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Abstract. For a finite alphabet A and shift X ⊆ AZ whose factor complex-

ity function grows at most linearly, we study the algebraic properties of the
automorphism group Aut(X). For such systems, we show that every finitely

generated subgroup of Aut(X) is virtually Zd, in contrast to the behavior

when the complexity function grows more quickly. With additional dynamical
assumptions we show more: if X is transitive, then Aut(X) is virtually Z; if

X has dense aperiodic points, then Aut(X) is virtually Zd. We also classify
all finite groups that arise as the automorphism group of a shift.

1. Introduction

Given a finite alphabet A, a shift system (X,σ) is a closed set X ⊆ AZ that is
invariant under the left shift σ : AZ → AZ and its automorphism group Aut(X) is
the group of homeomorphisms of X that commute with σ (these notions are made
precise in Section 2). For general shift systems, while Aut(X) is countable, it can
be quite complicated: for the full shift [8] or for mixing shifts of finite type [3],
Aut(X) is not finitely generated and is not amenable (see also [2, 10, 7, 16, 9]).
The assumption of topological mixing can be used to construct a rich collection of
subgroups of the automorphism group. For example, the automorphism group of
such a shift contains isomorphic copies of all finite groups, the direct sum of count-
ably many copies of Z, and the free group on two generators. In these examples, the
topological entropy is positive, and the complexity function PX(n), which counts
the number of nonempty cylinder sets of length n taken over all elements x ∈ X,
grows quickly.

When the complexity function of a shift system grows slowly, the automorphism
group is often much simpler and the main goal of this paper is to study the algebraic
properties of Aut(X) in this setting. In contrast to mixing shifts, we study general
shifts of low complexity, without an assumption of minimality or transitivity. We
show that the automorphism group of any shift of low complexity is amenable, yet
its behavior can still be be quite complicated.

As PX(n) is non-decreasing, boundedness is the slowest possible growth prop-
erty that PX(n) can have. As expected, this case is simple: the Morse-Hedlund
Theorem [11] implies that if there exists n ∈ N such that PX(n) ≤ n, then X is
comprised entirely of periodic points. Thus Aut(X) is a finite group (and we clas-
sify all finite groups that arise in this way in Section 7). It follows that if (X,σ) is

a shift for which PX(n)/n
n→∞−−−−→ 0, then |Aut(X)| <∞.
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It is thus natural to study shifts for which PX(n) > n for all n ∈ N. The smallest
nontrivial growth rate that such a system can have is linear, by which we mean

0 < lim sup
n→∞

PX(n)

n
<∞.

In previous work [5], we studied the algebraic properties of Aut(X) for transitive
shifts of subquadratic growth and showed that Aut(X)/〈σ〉 is a periodic group,
where 〈σ〉 denotes the subgroup of Aut(X) generated by σ. In particular, this
holds for transitive shifts of linear growth. Periodic groups, however, can be quite
complicated: for example, a periodic group need not be finitely generated, and
there are finitely generated, nonamenable periodic groups. In this paper, we study
Aut(X) for general (not necessarily transitive) shifts of linear growth. In the transi-
tive case, we prove a stronger result than is implied by [5], showing that Aut(X)/〈σ〉
is finite. However, the main novelty of this work is that our techniques remain valid
even without the assumption of transitivity.

Depending on dynamical assumptions on the system, shift systems with linear
growth exhibit different behavior. Our most general result is:

Theorem 1.1. Suppose (X,σ) is a shift system for which there exists k ∈ N such
that

lim sup
n→∞

PX(n)/n < k.

Then every finitely generated subgroup of Aut(X) is virtually Zd for some d < k.

Let [σ] denote the full group of a shift (X,σ) (see Section 2.4 for the definition).
With the additional assumption that (X,σ) has a dense set of aperiodic points, we
have:

Theorem 1.2. Suppose (X,σ) is a shift system for which there exists k ∈ N such
that

lim sup
n→∞

PX(n)/n < k.

If X has a dense set of aperiodic points, then Aut(X) ∩ [σ] ∼= Zd for some d < k
and Aut(X)/(Aut(X) ∩ [σ]) is finite. In particular, Aut(X) is virtually Zd.

With the additional assumption that (X,σ) is topologically transitive, meaning
there exists a point whose orbit is dense in X, we show:

Theorem 1.3. Suppose (X,σ) is a transitive shift system for which

0 < lim sup
n→∞

PX(n)/n <∞.

