extend uniquely
to an 7j-coloring of ge’ then the period of f[Bﬂ. is at most |w, N S*| — 1.
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FIGURE 2. The shaded region represents S, the union of the boxes
is U, and the union of the bottom most elements of the boxes is
the set V. Step 1 of the proof shows that the wavy region B is
periodic.

First we show that j:FB_k is vertically periodic of period at most 2|w, N S*| — 2.
Suppose there exists j € Z such that

(4) (T~ (F+L9) fy1 ge \ @, extends uniquely to an 7-coloring of St

Let p < 2|w,NS*|—2 be the minimal vertical period of f[B_kH. Then for allm € Z,
(T~ (=k+Lj+mp) f) IS¢ extends uniquely to an fj-coloring of S’ and in particular all
the colorings of the form (T~ (=*+1.7+mP) £)] ge coincide. By periodicity of f IB_ji1s
all of the colorings (T~ (~F+Litmp+1) )} \ 1, coincide and so all of the colorings
(T~ (kt+Litmp+d) £y 6o coincide except possibly on the top-most element of .
Since S¢ is A(f)-balanced, the top-most element of 1, is -generated by S¢, and so
the colorings coincide on the top-most element of w, as well. By induction, for any
q with 0 < ¢ < p and all m € Z, all colorings of the form (7~ (~k+Litmpta) £y e
coincide. This implies that f[pB_, is periodic and that its period divides the period
of fIB_j 1

Otherwise, if does not hold, we can suppose that for all j € Z, the coloring
(T_(_k“’j)f) ISt \ i does not extend uniquely to an 7j-coloring of S¢. Then by
applying the Morse-Hedlund Theorem as in Step 1, the vertical period of f 'B_ 41
is at most |w, NS*| —1. As above, let 0 < p < |w;NS*| — 1 be the minimal vertical
period of fIB_, ;. Let m: W;(S*) — W;(S*\ ) be the natural restriction map.
As in Proposition there are at most Py (S~£)—Pﬁ(5~'f\u~1g) elements of Wﬁ($~f \g)
whose pre-image under 7 contains more than one element; say the number of such
elements is Q). There are at most Q + P;(S*) — P;(S* \ wy) elements of W;(S*)
where 7 is not one-to-one. That is, there are at most

2(P5(S?) — Py(S* \ i) < 2wy N S| —2
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many 7-colorings of ¢ whose restrictions to S \ w, do not extend uniquely to an
n-coloring of S*.

Each of the colorings (T~ (~*+14) f)Ig¢ is such a coloring. By the pigeonhole
principle, there exist 0 < j; < ja < 2|we N S?| — 2 such that

(5) (T~ R )l §e = (T~ CHL= g,
In particular, this implies that
(6) (T*(*kJrl,jl)f‘) IS¢ \ @y = (T*(karl,jz)f) IS¢ \ @y

Since 8¢ is A(f)-balanced, every vertical line with nonempty intersection with S*
contains at least |wy,NS*| —1 > p integer points. Therefore, it follows from @ that
j2 — j1 is a multiple of p. Using induction as previously, it follows from that we
have

(T~ FHLad) fy1ge = (T~ (kL3249 £y ge

for all j € Z. In particular frB—IH-l U B_, is vertically periodic of period jo —j1 <
2|w€ n S£| — 2.

By induction, for all & > 0 we have that f B_, Is vertically periodic with
the bounds claimed in the proposition. We consider two cases, depending if the
direction antiparallel to ¢ is nonexpansive or is expansive. If this direction is non-
expansive, let 7 C R, 3 be a set which is balanced in the direction antiparallel to
£ (such a set exists by Proposition . Since the restriction of f to the vertical
half-plane {(z,y) € Z?: = < 0} is periodic, a similar induction argument (using 7°*
in place of SZ) shows that f is vertically periodic on all of Z2, where the precise
bounds on the period are yet to be determined. (A priori, these bounds depend
on the number of integer points on the edge of T that is antiparallel to £.) If the
directional antiparallel to ¢ is expansive, then there exist a,b € N such that every
fj-coloring extends the rectangle [—a, —1] x [—b, b] uniquely to an 7j-coloring of this
rectangle union {(0,0)}. Thus every f-coloring of the strip [—a, —1] X Z extends
uniquely to the right. It is easy to check that any vertically periodic coloring of
this strip with period p extends uniquely to the right to a periodic coloring, with
period dividing p.

Step 8: Showing that the period of f satisfies the claimed bounds. We are left with
showing that f]| B, satisfies the claimed bounds for all k£ € Z. We remark that the
argument showing that f|g . 18 vertically periodic with the claimed bounds relied
only the fact that f[BO was vertically periodic of period at most |w,NS*|—1. Thus
it suffices to show that for infinitely many k& > 0, the vertical period of Jfer is at
most |wy NS¢ — 1, since then the previous argument shows that the half-plane to
the left of such a By, satisfies the claimed bounds. As before, it further suffices to
show that for infinitely many k& > 0, the n-coloring f1 B,, does not extend uniquely
to an n-coloring of By U Bg_1.

Since f]| By, 1s vertically periodic for all k and there is a global common period
(each vertical arises from f), there are only finitely many colorings By that are of
the form (7'~ *:0) f) | B, for some k € Z. Say there exists an integer kyin > 0 such
that (77~ (%0 f) | B, extends uniquely to an 7-coloring of By U B_; for all k > ki,
and without loss of generality assume that ki, is the minimal integer with this
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property. Let K > kpi, be the smallest integer for which there exists ¢ € N such
that

(T~ FH O Py g, = (T 5O )i,

(K exists by the pigeonhole principle). Then by definition of ki, there is a unique
extension of (T~ (K440 f) [ B, to an fj-coloring of By U B_;. In particular,

(7) (T~ )y = (T f)i

If K > ki, then contradicts the minimality of K. If K = Kk, the fact that
(T_(K‘”’O)f) By = (T_(K’O)f) | B, extends uniquely to an 7j-coloring of By U By
contradicts the definition of k,;,. Either case leads to a contradiction, and so we
conclude that no such integer K, exists. The bounds on f IB,, claimed in the
proposition follow.

The analogous argument applied to g implies the periodicity of g. (I

Proposition 2.19. Assumen is aperiodic and there exists n € N such that P,(Ry, 3)
3n. If £ is a nonexpansive direction for n, then the direction antiparallel to ¢ is also
nonexpansive for n. In particular, if S is an n-generating set, there is an edge
we € E(S) antiparallel to €.

Proof. We proceed by contradiction. Suppose € is nonexpansive but the antiparallel
direction  is expansive for 7. By Corollary 2} ¢ is a rational direction. Recall (see
Definition [2.6| n ) that since ¢ is a nonexpansive direction for 7, there exist f,g € X,
and a half-plane H whose (positively oriented) border is parallel to £ such that
fTH = glg but f # g. Without loss of generality, we assume that the border
of H passes through the origin. By Proposition 2:18] f and ¢ are both periodic
n-colorings of Z? and they both have (nonzero) period vectors parallel to .

