FREE ERGODIC Z2-SYSTEMS AND COMPLEXITY

VAN CYR AND BRYNA KRA

ABSTRACT. Using results relating the complexity of a two dimensional sub-
shift to its periodicity, we obtain an application to the well-known conjecture
of Furstenberg on a Borel probability measure on [0, 1) which is invariant un-
der both z — px (mod 1) and = — gz (mod 1), showing that any potential
counterexample has a nontrivial lower bound on its complexity.

1. INTRODUCTION

1.1. Complexity and periodicity. A one dimensional symbolic system (X, o)
is a closed set X C A%, where A is a finite alphabet, that is invariant under
the left shift o: AZ — A% The complexity function Py (n), which counts the
number of nonempty cylinder sets of length n in X, is a useful tool for studying
symbolic systems and the Morse-Hedlund Theorem gives a simple relation between
the complexity of the system and periodicity: the system (X, o) is periodic if and
only if there exists n € N such that Px(n) < n. Both periodicity and complexity
have natural generalizations to higher dimensional systems. For example, for a two
dimensional system (X, o, 7), meaning that X C AZ” is a closed set that is invariant
under the left and down shifts o, 7: AL AZQ, the two dimensional complexity
Px(n,k) is the number of nonempty n by k cylinder sets. In a partial solution
to Nivat’s Conjecture [12], the authors [3] showed that if (X,0,7) is a transitive
Z2-subshift and there exist n,k € N such that Px(n,k) < nk/2, then there exists
(i,5) € Z*\ {(0,0)} such that o'r/z = z for all z € X. In this note, we give an
application of this theorem to Furstenberg’s well-known “xp, X¢ problem.”

1.2. The xp, xq problem. Let S,T:[0,1) — [0,1) denote the maps Sz := pz
(mod 1) and Tz := gz (mod 1), where p,q > 1 are multiplicatively independent
integers (meaning that p and ¢ are not both powers of the same integer). In the
1960’s, Furstenberg [0] proved that any closed subset of [0, 1) that is invariant under
both S and T is either all of [0, 1) or is finite. He asked whether a similar statement
holds for measures:

Conjecture 1.1 (Furstenberg). Let pu be a Borel probability measure on [0,1) that
is invariant under both S and T and is ergodic for the joint action of S and T.
Then either u is Lebesgue measure or p is atomic.

Progress was made in the 1980’s with the work of Lyons [10], followed soon
thereafter by Rudolph’s proof that positive entropy h,(-) of the measure p with
respect to one of the transformations implies the result for relatively prime p and
q. This was generalized to multiplicatively independent integers by Johnson:
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Theorem 1.2 (Rudolph [I7] and Johnson [7]). Let i be a Borel probability measure
on [0,1) that is invariant under both S and T and is ergodic for the joint action of
S and T. If h,(S) > 0 (or equivalently h,(T) > 0), then p is Lebesgue measure.

One way to interpret this theorem is that the set of (S, T')-ergodic measures ex-
periences an entropy gap with respect to the one-dimensional action generated by S
(or equivalently by T'). Informally, if p has high entropy (in this case meaning that
h,(S) > 0), then its entropy with respect to .S is actually logp and p is Lebesgue
measure. Our main theorem is that the set of (S, T)-ergodic measures also experi-
ences a complexity gap, in a sense we make precise. We show (Theorem that
if p has low complerity (meaning that a certain function grows subquadratically),
then it actually has bounded complexity (meaning that this function is bounded)
and p is atomic. Moreover, all atomic measures have bounded complexity.

1.3. Rephrasing xp, Xq in symbolic terms. We begin by recasting Fursten-
berg’s Conjecture and the Rudolph-Johnson Theorem as statements about symbolic
dynamical systems. We start by setting some terminology and notation.