Then Aut(X)/〈σ〉 is finite. In particular, Aut(X) is virtually Z.

For minimal shifts, meaning shifts such that every point has dense orbit, we
show (note the growth condition on the complexity only assumes lim inf instead of
lim sup):

Theorem 1.4. Suppose (X,σ) is a minimal shift for which there exists k ∈ N
satisfying

lim inf
n→∞

PX(n)/n < k.

Then Aut(X)/〈σ〉 is finite and |Aut(X)/〈σ〉| < k.
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For periodic minimal shifts, it is easy to see that Aut(X) ∼= Z/nZ where n is
the minimal period. Salo and Törmä [14] asked if the automorphism group of any
linearly recurrent shift is virtually Z. Linearly recurrent shifts are minimal and
the factor complexity function grows at most linearly, and so Theorem 1.4 gives an
affirmative answer to their question.

Roughly speaking, the proof of Theorem 1.1 splits into two parts. We start
by studying shifts with a dense set of aperiodic points in Section 3.2, showing
that the automorphism group is locally a group of polynomial growth, with the
polynomial growth rate depending on the linear complexity assumption on the shift.
We sharpen this result to understand transitive shifts of linear growth, leading to
the proof of Theorem 1.3 in Section 3.3. We then combine this with information
on existence of aperiodic points, completing the proof of Theorem 1.1 in Section 4.
The proof of Theorem 1.4 in Section 5 proceeds in a different manner, relying on a
version of a lemma of Boshernitzan used to bound the number of ergodic probability
measures on a shift with linear growth, which we use to bound the number of words
in the language of the system that have multiple extensions.

For some of these results, we are able to give examples showing that they are
sharp. These examples are included in Section 6.

While writing up these results, we became aware of related work by Donoso,
Durand, Maass, and Petite [6]. While some of the results obtained are the same,
the methods are different and each method leads to new open directions.

2. Background and notation

2.1. Shift systems. We assume throughout that A is a fixed finite set endowed
with the discrete topology. If x ∈ AZ, we denote the value of x at n ∈ Z by x(n).
The metric d(x, y) := 2− inf{|n| : x(n)6=y(n)} generates the product topology on AZ

and endowed with this metric, AZ is a compact metric space; henceforth we assume
this metric structure on AZ.

The left shift σ : AZ → AZ is the map defined by (σx)(n) := x(n + 1) and is a
homeomorphism from AZ to itself. If X ⊆ AZ is a closed, σ-invariant subset, then
the pair (X,σ) is called a subshift of AZ, or just a shift of AZ. If the alphabet A is
clear from the context, we refer to (X,σ) as just a shift.

The set

O(x) := {σnx : n ∈ N}

is the orbit of x and we use O(x) to denote its closure. The shift (X,σ) is transitive
if there exists some x ∈ X such that O(x) = X and it is minimal if O(x) = X for
all x ∈ X. A point x ∈ X is periodic if there exists some n ∈ N such that σnx = x
and otherwise it is said to be aperiodic.

2.2. Complexity of shifts. For a shift (X,σ) and w = (a−m+1, . . . , a−1, a0, a1,
. . . , am−1) ∈ A2m+1, the central cylinder set [w]0 determined by w is defined to be

[w]0 := {x ∈ X : x(n) = an for all −m < n < m} .

The collection of central cylinder sets forms a basis for the topology of X. If
w = (a0, . . . , am−1) ∈ Am, then the one sided cylinder set [w]+0 determined by w is
given by

[w]+0 := {x ∈ X : x(n) = an for all 0 ≤ n < m} .
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For m ∈ N, define the set of words Lm(X) of length m in X by

Lm(X) :=
{
w ∈ Am : [w]+0 6= ∅

}
and define the language L(X) of X to be L(X) :=

⋃∞
m=1 Lm(X). For w ∈ L(X),

we denote the length of w by |w|. A word in x ∈ X is also referred to as a factor
of x.

A measure of the complexity of X is the (factor) complexity function PX : X →
N, which counts the number of words of length n in the language of X:

PX(n) := |Ln(X)|.
If Px(n) is the complexity function of a fixed x ∈ X, meaning it is the number of
configurations in a block of size n in x, then PX(n) ≥ supx∈X Px(n), with equality
holding for all n when X is a transitive shift.