Choose A € SL2(Z) such that A(¢) points vertically downward so that A(H) =
{(z,y) € Z*: © > 0}. Note that since 7 is an expansive direction for 1, A(?) is an
expansive direction for (no A=1). The (no A~!)-expansiveness of A(Z) means there
exist a, b € N such that every (no A=1)-coloring of [—a+1,0] x [-b+1,b— 1] extends
uniquely to an (no A~1)-coloring of the larger set [—a+1,0] x [-b+1,b—1]U{(1,0)}.
(Otherwise, we can define rectangles Qr = [-R+ 1,0] x [-R+ 1, R — 1] and for
every IR > 1 there exist functions fr, gr € X,0a-1 such that frlQ, = grlQy and
fr(1,0) # gr(1,0). Passing to a limit we obtain f., goo € X041 that agree on the
half plane {(z,y) € Z?: z < 0} but disagree at (1,0), contradicting expansiveness.)

Then both f = foA land § = go A™! are vertically periodic and agree on the
vertical half plane A(H). At most one of f and § can be horizontally periodic, so
without loss of generality assume that f is not horizontally periodic. Let C be the
set of f-colorings of the strip V := [-a+1,0] x (—o0,00). Vertical periodicity of f
guarantees that C is finite. We produce a coloring a: Z — C' by coloring the integer
i with the color (=59 f)y,. Since every n-coloring of [—a +1,0] x [=b+1,b— 1]
extends uniquely to an 7-coloring of [—a + 1,0] x [-b+ 1,b — 1] U {(1,0)}, we also
have that every 5-coloring of V extends uniquely to an n-coloring of VU (V +(1,0)).
Therefore for any i € Z, the a-color of {i,i+ 1,...,i+ a — 1} uniquely determines
the a-color of i + a. Therefore « is periodic and hence f is horizontally periodic; a
contradiction. Thus ¢ must be nonexpansive for 7.

By Proposition there is an edge wy € E(S) antiparallel to £. O
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Corollary 2.20. Assume that n is aperiodic and there exists n € N such that
P,(Rn3) <3n. Let S C Ry, 3 be an n-generating set satisfying . Then for every
nonhorizontal, nonexpansive direction £, S is {-balanced.

If £ is horizontal and nonexpansive, then S is either {-balanced or Z—balanced,
where ¥ is the antiparallel direction.

Proof. Assume that ¢ is a nonhorizontal and nonexpansive direction. We check the
four conditions of Definition The first condition follows from Proposition [2.9
the second is immediate from the definition of an 7n-generating set and the third
follows since S satisfies (). If |w N S| = 2, then the fourth condition follows since
every line with nonempty intersection with S intersects in at least one point. If
|lwNS| =3, then ¢ is either vertical or determines a line with slope of the form 1/a
for some integer a > 0. By Proposition there exists w; € E(S) antiparallel to
£. Since both endpoints of w; are boundary vertices of S, |w; N S| > 2. Therefore
any line parallel to ¢ that has nonempty intersection with S, intersects S in at least
two integer points.

If £ is horizontal, let n be the smaller of the number of integer points on the top
and bottom edges of S. By convexity of S, the middle line has length » > n for
some r € R. Thus the middle line contains at least || > n integer points, and so
S is balanced for either ¢ or £. O

Corollary 2.21. Assume there exists n € N such that Py(R,,3) < 3n. Suppose { is

an oriented rational line in R?, U is the antiparallel line, S¢ is an (-balanced set, S*
is an 0-balanced set, wy € E(S) is the edge parallel to ¢ and B C 72 is the thinnest
bi-infinite strip with edges parallel and antiparallel to £ that contains S¢\ we. If
Nl B is periodic, then n is periodic with period vector parallel to £.

Proof. Let S* be an {-balanced set and let w, € FE(S) be the associated edge
and B the associated strip. The argument is nearly identical to the proof of Step
2 of Proposition [2.1§ and so we just summarize the differences. Maintaining the
notation in that proof, if there exists ¢ € Z such that 7] B, does not extend uniquely
to an n-coloring of B; U B;_1, then 7] B, is periodic of period at most |w, N S -1
and the remainder of the induction is identical. Otherwise, for every i € Z, the
coloring 7] B, extends uniquely to an n-coloring of B; U B;_1. By the pigeonhole
principle and the fact that S is f-balanced, as in Step 2 of Proposition m it
follows that whenever 7] B, is vertically periodic, 7| B, , is vertically periodic of
period dividing that of /[ g,. This establishes the result for the restriction of 7 to
U;‘io B;_;. The restriction to the other half-plane follows a similar argument using

the antiparallel line 7 and associated /-balanced set St instead of S’. O

Corollary 2.22. Suppose there exists n € N such that Py(R,3) < 3n and f € X,,.
Suppose £ is a nonexpansive direction for n, @ € Z? is the shortest integer vector
parallel to £, S is an £-balanced set, and w € E(S) is the edge parallel to £. Let
By(S \ w) be the intersection of Z2 with all lines parallel to ¢ that have nonempty
intersection with S\ w. Finally, suppose there exists R € N such that for allr > R,
(TT%f)Is \ w does not extend uniquely to an n-coloring of S. Then the restriction
of f to the semi-infinite strip

U TS\ w)

r>R
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is eventually periodic with period vector parallel to @ and period at most lwNS|—1.
Moreover, there exists 0 < I < |wN S| — 1 such that the restriction of f to the
semi-infinite strip
U T_r'a(S \ w)
r>R+T
is periodic.

Proof. The proof is almost identical to Step 1 of Proposition Define
a:N = {(T7f)Is\w: T > R}

by setting a(i) := (T =D f)Ig\ 4. As in Proposition we have that
the number of colorings of the form al{m,m+1,...,m+ |wnNS| — 2} is at most
|wN S| — 1. The one-sided version of the Morse-Hedlund Theorem [8] shows that
« is eventually periodic with period at most |wNS|— 1 and is such that the initial
portion has length at most (w N S| — 1. g

Corollary 2.23. Assume there exists n € N such that Py(Ry 3) < 3n. Suppose { is
an oriented rational line and there exists an £-balanced set S*. Let w, € E(SY) be the

edge parallel to ¢ and suppose T C 72 is an infinite convex set with a semi-infinite
edge W parallel to €. Let

Uw={deZ: (S\w)+aCT andwe+ud ¢ T}.
Ifn[(g \wy) + U s periodic with period vector parallel to £, thenn|S 4 [J is periodic
with period vector parallel to £. Moreover if for all @ € U the coloring (T%n)|S \ wy
does not extend uniquely to an n-coloring of S, then the period ofn[(g \wy) + U s
at most |weNS*| =1 and the period of NS + ¢ is at most 2lw, NS*| — 2. Otherwise
the period of n|S 4 i is equal to the period of NI(S\ wy) + U-

Proof. This follows from the Morse-Hedlund Theorem and the pigeonhole principle,
as in Steps 2 and 3 of Proposition and in Corollary [l

3. COMPLEXITY WITH MULTIPLE NONEXPANSIVE LINES

In this section, we show that the complexity assumption of the existence of
n € N such that P,(R, 3) < 3n is incompatible with the existence of more than
one nonexpansive line for 7.