A (measure preserving) system (X, X, u, G) is a measure space X with an asso-
ciated o-algebra X, probability measure p, and an abelian group G of measurable,
measure preserving transformations. If the context is clear, we omit the o-algebra
from the notation, writing (X, u, G), and call it a system. The system (X, pu, G) is
free if the set {x € X: gr = x} has measure 0 for every g € G and the system is
ergodic if the only sets invariant under the action of G have either trivial or full
measure. It follows that if (X, u,G) is an ergodic system with an abelian group
G of transformations, then the action of G is free if gi'* o... 0 g/* # Id for any
91s---59k € Gand (nq,...,n) # (0,...,0).

Two systems (X1, X1, 41, G) and (Xa, Xo, po, G) are (measure theoretically) iso-
morphic if there exist X| € X} and X} € Xy with pq(X]) = po(X4%) = 1 such that
gX{ C X for all g € G and ¢gX} C X} for all ¢ € G, and there is an invertible
bimeasurable transformation m: X] — X/ such that m,pu; = po and wg(z) = gm(x)
forall z € X1, g € G.

We are particularly interested in the Z2-system generated by the two commuting
measure preserving transformations S and T'. In this case, we write (X, X, u, S, T)
for the Z2-system.

A (topological) system (X,G), is a compact metric space X and a group G of
homeomorphisms mapping X to itself. If it is clear from the context that we are
referring to a topological system, we call (X, G) a system. A system is said to be
minimal if for any € X, the orbit {gx: g € G} is dense in X. By the Krylov-
Bogolyubov Theorem, every system (X, G) admits an invariant Borel probability
measure and if this measure is unique, we say that (X, G) is uniquely ergodic. A
system (X, G) is strictly ergodic if it is both minimal and uniquely ergodic.

Let A denote a finite alphabet and let A% be the set of A-colorings of Z2. For
z € AL and @ € Z2, we denote the element of A that z assigns to @ by x(@). With
respect to the metric

d(z, y) == 2~ T 2@y}
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A% is compact and the leftward and downward shift maps o, 7: A% — AZ" given
by
(0z)(i,4) = x(i+1,)), (1)
(re)(i,4) = =(i,j+1) (2)
are homeomorphisms. A closed set X C AZ which is invariant under the joint
action of (o,7) is called a Z2?-subshift. (The analogous definitions hold for Z%-
subshifts.)

A uniquely ergodic topological system ()/(: , v, G) is said to be a topological model
for the measure preserving system (X, X, u, G) if there exists a measure theoretic
isomorphism between ()? ,v,G) and (X, pu,G). Again, we are mainly interested in
topological systems generated by two transformations ¢ and 7, and in this case we
denote the topological system by (55 ,O,T).

The Jewett-Krieger Theorem [6], ] states that any ergodic Z-system has a strictly
ergodic topological model, meaning that the system is measure theoretically iso-
morphic to a minimal, uniquely ergodic topological system. This was generalized
to cover ergodic Z%-systems by Weiss [19], and further refined by Rosenthal (we
only state it for Z?2, as this is the only case relevant for our purposes):

Theorem 1.3 (Rosenthal [16]). Let (X, X, u,S,T) be an ergodic, free Z2-system
wzth entropy less than logk. Then there exists a minimal, uniquely ergodic subshift
Xc {1,. k}z such that if o,7: X — X denote the horizontal and vertical shifts
(respectively) and if v is the unique invariant Borel probability on X and B denotes
the Borel o-algebra, then ()?,B, v,0,7) is a topological model for (X, X, u, S, T).

We note that in [I6], the proof given shows that X C {1,...,k+ 1}%" and the
result that the shift alphabet can be taken to have only k letters is stated without
proof. However, the size of the alphabet is not relevant for our purposes, other
than the fact that it is a finite number.

The subshift X C {1,..., k}Z2 in the conclusion of Theorem is not uniquely
defined, and so we make the following definition:

Definition 1.4. Let (X, X, u, S, T) be an ergodic Z2-system. A minimal, uniquely
ergodic Z2-subshift that is measure theoretically isomorphic to (X, X, u,S,T) is
called a Jewett-Krieger model for (X, X, u,S,T).

Theorem guarantees that any free ergodic Z? system of finite entropy has
a Jewett-Krieger model. However the definition is still valid for non-free, ergodic
72 systems; the only difference is that Rosenthal’s Theorem no longer guarantees
that such a model exists. For the case of interest to us, we show (in the proof
of Theorem that if u is (S, T)-ergodic, then either u is atomic or the action

f (S,T) is free. This motives us to make the following observation: a finite,
ergodic Z2-system cannot be free, but it has a Jewett-Krieger model in a trivial
way, obtained by partitioning the system into individual points.

Using this language, we can rephrase Furstenberg’s Conjecture and the Rudolph-
Johnson Theorem as equivalent statements about Jewett-Krieger models. Fix the
transformations S, T': [0,1) — [0, 1) to be the maps Sz := pz (mod 1) and Tz := gx
(mod 1), where p,q > 1 are multiplicatively independent integers. The natural
extension is a way of creating an invertible cover for a dynamical system (see Sec-
tion and lets us rephrase the conjecture in symbolic terms:
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Conjecture 1.5 (Symbolic Furstenberg Conjecture). Let p be a Borel probability
measure on [0,1) with Borel o-algebra B that is invariant under both S and T
and ergodic for the joint action. If X c {0, 1}Z2 is a Jewett-Krieger model for
the natural extension of ([0,1), B, 1, S,T), then either X is finite or p is Lebesgue
measure.

Theorem 1.6 (Symbolic Rudolph-Johnson Theorem). Let u be a Borel probability
measure on [0, 1) with Borel o-algebra B which is invariant under both S and T and
is ergodic for the joint action. Let Xc {0, 1}Z2 be a Jewett-Krieger model for the
natural extension of ([0,1),B,u,S,T) and let o,7: X — X denote the horizontal
and wvertical shifts (respectively). If either h, (o) > 0 or h,(1) > 0, then u is
Lebesgue measure.

Proof. An isomorphism of the Z2-systems (X, X, u, S, T) and ()A(, B, v,o,T) restricts
to an isomorphism of the Z-systems (X, X, 41, .5) and ()?, B,v,o), and so h,(S) =
hy (o). Similarly h,(T) = h, (7). The statement then follows immediately from the
Rudolph-Johnson Theorem. O

1.4. Combinatorial rephrasing of measure theoretic entropy. The appeal of
Theorem |1.6|is that the hypothesis that h, (o) > 0 (or equivalently that h,(7) > 0)
can be phrased purely as a combinatorial statement about the frequency with which
words in the language of X occur in larger words in the language of X. To explain
this, we start with some definitions.

If X C A” is a subshift over the finite alphabet A, we write z = (z(n): n € Z).
A word is a defined to be a finite sequence of symbols contained consecutively in
some z and we let |w| denote the number of symbols in w (it may be finite or
infinite). A word w is a subword of a word w if the symbols in the word w occur
somewhere in u as consecutive symbols. The language £ = L£(X) of X is defined
to be the collection of all finite subwords that arise in elements of X. If w € L(X),
let [w] denote the cylinder set it determines, meaning that

[w] ={u € L: u(n) =w(n) for 1 <n < |wl}.

These definitions naturally generalize to a two dimensional subshift X C AZQ,
and for z € AZ we write z = (¢(@0): @ € Z2). A word is a finite, two dimensional
configuration that is convex and connected (as a subset of Z?), and a subword is a
configuration contained in another word. If F' C Z?2 is finite and 8 € AF, then the
cylinder set of shape F determined by B is defined to be the set

[F;8) :={z € AP x(@) = p(u) for all 4 € F}.