We assume throughout this section that:

(HI) X, has at least two nonexpansive lines.
(H2) There exists n € N such that P,(n,3) < 3n.

If 5 is periodic, let i € Z? be a period vector and consider any line ¢ that is not
parallel to u. By taking a neighborhood of ¢ wide enough to include ¢ 4 i, we have
that ¢ is expansive. Thus every line apart from possibly the direction determined
by # is expansive, so there is at most one nonexpansive line. Thus Hypothesis
implies that

(8) n is aperiodic.

We begin with some general facts about the shape of an n-generating set. By
Proposition 2.9] if S is an 7-generating set, then the boundary 4S contains an
edge parallel to each nonexpansive direction. By Proposition [2.19] whenever ¢
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is a nonexpansive direction, the direction antiparallel to ¢ is also a nonexpansive
direction. Since & C Ry, 3, S cannot consist of more than six edges (at most two
edges are horizontal and the others connect integer points in R, 3 with different
y-coordinates). Thus there are at most three nonexpansive lines for 7, and each
orientation on each line determines a nonexpansive direction.

We start with a construction of a large convex set that is used in Propositions [3.4]
and [3.7] to show that n cannot have multiple nonexpansive lines while also having
low complexity.

As noted, we have at most three nonexpansive lines for 7. Let

(9) 01,05 C R? or 0y, 05,05 C R? denote the nonexpansive lines for 7,

depending if there are 2 or 3 nonexpansive lines. We write all statements for three
nonexpansive lines, with the implicit understanding that when there are only 2
nonexpansive lines, we remove any reference to /3.

Without loss of generality, we can assume that all ¢; pass through the origin.
By Corollary we can assume that the nonexpansive lines are rational lines
and without loss of generality we can assume that {1, ¢35 are not horizontal. By
Proposition [2.19, any choice of orientation on /1,5, /3 determines nonexpansive
directions for 7. For the remainder of this construction, we make a slight abuse of
notation and view /¢, {5, £3 as directed lines that determine nonexpansive directions.

Let S C R, 3 be an 7n-generating set. By Proposition there exist edges
wy, we, w3 € E(S) parallel to £y, 05, ¢35, respectively. By Proposition there
exist i, wWq,ws € E(S) such that w; is antiparallel to w;, for i = 1,2,3. By
Corollary since wy and w3 are not horizontal, we have that S is wy, W1, w3
and ws-balanced. If wsy is not horizontal, then again applying Corollary we
have that S is both wo and ws-balanced. If wsq is horizontal, then S is balanced for
at least one of wy and wsy. So, without loss of generality, we can assume that

S is wy, W1, ws, w3 and wy-balanced.

Let Hy = H(¢1), and we recall that this denotes the half-plane with boundary
parallel to ¢; whose boundary passes through the origin. Let H’ ; be the smallest
half-plane strictly containing H{) whose boundary contains an integer point (this is
well-defined for any rational line ¢1). Since ¢; is a nonexpansive direction, there
exist f,g € X, such that f[H(/) = g[Hé but f[HL1 #* ng',y Since f5 is not
parallel to ¢; and f[H(/) = gFH(/)7 at most one of f[HLl and g[HLl extends to
a Z2-coloring that is periodic with period vector parallel to £». Without loss of
generality, suppose f[p’ L is an n-coloring of H’ ; which cannot be extended to a
periodic n-coloring of Z? with a period vector parallel to f5. By Proposition f
is periodic with period vector parallel to ¢;. Translating if needed, we can assume
that (wy; NZ?) C H' |\ H. It follows that S C H’ ; (recall that the boundaries of
both § and H' | are positively oriented).

To make the constructions clearer, it is convenient to make a change of coordi-
nates such that ¢, points vertically downward. Since ¢; has rational slope, we can
choose A € SLy(Z) such that A(¢1) points vertically downward. Define

(10) 7= noAil;f = foAil;g‘:: A(S),
and

(11) 0; := A(L), @; := A(w;) and @; := A(@;), for i =1,2,3.
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Then for any finite, nonempty set 7 C Z?, we have D, (T) = D;(A(T)). It follows
that 7 is aperiodic and
(12)

f is vertically periodic (say with minimal period p) and is not doubly periodic.
Further,
(13) S is an fj-generating set
and
(14) S is w1, 177\1, w3, {D;—balanced and is balanced for at least one of Wy and 177\2

For i € Z, define
H;:={(z,y) € Z*: x> i}.
Note that Hy = A(H{)) and H_y; = A(H' ). For i € N, let B; be a vertical strip of
width ¢ defined by

(15) Bi:=H_ 1\ Hi

and B; be the vertical sub-strip of width i — 1 defined by
B; = Hy\ H;_;.

Let

(16) d € N be the number of distinct vertical lines passing through S

and note that S C By and (S \ @) C Bq.

We claim there are infinitely many integers > 0 such that
(17) f[Bd + (2, 0) does not extend uniquely to an 7j-coloring of By + (,0).
By construction, = 0 is such an integer. If there are not infinitely many such
integers, let Tmax denote the largest such integer. By (12)), f is vertically periodic
and there are only finitely many colorings of the form (T f)| 5 > say there are
P such colorings. By the pigeonhole principle, there are distinct integers x1,x2 €
{Zmax + 1, .., Zmax + P + 1} such that

(T P)IBy = (T 1By
without loss of generality assume that x1 > Zpyax iS ~the smallest integer for which
there exists xo with this property. Since (T(‘”""O) NB , extends uniquely to an
f-coloring of By, so does (T(xl’o)f) I B, Therefore

(T OB, = (T )i B,

Since xo—1 > Zpax, we have that (T(z2’1’0)f) | B, extends uniquely to an 7j-coloring
of By. Thus so does (T(“’lfl’o)f) [ B, and since (T(‘”mx’o)f) I B, does not have this
property, we must have that 1 — 1 > x,.x. However, this contradicts the choice
of x1 as the smallest integer with this property and the claim follows.