Lemma 1.7. Let ()?, B,v,0,7) be a strictly ergodic Z2-subshift. Let w be a (2n +
1)x (2n+1) word in the language of X and let [w] denote the cylinder set determined
by placing the word w centered at (0,0). Let uy, us,us, ... be words in the language
of X such that u; is a square of size (2n + 2i + 1) x (2n + 2i + 1). If N(w, u;)
denotes the number of times w occurs as a subword of u;, then

viw] = zlgIolo N(w,u;) /(26 +1)2.

Proof. By unique ergodicity, the Birkhoff averages of a continuous function con-
verge uniformly to the integral of the function. In particular, this applies to the
continuous function 1j,), so the limit exists and is independent of the sequence
{ui}iZ, 0
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For m,n € N, let P(m,n) be the partition of X according to cylinder sets of
shape [0,m — 1] x [-n 4+ 1,n — 1]. Observe that (recall that o, as defined in (),
denotes the left shift)

k
P(m,n) = \/ o "P(1,n)
i=0

and that \/f:il€ o'P(1,n) is the partition of X into symmetric (2m+ 1) x (2n+1)-
cylinders centered at the origin. Therefore, {P(1,n)}72, is a sufficient (in the sense
of Definition 4.3.11 in []]) family of partitions to generate the Borel o-algebra of the
system ()? ,B,v,0), where we view this as a Z-system with respect to the horizontal
shift o. Let h, (o, Q) denote the measure theoretic entropy of the system ()A( ,B,v,0)
with respect to the partition Q and let h, (o) denote the measure theoretic entropy
of the system. It follows that

hy(c) = suph,(o,P(1,n))
= nli_)n;oh,,(a,’P(l,n))

. .1
= —nhHH;O n}gnooa Z vw] log v[w]
weP(m,n)

. . 1
= — lim lim lim — E
n—o00 Mm—00 1—o00 M
weP(m,n)

N(w, u;) 1o N(w,u;)
2i+12 B2i+1)72

by Lemma [I.7} In other words, the Rudolph-Johnson Theorem is equivalent to:

Theorem 1.8 (Combinatorial Rudolph-Johnson Theorem). Let v be a Borel prob-

ability measure on [0,1) with Borel o-algebra B and assume that p is invariant

under both S and T, and ergodic for the joint action. Let X bea Jewett-Krieger

model for the natural extension of ([0,1),8,u,S,T) and without loss of generality,

suppose the horizontal shift on X s intertwined with S under this isomorphism. If
ol lm im0 Nw, ) 1y NOwywi)

) - - log -
n—00 M—00 i—00 M weP(min) (2Z + 1)2 (22 + 1)2 ’

then the value of this limit is logp and p is Lebesgue measure.

1.5. Complexity of subshifts. If X C AT s a nonempty subshift, then its
complexity function is the function Py : {finite subsets of Z?} — N given by
Px(F):=|{B e A": [F;p]N X # 0}|.
Let R, := {(i,7) € Z*: 1 <i,j < n} denote the n x n rectangle in Z2. A standard
notion of the complexity of a subshift X C AZ’ is the asymptotic growth rate
of Px(R,). Observe that Px(R,) is bounded (in n) if and only if X is finite.
Moreover, Py (R,) grows exponentially (meaning that limlog(Px (R,,))/n? > 0) if
and only if (X, o, 7) has positive topological entropy.
We are now in a position to state our main technical result.

Theorem 1.9. Let p be a Borel probability measure on [0,1) with Borel o-algebra
B. Assume that p is invariant under both S and T and ergodic for the joint ac-
tion, and let Xc {0, I}Z2 be a Jewett-Krieger model for the natural extension of
(10,1),B, 1, S, T). If there exists n € N such that Pg(R,) < in?, then Pg(R,) is
bounded (independent of n) and X is finite. In particular, p is atomic.
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This gives a nontrivial complexity gap for the set of (S, T)-ergodic probability
measures, which is our main result:

Corollary 1.10 (Complexity gap). Let u be a Borel probability measure on [0, 1)
which is invariant under both S and T and ergodic for the joint action, and let X c
{0,1}%" be a Jewett-Krieger model for the natural extension of ([0,1), B, u, S, T).
Then either Pg(R,) is bounded (and p is atomic) or

lim inf iﬁn) > 1

n—o00 n 2

This gap is nontrivial in the following sense: there exist infinite (i.e. not doubly

periodic), strictly ergodic Z2-subshifts whose complexity function is o(n?). The
statement made by Corollary [[.10] is that any such subshift cannot be a Jewett-
Krieger model of any (xp, x¢)-ergodic measure on [0, 1).

Example 1.11. Let X C {0,1}* be a Sturmian shift (see [I1] for the definition).
Then X is strictly ergodic and Px(n) =n+ 1 for all n € N. Let Y C {0, I}Z2 be
the subshift whose points are obtained by placing each = € X along the z-axis in
Z? and then copying vertically (i.e. each point in Y is vertically constant and its
restriction to the z-axis is an element of X). It follows that Y is strictly ergodic
and that Py(R,) = n+ 1 for all n € N. Corollary shows that Y is not a
Jewett-Krieger model for any (xp, Xg)-ergodic measure on [0,1). Note that the
action in this example is not free, and so can not arise as a Jewett-Krieger model of
a Xp, Xq invariant system, and we show that this happens generally: a shift with
sufficiently low complexity generates actions that are not free.

1.6. Remarks on complexity growth. We conclude our introduction with a few
brief remarks on Theorem m and Corollary - We show (Lemma [2.1] . ) that any
Jewett-Krieger model X for an atomic (S, T')-ergodic measure is a strictly ergodic
Z2-subshift containing only doubly periodic Z2-colorings, meaning that there are
only finitely many points in X. From this, it is easy to deduce that Pg(R,) is
bounded independently of n (by the number of pomts in X ). Moreover, we show
that if X is a Jewett- Krieger model for p and if X contains only doubly periodic
Z2-colorings, then y is atomic.

A strategy for proving Theorem is therefore to find a nontrivial growth rate
of Pg(R,) which implies that X contains only doubly periodic Z2-colorings. A
simple example of such a rate follows from the classical Morse-Hedlund Theo-
rem [I1]: if there exists n € N such that Pg(R,) < n, then X contains only
doubly periodic Z2-colorings (see e.g. the proof of Theorem 1.2 in [14]). In fact
this bound is sharp: there exist Z2-colorings that are not doubly periodic and yet
satisfy Pg(Ry,) = n+ 1 for all n € N. Many other subquadratic growth rates can
also be realized by strictly ergodic Z2-subshifts that do not contain doubly periodic
points (see, for example, [I3]). Therefore, a weak version of Theorem that re-
places the assumption that there exists n € N such that Pg(R,) < 3 -n? with the
stronger assumption that there exists n € N such that Pg(R,) < n, follows from
the Morse-Hedlund Theorem. However, this weak theorem relies on the fact that
there are simply no strictly ergodic Z2-subshifts for which P4 (R,,) is unbounded
but for which Pg(R,) < n (for some n). The complexity gap provided by this
weak theorem is therefore trivial in the sense that there are no strictly ergodic
Z2-subshifts whose complexity function lies in this gap.
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On the other hand, there do exist strictly ergodic Z2-subshifts with unbounded
complexity and such that Pg(R,) < % -n?. This is the interest in Theorem
and Corollary The content of the theorem is that although such Z?-systems
exist, they can not be Jewett-Krieger models of (S, T')-ergodic measures on [0,1).
This is analogous to Theorem [L.8] which says that although there are strictly er-
godic Z2-subshifts that have small but positive entropy, they are not Jewett-Krieger
models of (S, T)-ergodic measures on [0,1). Moreover, analogous to the hypoth-
esis of Corollary which relies on the growth rate of Pg(-), the hypothesis of
Theorem [I.8]is a condition on the growth rate of the relative complexity function
N(-,-) of Lemma with respect to the action of the horizontal shift (a similar
statement holds for the vertical shift).