Let 0 = 71 < 29 < x3 < ... be a sequence integers satisfying . Then
since S is W -balanced by and for all ¢ € N, f[A—l(Bd + (4,0)) satisfies
condition in Proposition we have that f[Afl(Bd + (4,0)) has period at

most |w; N S| —1 = |w; NS| — 1. It follows that for all i € N, fIB, 4 (z;,0) is

vertically periodic of period at most |w; N §| —1.
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Claim 3.1. For all i > d and j € Z, there is no finite set F; C B; such that
(1) f) [, extends uniquely to an 7j-coloring of B;.

Proof. We proceed by contradiction. If not, suppose F; C B; is a finite set and for
some j € Z the coloring (T(O’j ) f )| F; extends uniquely to an 7j-coloring of B;. Since

fe X, there exists @ € Z? such that

fIF, = (T F,
where the existence of @ follows from the fact that every finite coloring occurring in
an element of X5 also occurs in 7). Therefore (T%7)| B; = [1B, is vertically periodic

by . By Corollary we have that 7 is periodic and thus that 7 is periodic,
a contradiction of . O

We now continue with the construction of the large set needed for the proofs of
Propositions [3.4] and We define:

Definition 3.2. If S C Z? is a convex set, then 7 C Z? is E(S)-enveloped if
(i) T is convex;
(if) For all w € E(T), there exists u € E(S) such that w is parallel to « and
|w] > ful;
(iii) Either the set
{u € E(S): Jw € E(T) such that w is parallel to u}

is connected (recall Definition [2.1)) or 7 is the set of integer points in a
bi-infinite strip in R2.

Maintaining notation of f and S defined in and B; defined in , we
inductively define a convex set G, on which we can control periodicity. For each
1 €N, let

F; C Bgyi—1 be a finite, E(S)-enveloped set

(18) containing [-1,d+i— 2] x [-d—i—2,d+ i+ 2].
and let

G; C Bgyi—1 be a largest (with respect to the partial
(19) ordering by inclusion) E(S)-enveloped subset of Bgi;—1

to which f[f, extends uniquely

(we allow the possibilities that G; = F; or that G; is infinite).
By Claim Gj # Bgyj—1 and so the set

(20) Gin{(-1,y):ycZ}

is not bi-infinite. This (finite or semi-infinite) line either has an element of maximal
y-coordinate or of minimal y-coordinate (or both). Therefore there is either a
subsequence {ji}72, such that G, N {(—1,y): y € Z} has an element of maximal
y-coordinate for all k£ or there is a subsequence such that G, N{(—1,y): y € Z} has
an element of minimal y-coordinate for all k. Without loss of generality (the other
case being similar), suppose that there are infinitely many j € N such that the set
G; N{(-1,y): y € Z} has an element of maximal y-coordinate. Without loss of
generality (passing to a subsequence if necessary), we assume G;N{(—1,y): y € Z}
has an element of maximal y-coordinate for all j € N and let y;*** be this y-

coordinate. By , f is vertically periodic with minimal period p. There exists
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0 < Jmax < p such that for infinitely many j, y"** = Jimax (mod p). Passing to
this subsequence and maintaining the same notatlon on indices j, for each such j,
let k; € Z be such that y*** = k; - p + Jmax. By periodicity, T(0k;p) f[G = f[

and so by (19| 9 f1 G; — (0,k; - p) does not extend uniquely to an 7-coloring of any
larger £ (5)—enveloped set in Bgy;—1. Our construction yields the following:

(a) For all j € N, the point (—1, Jmax) is the top-most element of
{(=Ly):y € Z} N (G — (0,k; - p)).

(b) The set G; — (0, k; - p) contains the set
([-1,d+j—1] x[-d—j—1,d+j+1]) — (0,k; - p),
which is a subset of {(z,y): 2 > —1,y < Jmax}-
(c) The set G; — (0,k; - p) is E(S)-enveloped.
Set

DX
8

(21) Goo i= | (Gj —(0,k; - p)).

@
Il

-
<
Il
«

Claim 3.3. The set G is an E(g)—enveloped set which contains the semi-infinite
line {(=1,y) € Z?: y < 0} and is such that f]G_ does not extend uniquely to an

7j-coloring of any larger E(g)—enveloped subset of {(x,y) € Z*: v > —1}.

Proof. We order the edges of E(g) by setting ug € E(g) to be the edge that points
vertically downward and defining u;41 := pred(u;) (recall Definition ([23)) for all
i =0,1,....|ES) -2 For 0 <i< |BES) -1, set L;(j) to be the length of
the edge of G — (0, k; - p) parallel to u,;. Since G; — (0,k; - p) is E(S)-enveloped,
L;(j) > 0 for all ¢, . Define

L;(00) :=limsup L;(j).

J

Since ug determmes a nonexpansive direction for 7, S has an edge antiparallel to
ug (by Corollary . Let ip € {1,2,...,|E(S)| — 1} be such that u;, € E(S) is
antiparallel to ug. Slnce G —(0,k; p) contalns the set

(L d+j—1x[-d—j—1,d+j+1]) — (0,k; - p),

there exists 1 <4y < ig such that L;, (c0) = oco; without loss of generality let i; be
the smallest positive index with this property. It follows that for all 1 < k < iy,
E(G) has an edge parallel to uy of length L(c0), as well as a semi-infinite edge
parallel to u;,. On the other hand, since G; — (0, k; - p) contains

(FLd+j—-1x[~d—j—1,d+j+1]) = (0.k; - p),
it contains the line segment {(—1,y): —d—j—1—Fk; -p <y < 0} and so G
contains the line segment {(—1,y) € Z?: y < 0}. There cannot be any other edges
in E(Gw), since G; — (0, k; - p) only has edges parallel to those that appear in F (S)
for all j. Finally we observe that if f G, extended uniquely to a larger E(S)
enveloped subset of {(x,y) € Z?: x > —1}, then by compactness there would exist
7 such that f G —(0,k; - p) extends uniquely to a larger F (S)—enveloped subset
of Bqtj—1,a contradlctlon of . O



22 VAN CYR AND BRYNA KRA

It follows from the construction that Gu is an infinite E(S)-enveloped set. More-
over, there are infinitely many distinct vertical lines that have nonempty intersection
with G (by (]E[)) If necessary, we again make a change of coordinates and assume
that Jnax = 0. Thus by Claim

(22)  Goo is an E(S)-enveloped set that intersects every vertical line in H_;.

By construction, F(G) has a semi-infinite edge that points vertically downward
from (—1,0). By .,
(23) G has a nonvertical, semi-infinite edge u € F(Go)

and wu is parallel to some edge in E(S) This edge determines a nonexpansive
direction for 7, since by the claim, f[@G_  cannot be uniquely extended to any

larger E(S)-enveloped set.
Define K D G, such that

(24) K is the smallest E(S)-enveloped set containing Goo with u ¢ 0K,

meaning that K is the set obtained by extending the successor edge to u back-
wards until it intersects an integer point and then taking the convex hull (note that
successor edge is meant with respect to positive orientation on the boundary). By
construction,

(25) there exists h € Xj such that flg__ =hlg, and flK #hlK.

By , f is vertically periodic and so

(26) iz[GOO is vertically periodic (with minimal period p) but A[f is not.
We use the construction of G, to eliminate the case of 2 nonexpansive lines:

Proposition 3.4. Suppose there are exactly two nonexpansive lines for X,,. Then
for alln € N, Py(R,3) > 3n.

Proof. We proceed by contradiction and assume that n has exactly two nonex-
pansive directions and that there exists n € N such that P,(R,3) < 3n. Thus

hypotheses (HI)) and (H2) are satisfied. In particular, by (8), n is aperiodic.
We maintain the notation of the nonexpansive lines in @ (where we assume

only two), the quantities in (10) and , and of the construction of the set G
defined in satisfying Since there are only two nonexpansive lines for 7,
the edge u defined in must either be parallel or antiparallel to ly. Let K D Goo
be defined as in and h as in ([25). Then K \ Go can be written as

ko
K\ Go =N EK),
k=1
where 1,1s,...,1;, are (undirected) lines parallel to l72 and kg is the number of

lines produced in the construction of K. By , hi K cannot be extended to a
vertically periodic n-coloring of H_;. Let ugp := w and label the edges of G by
U1 = succ(uy;) for i = 0,...,|E(G)| — 1, where succ(-) denotes the successor
edge taken with positive orientation.

Suppose u; € F(G) is the edge parallel to 571, meaning that u; points vertically
downward. Define a sequence of sets

Goo=LoCLyCLyC---CLy,
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where L;; is obtained from L; by extending the edge of L; parallel to ur_;_1 to be
semi-infinite and taking the intersection of Z? with the convex hull of the resulting
shape (see Figure [3). Then E(L;1) = E(L;) \ {ur—;}-

FIGURE 3. The construction of the nested sets Lo C Li---. In-
teger points at the intersection of two lines are marked with a dot
and the dotted lines show L; \ Lo =s3 Usg U---.

Claim 3.5. For0<i< 1, B[LZ. is vertically periodic, but possibly of larger period
than that ofiL[LO.

Proof. For ¢ = 0, this follows directly from the construction of G,. For i = 1,
write

L1\L0:81U82U~'~
where s; is the semi-infinite line defined by s; := {(—j — 1,y): y € Z} N Ly. For
integers 0 < a < b, write Sab] = Sa U Sa+1 U ... Usp.

27 Suppose that iL[ _is vertically periodic.
Lo U S[1,4]

Let ¥;(i) € Z* be the translation of S such that the top-most element of 1, +7;(4) is
the point (j,7). If for all R < 0 there exists 7 < R such that (7% (") }) |S\ @, extends
uniquely to an 7-coloring of S. , then there is a unique extension of h| Lo Usp to
an fj-coloring of Lo U sy 1) by . In this case, arguing as in Step 1 in the proof
of Proposition the restriction of i to Lo U 8[1,j4+1) is vertically periodic of the
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same period as iLFLO U s Otherwise there exists R < 0 such that for all r < R

the coloring (Tﬁf(’")il) IS \ 10y does not extend uniquely to an n-coloring of S. Then
by Corollary the restriction of h to Ly N S[j—m+1,j] 18 eventually periodic of
period at most |w; N S| — 1 and the initial portion which may not be periodic has

length at most |1 NS| —1, where m is the number of vertical lines in Ly which have
nonempty intersection with S\ @w;. So by Corollary we have that h[1, N Sjt1

is eventually vertically periodic of period at most 2|w; N S| | — 2 and the initial
portion which may not be periodic again has length at most | NS | — 1. Moreover,
B[LO U S, is periodic by 7 S is a generating set, the restriction of h to the
union of Lo U sy j), and any semi-infinite portion of s;1 uniquely extends to an 7-
coloring of Lo U sy ;1) and so there is no initial portion on which h is not periodic.
It follows by induction that B[Ll is vertically periodic and (T(©1@NSI+1)f) 'L, is
vertically periodic. If Ly = Lj then the claim follows. Otherwise the semi-infinite
edge of L; parallel to u;_; determines an expansive direction for 7. Write

k1
Lo\ (LoU (L1 — (0,|on S| = 1)) = | J &
i=1
where the §; are semi-infinite lines parallel to uy_1.

Since u—1 is expansive, there is a unique extension of A, — (0, @ N §| —1)to
an 7-coloring of (L1 — (0, |®NS|—1))U3; (the uniqueness of this extension to a semi-
infinite portion of §; follows from the block map guaranteed by expansiveness and
since S is 7j-generating, this coloring extebds uniquely to all of §1). Since L;—(0, |wN
S| —1) is colored in the same way as Ly — (0, |wNS| —1 —¢q), where ¢ is the vertical
period, and there is a unique way to extend this coloring to an 7j-coloring of (L; —
(0,]@NS|—1)) U351, we have that the vertical periodicity of AL, — (0, |& N S| — 1)
implies that iL[(Ll —(0,|w N §| _ 1)) U §; is also vertically periodic. Inductively
it follows that | L, is vertically periodic. More generally, suppose that hi L; s
vertically periodic for ¢ < I. Then L; has two semi-infinite edges, one of which it
shares with Ly and the other determines an expansive direction for 7. Write

LH_l\LZ‘:tlUtQU"'

where L; Uty ;) is convex for all j =1,2,..., each t; is the intersection of Z* with
a semi-infinite line parallel to u;_; and contained in L;;1, and tap] = ta Utay1 U
... Uty. Suppose that E[Li Utp is vertically periodic. Since uj_; determines an
n-expansive direction, again using the same reasoning, there is a unique extension
of L; Ut 4 to an n-coloring of L; Uty j417. By vertical periodicity, hlf, U thg) =
(T(O’_Q)ﬁ) L, U t)° where g denotes the smallest vertical period of B[Li Utp -
By uniqueness, hl[, U tgan] = (T~ p) IL; U t[17j+1~] and hence is also vertically
periodic. By induction, this holds for all j and hence [, 4 I8 vertically periodic.

|

Let C' denote the smallest bi-infinite strip whose edges are parallel to (5 that
contains S\ w2. Let J € Z be the maximal integer such that C' + (0, J) is a subset
of the region in Z? on which h is vertically periodic, let C; := C + (0,7), and let
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Q@ € N be the smallest vertical period of B[ Ly —(0,J) The integer J is well-defined
by (26). Then for all j < J, we have that ij = (TO=@p) [C;-

We claim that for all j < J, E[Cj is not periodic with period vector parallel to
5. By the preceding remark, it suffices to show that this holds for all sufficiently
small values of j. For all j € Z sufficiently negative that the only edge of Lo that
C}; intersects is the edge parallel to ¢; (all but finitely many C; have this property),
recall that hlr, = f[L,. By the construction of f, we have that f[f_, cannot be
extended to an 7j-coloring of 72 which is periodic with period vector parallel to ls.
If h[Cj is {y-periodic, then by Corollary it follows that h itself is fo-periodic.
But the sequence (T(vak)il) has an accumulation point, and any such accumulation
point is also £o-periodic. Moreover, the restriction of any such accumulation point to
H_y is one of the functions flg_,, (T V) Ig_,,....(TOPH )y, (where
again p € N is the minimal vertical period of f ). This contradicts the fact that
JIH_, does not extend to an f3-periodic coloring of 72, and the claim follows.