2. PrROOF oF THEOREM [L.O]

Throughout this section, we assume that p,q > 2 are multiplicatively indepen-
dent integers and that u is a Borel probability measure on [0, 1) which is invariant
under both

Sz = pz (mod 1);
Tx := gqz (mod1)

and is ergodic with respect to the joint action (S,T). Let B denote the associated
Borel o-algebra on [0,1)

2.1. The natural extension. Let X be the natural extension of the N2-system
([0,1),B, 1, S, T). Specifically (following [15]), let

X = {y e [o, 1)Z2: y(i+1,5) = Sy(i,j) and y(i,j + 1) = Ty(i,j) for all i,j € Z} ,

and for (i,j) € Z* let m(; jy: X — [0,1) be the map m(; ;(y) = y(i,j). Define a
countably additive measure pux on the o-algebra

oo

Uri 8

i=0
by setting px (W(iji’ii)A) := p(A). Let X be the completion of this o-algebra with
respect to pux. Let Sx,Tx: X — X be the left shift and the down shift, respec-
tively. Thus 7 ) defines a measure theoretic factor map from (X, X, ux, Sx,Tx)
o ([0,1),B,u,S,T). Moreover, ux is ergodic if and only if u is ergodic. By con-
struction, hy,(S) = huy (Sx), hu(T) = huy (Tx), and h,((S,T)) = hu ((Sx, Tx)).

The advantage of working with (X, X, ux, Sx, Tx) instead of the original system

is that the natural extension is an ergodic Z2-system.

2.2. Jewett-Krieger models and periodicity. Given a two dimensional system
(X, X, ux,Sx,Tx), a one dimensional subsystem is the action generated by some
fixed STV for some (i,j) # (0,0). If the two dimensional entropy of a system
is positive, then the entropy of every one dimensional subsystem is infinite (for a
proof, see, for example, [18]). In our setting, since h,(S) < hiop(S) = log(p) (and
hu(T) < heop(T) =1log(gq)), it follows that the measure theoretic entropy of the joint
action generated by (S, T) on [0, 1) with respect to pu is also zero. It follows that the
measure theoretic entropy with respect to px of the joint action on X generated by
(Sx,Tx) is zero. Therefore, by Theorem there exists a strictly ergodic subshift
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X c {0 1}Z such that (X X, ux,Sx,Tx) is measure theoretlcally 1somorph1c to
(X,X,v,0,7), where X is the Borel o-algebra on X, o,7: X — X denote the
left shift and down shift (respectively), and v is the unique (o, 7)-invariant Borel
probability measure. Note that the choice of X is not necessarily unique.

Lemma 2.1. If (X, X, ux,Sx,Tx) is an atomic system, then any Jewett-Krieger
model (X, X,v,0,7) for (X, X, ux,Sx,Tx) is finite.

Proof. Let w: (X, X,v,0,7) = (X, X, ux,Sx, Tx) be an isomorphism and let z €
X be an atom. Then there exist full measure sets X1 C X and X1 C X such that
X 1 = X, is a bijection which interwines the Z? actions. Every atom 1n X is
contained in X7, and if x € X7 is an atom then there exists unique y € X1 such
that m(y) = z. It follows that v({y}) = ux({z}) > 0 and so y is an atom in X.
By the Poincaré Recurrence Theorem, there exists (i,7) € Z2 \ {(0,0)} such that
SiThy =vy. Let V, = {(i,7) € Z*\ {(0,0)}: S%T%y = y} be the (nonempty) set
of nontrivial period vectors for y. If dim(Span(V,)) = 1, then

1 o
lim ——— 1 (S%T%y) = 0 < v({y}),
N—oo (QN“F ) —Ng:,jgN fvyiPxtx

which contradicts the pointwise ergodic theorem. Therefore dim(Span(V,)) = 2

and y € AL g doubly periodic. Moreover, for v-a.e. z € X we have SXT)](Z =y
for some (i, j) € Z? and so z is also doubly periodic (with periods equal to those of
y). Thus there are only finitely many points z € X. O

Since X is minimal, and hence transitive, we can use the following tool for
studying the dynamics of (X, X, ux,Sx,Tx):

Theorem 2.2 (Cyr & Kra [3]). If (X,0,7) is a transitive Z*-subshift and there
ezist n,k € N such that Px(n,k) < nk/2, then there exists (i,7) € Z* \ {(0,0)}
such that o'tix =z for all z € X.

Lemma 2.3. If there exists (i,7) € Z*\ {(0,0} such that o'tiz = z for every
z € X, then S%T%x = x for u-almost every x € X.

Proof. Let v: X — X be an isomorphism. Thus there exist )A(l C X and XX
such that 1/()/(\'1) = ux(X1) =1, ¥: )/(\'1 — X is a bi-measurable bijection, the
push forward ¥, of the measure v under v satisfies ¥,v = px, and furthermore
Yoo =8xoy,and o1 =Txorp Let F={x e X;: S&T)j(:c # x}. Since
W UE) = {y € X1: o'riy # y}, it follows that px (E) = v(¢v~(E)) = 0. 0

Theorem 2.4. If there exist n,k € N such that Pg(n,k) < nk/2, then p is

atomic. Moreover, if Y is any other Jewett-Krieger model for ([0,1),B,u,S,T),
then Py (n, k) is bounded independent of n,k € N.

Proof. Combining Theoremand Lemma there exist (i, j) € Z%\ {(0,0} such
that S§T%x = z for px-a.c. € X. Therefore (S4T%x)(0,0) = x(0,0) for px-a.c.
z € X. It is immediate that we also have (Sx'Tx’2)(0,0) = x(0,0) for ux-a.e.
x € X. So there are two cases to consider, depending on the the sign of 7 - j.
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Case 1. Suppose i-j > 0. Then, replacing by —i and —j if necessary, we can assume
that both i and j are nonnegative. Set £ := {y € [0,1): S'T7y # y} and let y € E.
Then if z € 77 (y), we have that S%T%x # . Thus u(E) = ux (7~ *(E)) =0 and
so S'TIy = y for p-a.e. y € [0,1).
Now observe that S*T7y = y is equivalent to the statement that
p'¢’y =y (mod 1),

which only has finitely many solutions in the interval [0,1). Therefore, p is sup-
ported on a finite set. Since p is (S, T)-invariant, this set must be S- and T-

invariant. Therefore there exist a,b € N such that S and T? are both equal to the
identity p-almost everywhere.

Case 2. Suppose i-j < 0. Again, replacing by —i and —j if necessary, we can assume
that i < 0 and j > 0. Now set E := {y € [0,1): S~y # T7y}. Thus if y € E and
x € 7 Y(y), then z(—i,j) # x(0,0) = y as S~ (x(—i,5)) = z(0,5) = T7(z(0,0))
by construction. Therefore S*T7x # z and so u(E) = px (7~ 1(E)) = 0. It follows
that S~y = Ty for p-a.e. y € [0,1).

Finally observe that S~%y = TJy is equivalent to

p~'y = ¢’y (mod 1).

As p and ¢ are multiplicatively independent, there are only finitely many solutions
in the interval [0,1). Therefore, again, p is supported on a finite set and there exist
a,b € N such that S¢ and T? are both equal to the identity p-almost everywhere.