If /5 is not horizontal, then S is u-balanced, where u is the edge defined in .

In this case every line parallel to u that has nonempty intersection with S contains
at least [y NS|—1 integer points. Since h[Cj is not /-periodic, the Morse-Hedlund

Theorem implies that there are at least |y N S| distinct 7j-colorings of S \ W, that
occur in C; (otherwise the coloring would be periodic). But there are at most
|w N S| | — 1 n-colorings of S \ wo that extend non-uniquely to an n-coloring of S,
and so by Corollary the coloring of C; extends uniquely to an 7-coloring of
C;UCj4, for all j < J, via the same reasoning used to show that E[Li is vertically
periodic. Since the restriction of h to the region J i< C; is vertically periodic and
iL[CJ extends uniquely to an 7j-coloring of C'y U Cy11, the restriction of h to the
region | J i<Jt+1 C; is vertically periodic. But this contradicts the definition of J. If
¢y is horizontal, then the same argument applies to S’ in place of S, where S is
an ¢>-balanced subset of R, 3 constructed by Proposition m [l

Following standard terminology in the literature (e.g. [6]) we make the following
definition:

Definition 3.6. Suppose 7 C Z? and 4 € Z?. We say that a: T — A is periodic
when restricted to the region T with period vector @ if «(%) = a(Z+w) for all Z € T
such that £+ 4 € T.

Finally we show that the low complexity assumption is not compatible with more
nonexpansive lines. While it may seem, a priori, like this should be a simpler setting
to rule out, it turns out that the more complicated generating shape introduces new
complications.

Proposition 3.7. Suppose there are exactly three nonexpansive lines for n. Then
for alln € N, Py(R,,3) > 3n.

Proof. We proceed by contradiction and assume that 1 has exactly three nonex-
pansive directions and that there exists n € N such that P,(R,3) < 3n. Thus
hypotheses and are satisfied. In particular, n is aperiodic .

By Proposition there exists an 7-generating set S C R,, 3 which satisfies
and every nonexpansive direction for n is parallel to one of the edges of S. By
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Proposition the direction antiparallel to any nonexpansive direction is also
nonexpansive. Since there are exactly three nonexpansive lines for n, S has precisely
six edges, all of which determine nonexpansive directions. Since S C R,, 3, two of
these edges must be horizontal and the remaining four edges each contain exactly
two integer points. Again by Proposition [2.19] every edge of S is antiparallel to
another edge of S, and so JS is a hexagon comprised of three pairs of parallel edges.
It follows that the two horizontal edges contain the same number of integer points
and this number is at most n—1. Let w; € E(S) be the predecessor edge to the top
horizontal edge in E(S) and recursively define w;4;1 := succ(w;) for i = 1,2,3,4,5
(see Figure . Then w;y3 is antiparallel to w; for all i, where the indices are
understood to be taken (mod 6).

o ([ ]
[ ] o
[ ] o
[ ] o
e 6 6 6 &6 o6 o6 o o o o o o
FIGURE 4. The set S with oriented edges labeled.
We summarize: |we NZ2% = |ws NZ?% < n—1 and |w; NZ?% = |wip3 NZ% =2

for i =1, 3. It follows that
(28) S is balanced in every nonexpansive direction.
For convenience, define a1, as, as, ag € Z such that
wy is parallel to (a;, 1) for ¢ = 1,6 and w; is parallel to (a;, —1) for ¢ = 3, 4.
By convexity, one of the statements:
ay,az < 0
a1 <0,a3 > 0,]a1| > as;
a1 > 0,a3 <0, |as| > ag;
holds. In each case, every horizontal line that has nonempty intersection with S
contains at least
(29) |we N'S| integer points
(e.g. in the first case the middle horizontal line in S contains |we N S| + |a1| + |as]

integer points, and the other cases are Similar)E]
For j € Z, let V; be the horizontal half-plane defined by

V= {(wy): 2 €2, y < j}.
Since the direction of ws is nonexpansive for 7, by Proposition there exist
f,g9 € X, such that fly, = gly, but fly; # gly;. At most one of f and g is

IThis bound is stronger than our usual bound that every horizontal line that has nonempty
intersection with S intersects in at least |wa N S| — 1 integer points.
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periodic with period vector parallel to wy, and so we can suppose without loss of
generality that f is not. Furthermore, without loss of generality we can assume
that

(30)

JTv; does not extend to a periodic 7-coloring of 7?2 with period vector parallel to wy.

Since S is wp-balanced by (28), it follows from Proposition that f is hori-
zontally periodic and the restriction of f to any horizontal strip of height two has
period at most 2|ws N S| — 2. Set

B = {(x,y) €7’ ye {—1,0}} and C = {(z,y): y € {-1,0,1}}.

For any j € Z such that (T’(O’j)f) | B does not extend uniquely to an 7-coloring of
C, we have that (T~ f)] B is horizontally periodic of period at most |w; NS|— 1.
In particular, this holds for j = 0.

We claim that there are infinitely many integers j < 0 such that

(31) (T*(O’j)f) [ B does not extend uniquely to an n-coloring of C.

The proof of the claim is similar to that of . We proceed by contradiction.
Suppose that there exists an integer J < 0 such that for all j < J, the coloring
(T~(9) f)| B extends uniquely to an n-coloring of C' and assume that |J| is min-
imal. Since f[y, is horizontally periodic, there are only finitely many 7-colorings
of the form (79 f)| g for j < 0. Say there are M such colorings. Then by the
pigeonhole principle, there exist 1 < j; < jo < M + 2 such that (T-(/=7) f)|g =
(T—(07=32) )1 g. Choose j; to be the smallest integer such that there exists jo
with this property. Then by construction, (7~ (/=7) f)[o = (T~ (%7=32) f)| & and
hence (T~ 7=+ £\ g = (T~ (/=324 £) [ 5. If j; > 1, this contradicts the min-
imality of j;. If j; = 1, then the fact that (7-(7=2+D f)ip = (T~ f)p
extends uniquely to an 7-coloring of C' contradicts the minimality of |J|. The claim
follows.