This establishes the first claim of the theorem. By Lemma any Jewett-
Krieger model of an atomic system is finite, and the second statement follows. [

We use this to complete the proof of Theorem

Proof of Theorem[I.9. Let p be a Borel probability measure on [0, 1) that is (S, T')-
ergodic. If this two dimensional action is not free, arguing as in the proof of
Theorem [2.4] that 4 is an atomic measure, we are done. Thus we can assume that
the action is free, and similarly the action for the natural extension is also free.
Let ()A(,/'?,m o,7) be a Jewett-Krieger model for the natural extension of the
system ([0, 1), B, u, S,T). If there is no such model satisfying the additional prop-
erty that there exist n,k € N satisfying Pg(n, k) < nk/2, then the conclusion of
the Theorem holds vacuously. Thus it suffices to assume that there exists a Jewett-
Krieger model ()?, /'?, v,0,T) with the property that there exist n, k € N satisfying
Pg(n, k) < nk/2. By Theorem ([0,1),B, i, S,T) is atomic. O

3. HIGHER DIMENSIONS

For a Z2-subshift X, there is a natural two dimensional extension of the complex-
ity function Px(n,n) obtained by counting the number of n x n cylinder sets (and
similarly one can define the analog for higher dimensional subshifts or for more
generally shaped cylinder sets). Theorem shows that if p is any nonatomic
xp, Xq ergodic measure then the natural extension of ([0,1), X, pu,S,T) cannot
be measurably isomorphic to a Z2-subshift whose complexity function satisfies
Px(n,n) = o(n?). It is natural to ask whether this result can be generalized
to higher dimensions. In particular, if pq, ..., pg are a multiplicatively independent
set of integers and p is a nonatomic xpy, ..., Xpg ergodic measure, we can ask if the
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natural extension of (X, X, u, Xp1, ..., Xpq) could have a topological model whose
complexity function is o(n?).

The same method used in the two dimensional case suggests a path to proving
this result. If one could show that any free, strictly ergodic Z%-subshift whose com-
plexity function is o(n?) is periodic, then it would follow that no such topological
model for ;1 exists. However, the analog of Theorem [2.2]in dimension d > 2 is false.
Julien Cassaigne [2] has shown that for d > 2, there exists a minimal Z?-subshift
X whose elements are not periodic in any direction, and is such that for any € > 0
we have Px(n,n,...,n) = o(n?T¢). On the other hand, the authors have recently
shown [4] that the analog of Theorem does hold for dimension d > 2 if a certain
expansiveness assumption is imposed on the subshift.

Y c A% isa subshift, then we say that the z-axis in Z¢ is strongly expansive
if whenever x,y € X have the same restriction to the z-axis, we have x = y. This
is a stronger version of the general notion of an expansive subspace introduced by
Boyle and Lind [I], where we restrict to a single dimension and require that the
expansive radius be less than one. In this case, if X C AZ is the subshift ob-
tained by restricting elements of Y to the z-axis, then there exist homeomorphisms
Ty, Td—1: X — X which commute pairwise and with the shift ¢ and are such
that for any y € Y we have y(i1,i2,...,iq) = (7{'73* -+ 7' ' o%mx(y))(0) for all
i1,...,iq € Z% where mx (y) denotes the restriction of y to the z-axis. In previous
work, we have shown that:

Theorem 3.1 (Cyr & Kra [4]). Let X C A% be a minimal subshift and let
Tiy...,Td—1: X — X be homeomorphisms of X that commute with the shift o.
If (0,71,...,7a_1) = 7%, then liminf, ., Px(n)/n® > 0.

With some additional effort, the same result can be shown if the assumption that
(X, 0) is minimal (as a Z-system) is relaxed to only require that (X, o, 71,...,7q) is
minimal (as a Z%system). Thus, the only obstruction to generalizing Theorem [1.9
to the higher dimensional setting is the following:

Conjecture 3.2. For every nonatomic Borel probability u on [0,1) which is er-
godic for the joint action of Xp1,..., Xpg, there is a strongly expansive, minimal
topological model for (X, X, t, Xp1, ..., XDd).

If this conjecture holds, then it follows that any such system is measurably isomor-
phic to a subshift whose complexity function grows on the order of n<.
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