Let
(32) Sg := S with the rightmost element of every row removed;
(33) Sr := S with the leftmost element of every row removed.

Claim 3.8. There do not exist integers y1,y2 € Z such that both of the following
hold simultaneously:

(34) for all x € Z, (T®@Y1) f) |Sp evtends uniquely to an n-coloring of S;

(35) forallx € Z, (T(z’yz)f) IS, extends uniquely to an n-coloring of S.
Proof. We proceed by contradiction. Suppose instead that such integers y1,y2 € Z

exist and assume y; < yo (the other case being similar). Define F' := [0, |S]|] x
[y1,y2 + 2] and observe that since f € X, there exists @ € Z? such that f|p =

(T%n)F. By and (35), 7% coincides with f on the set
(36) FU([0,00) X [y1,y1 +2]) U ((—00,0] x [y2,y2 +2]),

and so T%y is horizontally periodic on this set. Let v € V(S) be the vertex of
intersection of the edges w; and ws. There is a translation of S that takes v to the
point (|S|+1,y1 +3) and takes S\ v to a subset of F'U ([0, 00) X [y1,y1 +2]). Since
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S is n-generating and T%n coincides with f on F U ([0,00) % [y1,y1 + 2]), we have
that

(T ) (S| + 1,91 +3) = F(IS| + L,y1 +3).
It follows by induction that (7%(n))(|S|+k,y1+3) = f(|S|+k,y1 +3) for all k > 1.
A similar induction argument shows that

(TS| + kv +24§) = F(IS| + ko +2+5)

forall k> 1and all 1 < k < ys — y1. Therefore Tﬁn and f coincide on the set
larger than in , defined by:

F U ([0,00) X [y1,y2 + 2]) U ((—00,0] X [y2,y2 +2]) .

A similar argument, using the vertex v’ € V(S) that is the intersection of the edges
w4 and ws in place of v, shows that T%n and f coincide on the set

(700700) X [ylayQ + 2]7

and so T%n is horizontally periodic on this set. Since S is horizontally balanced
by it follows from Corollary that T"n is horizontally periodic and hence
n is periodic. This is a contradiction of (). O

Thus henceforth we assume that for all y € Z, there exists x, € Z such that

(37) (T(my’y)f) ISy does not extend uniquely to an 7n-coloring of S.

(The remainder of the proof is analogous if instead, for all y € Z, there exists =, € Z
such that (T(v¥) f) |S; does not extend uniquely to an n-coloring of S.)

Claim 3.9. There exists a nonpositive integer y such that ffvy s doubly periodic,
f1V, 1, is not doubly periodic, and either (—ay1,—1) or (—ag, —1) is a period vector
for 1v,.

Proof. As V, is a half plane, double periodicity is interpreted in the sense of Defini-

tion Recall that B = {(z,y) € Z*: y € {—1,0}}. Let B’ be the thinnest strip
with edges parallel and antiparallel to w; which contains S \ wy. For z € Z, let

B! := B’ + (,0).
If there exists zo € Z such that f[ B’ 1/, does not extend uniquely to an n-coloring

zo
of (B, UB,, 1)NVp, then for any @ € Z? such that (S\wy+1) C B}, NVp, since S
is n-generating we have that (T_“I HIs \ wy extends non-uniquely to an n-coloring
of S. Since S satisfies (], by Corollary we have that D, (S \ w1) > D,(S).
Since |wiNS| = 2, there is precisely one coloring of S\ w; that extends non-uniquely
to an n-coloring of §. In particular, since
By, nVo = J ((S\wn) + (20 — kar, —k))

k=2
it follows that f restricted to B}, NV is periodic with period vector (—ai,—1).
Since fly; # glv;, we have that f[p is horizontally periodic of period at most
|wa N'S| — 1. The region (B} NVy) N B is convex and both {(z,—1): z € Z} and
{(x,0): € Z} intersect it in at least |wa N S| — 1 integer points by (29), as the
strip By, is only wide enough to contain S\ w;. Therefore f(z,0) = f(z — a1, —1)
for all x € Z.
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Recall that S C R, 3, and we assume that the bottom most row of R, 3 lies on
the x-axis. We have that S+ (¢ —2a1, —2) is contained in the set (B; NVy)UB. If
v € V(S) is the vertex incident to we and w;, observe that (S '\ v) + (zo — 3a1,—3)
is also contained in (B}, N V) U B and moreover that

(T2 D s\ o = (T2 D f)5 .
Since v is 7-generated by S,

(T2 2 f) | g = (T~ (020073 f] g,

It follows by induction that the coloring f[( B, UB. ;)N is periodic with

0 0
period vector (—aj,—1). Inductively it follows that the restriction of f to Vo N
Ureo Bl 4x is periodic with period vector (—aj, —1) as well. A final induction,
where the vertex v is replaced by the vertex v’ incident to wy and ws, shows that
f1V, is doubly periodic and that (—a1,—1) is a period vector. A similar argument
applies if there exists zy € Z such that f] B, NV does not extend uniquely to an
n-coloring of (B}, _; U B}, )N Vy. Thus we are finished unless for every = € Z the
coloring f[B; NV, extends uniquely to an n-coloring of (B}, _; U B, U B} 1) N V.
If

D(r) = [ J(S\w1) + (—kay, k),
k=2
it follows that for all z € Z there exists R, € N such that for all » > R, the
coloring (T®0) f)] D(r) extends uniquely to an n-coloring of

D(r) = |J S+ (—kar, k) u | J S+ (—kar — 1,-k)
k=2 k=2
(we assume R, is minimal with this property). Since f [V, is horizontally periodic,
the set {R,: x € Z} is finite so R := max,ez R, is well-defined. It also follows
that flv; \V_g is doubly periodic where (—aj,—1) is one period vector and the
horizontal period is at most |w N S| — 1. For s € N, set
E(s) := U (S\ we) + (—Ray — kas, —R — k).
k=0

As above, if there exists 2 € Z such that (T(®9 f) fE(s) extends non-uniquely to
an 7-coloring of

E(s):==|J S+ (-Ray — kaz,—-R—k)U | ] S+ (~Ray — kaz — 1, —R — k),
k=0 k=0

then fly,_, is doubly periodic and (—ag,—1) is a period for it. Otherwise, for all
x € 7, there exists R, € N such that for all » > R/, the coloring (T f) [E(s)
extends uniquely to an n-coloring of E(s) and again R’ := max,ez R), is well-
defined. The claim has been shown unless this last case occurs. In that case, for
all x € Z the coloring (T("”’O)f) fD(R) UE(R) extends uniquely to an n-coloring of
D(R)U E(R'). Tt follows that for all € Z, the coloring (T(mvo)f)[D(R) UE(R')
extends uniquely to an n-coloring of Vg \ Vayrs. Since f € X, there exists @ € Z>
such that (T%p) ID(R)U E(R') = fID(R)U E(R') and therefore v\ Vi, p =
(TR + R’ is horizontally periodic. By Corollary 7 itself is horizontally
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periodic; a contradiction of . Therefore either f[y}, is doubly periodic with
period vector (—aj,—1) or there exists R € N such that f1Vg is doubly periodic
with period vector (—ag, —1). O

Thus we can define yg < 0 to be the integer of least absolute value for which
Claim holds. Recalling that f[y; is not doubly periodic, we have shown:

(38) f [Vyo is doubly periodic and f [Vyo 41 is not doubly periodic,

and either (—aq,—1) or (—ag,—1) is a period vector for f1v,,- Henceforth we
assume that ¢ € {1,6} is chosen such that (—a;, —1) is a period vector for AN

By , there exists j < o such that (7(%9) f)| B is horizontally periodic of
period at most |wy NS| — 1. Since (—a;, —1) is a period vector for f1v,, it follows
that the horizontal period of fﬁ/yU is at most |waNS|—1. By 7 f v, cannot be

extended to a periodic coloring of Z? with period vector parallel to w;. It follows
that f fvy ot 1 is not doubly periodic (if yg < 0 this follows from the definition of
yo and if yo = 0 from (B0)). Let p1 € V(S) be the vertex at the intersection
of the edges w; and ws and let po € V(S) be the vertex at the intersection of
the edges wa and ws. Since S is n-generating, if there exists j € {1,2} and z € Z
such that (T-®¥0~1 f)g \ p; coincides with (T~ (@=ai90=2) f) g \ pj» then fly,
is doubly periodic, a contradiction. It follows that for all m € Z, there exists
x€{mm+1,...,m+ |waNS|— 2} such that

(39) f@,yo+1) # [z — ai,y0).

Let Sg be as in (32). By (29), every horizontal line that has nonempty inter-
section with S intersects in at least |wy N S| integer points, and so every such line
intersects Sg in at least |wy N'S| — 1 integer points.

We claim that there are at least three distinct n-colorings of Sg which extend
non-uniquely to an n-coloring of S.

First by (37), there exists € Z such that (T_(g”’yo_Z)f)f‘g'R does not extend
uniquely to an n-coloring of S and by this coloring of Sg is periodic with period
vector (—a;, —1). Thus there is an n-coloring of Sg that does not extend uniquely
to an n-coloring of S and this coloring is periodic with period vector (—a;, —1).

Second, consider the set of colorings of Sy of the form (7'~ (*¥o=1) f) ISR By ,
there exists xy,_1 € Z such that (T’(IUO*I’y“*l)f) ISy does not extend uniquely
to an n-coloring of S. By , there exists a integer point (x,2) € wy such that
(T~ w0190 f)1 g (2,2) # (T~ w0191 )] g (& — a;, 1) but the bottom two
horizontal lines of S are periodic with period vector (—a;, —1) by (38). Therefore
this coloring is distinct from the first coloring of Sg.

Third, consider the set of colorings of Sg of the form (T*("”’yo)f)[SR. Again
by , there exists xy, € Z such that (T~ (@vo.w0) f) IS does not extend uniquely
to an 7n-coloring of S. By , there exists an integer point (x,0) € ws such
that (7~ (@vo-%0) f)] g (2,0) # (T~ @w:%0) f)]§,(x + a;,1). Therefore this coloring
is distinct from the first two colorings. Thus we have three distinct 5-colorings of
Sgr which extend non-uniquely to an n-coloring of S.

But since S satisfies (1)), we have D, (Sg) > D,(S). By definition, |Sg| = |S| -3,
and so we have P,(S) < P,(Sg) + 2. Therefore there are at most two colorings of
Sg that extend non-uniquely to an n-coloring of S, a contradiction. (I
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4. COMPLETING THE PROOF OF THE MAIN THEOREM

We recall the statement of Theorem [I.1}

Theorem. Suppose n: Z* — A and there exists n € N such that P,(n,3) < 3n.
Then n is periodic.

Proof. Suppose there exists n € N such that P,(n,3) < 3n. By Proposition
there exists an 7-generating set S C R,, 3. Since § is convex and the endpoints of
any edge of S are integer points in R, 3, F(S) has at most six edges. Also by
Proposition every nonexpansive direction is parallel to an edge in E(S), and
so there are at most six nonexpansive directions for n. By Proposition [2.11] every
nonexpansive line has an orientation that determines a nonexpansive direction. By
Proposition the direction antiparallel to any nonexpansive direction is also
nonexpansive (i.e. if £ is a nonexpansive line then both orientations on ¢ determine
nonexpansive directions). Therefore there are at most three nonexpansive lines for
7.

There are four cases to consider. If there are no nonexpansive lines for 7, then
is doubly periodic by Theorem If there is exactly one nonexpansive line for 7,
then 7 is singly (but not doubly) periodic by Theorem If there are exactly two
nonexpansive lines for 7, then Proposition implies that P, (R, 3) > 3n, a con-
tradiction. If there are exactly three nonexpansive lines for 7, then Proposition [3.7]
implies that P, (R, 3) > 3n, again a contradiction. The theorem follows. O

5. FURTHER DIRECTIONS

Sander and Tijdeman [L1] conjectured that for : Z% — A, if there exists a finite
and convex set S C Z? such that P, (S) < |S], then 7 is periodic. Their result in [12]
shows that this conjecture holds for rectangles R, > of height 2. More generally,
rephrasing their arguments in our language, their proof also covers more convex
shapes of height 2. Namely, if S C Z? is a finite set that is the restriction of a
convex set in R? to Z? satisfying P,(S) < |S| and such that S is contained in the
union of two adjacent parallel rational lines, then 7 is periodic. The construction of
a generating set works in the more general setting of such a shape S, and results in a
generating set with 3 or 4 edges, and with the possible exception of a single direction
(the analog of horizontal) it is balanced. There can be at most 2 nonexpansive
directions, and we eliminate the case of 2 in a similar manner to that done for
rectangular shapes.

However, in height 3, we are unable to generalize our result of Theorem [I.] to
prove the analog for more general convex shapes with a restriction on the height,
meaning a convex shape contained in a strip of width 3. While the construction of
generating sets passes through, resulting in generating sets with at most 6 edges,
we are not able to show that they are balanced in all (but perhaps the analog of
the horizontal) directions. This is the only hurdle remaining for completing a more
general result for configurations of height 3.

For more general rectangles R, with £ > 4, the construction of generating
sets, once again, is general. Again, a problem arises with proving the existence of
balanced sets. Furthermore, the counting of configurations seems to be significantly
more difficult in the absence of the simple geometry available in height 3.
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