2.3. The automorphism group of a shift. Let Hom(X) denote the group of
homeomorphisms from X to itself. If h1, . . . , hn ∈ Hom(X), then 〈h1, . . . , hn〉
denotes the subgroup of Hom(X) generated by h1, . . . , hn. Thus the shift σ ∈
Hom(X) and its centralizer in Hom(X) is called the automorphism group of (X,σ).
We denote the automorphism group of (X,σ) by Aut(X) and endow it with the
discrete topology.

A map ϕ : X → X is a sliding block code if there exists R ∈ N such that for
any w ∈ L2R+1(X) and any x, y ∈ [w]0, we have (ϕx)(0) = (ϕy)(0). Any number
R ∈ N ∪ {0} for which this property holds is called a range for ϕ. The minimal
range of ϕ is its smallest range.

If ϕ : X → X is a sliding block code of range R, there is a natural map (which,
by abuse of notation, we also denote by ϕ) taking

⋃∞
m=2R+1 Lm(X) to L(X). To

define this extension of ϕ, let m > 2R and let w = (a0, . . . , am−1) ∈ Am. For
0 ≤ i < m− 2R, choose xi ∈ [(ai, . . . , ai+2R)]0 and define

ϕ(w) :=
(
(ϕx0)(0), (ϕx1)(0), . . . , (ϕxm−2R−1)(0)

)
.

Therefore if w is a word of length at least 2R + 1, then ϕ(w) is a word of length
|w| − 2R.

The elements of Aut(X) have a concrete characterization:

Theorem 2.1 (Curtis-Hedlund-Lyndon Theorem [8]). If (X,σ) is a shift, then any
element of Aut(X) is a sliding block code.

For R ∈ N∪{0}, we let AutR(X) ⊆ Aut(X) denote the automorphisms of (X,σ)
for which R is a (not necessarily minimal) range. Thus Aut(X) =

⋃∞
R=0 AutR(X).

We observe that if ϕ1 ∈ AutR1
(X) and ϕ2 ∈ AutR2

(X), then ϕ1◦ϕ2 ∈ AutR1+R2
(X).

In general, the automorphism group of a shift can be complicated, but Theo-
rem 2.1 implies that Aut(X) is always countable.

2.4. Automorphisms and the full group. The full group [σ] of a shift (X,σ) is
the subgroup of Hom(X) comprised of the orbit preserving homeomorphisms:

[σ] := {ψ ∈ Hom(X) : ψ(x) ∈ O(x) for all x ∈ X} .
Thus if ψ ∈ [σ], then there is a function kψ : X → Z such that ψ(x) = σkψ(x)(x) for
all x ∈ X.

It follows from the definitions that the group Aut(X) ∩ [σ] is the centralizer of
σ in [σ]. We note two basic facts about Aut(X) ∩ [σ] which we will need in order
to study Aut(X)/(Aut(X) ∩ [σ]) in Section 3.7.
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Lemma 2.2. If (X,σ) is a shift, then Aut(X) ∩ [σ] is normal in Aut(X).

Proof. Let ϕ ∈ Aut(X) and suppose ψ ∈ Aut(X) ∩ [σ]. Let kϕ : X → Z be a

function such that ϕ(x) = σkϕ(x)(x) for all x ∈ X. Fix x ∈ X and observe that
since ϕ and σ commute,

ϕ ◦ ψ ◦ ϕ−1(x) = ϕ ◦ σkϕ(ϕ
−1(x)) ◦ ϕ−1(x) = σkϕ(ϕ

−1(x))(x).

As this holds for any x ∈ X, it follows that ϕ ◦ ψ ◦ ϕ−1 ∈ Aut(X) ∩ [σ]. Since
φ ∈ Aut(X) and ψ ∈ Aut(X) ∩ [σ] are arbitrary, we have

Aut(X) ∩ [σ] = ϕ · (Aut(X) ∩ [σ]) · ϕ−1

for all ϕ ∈ Aut(X). So Aut(X) ∩ [σ] is normal in Aut(X). �

Lemma 2.3. If (X,σ) is a shift, then Aut(X) ∩ [σ] is abelian.

Proof. Suppose ϕ1, ϕ2 ∈ Aut(X) ∩ [σ]. For i = 1, 2, let kϕi : X → Z be functions

such that ϕi(x) = σkϕi(x)(x) for all x ∈ X. For any x ∈ X,

ϕ1 ◦ ϕ2(x) = ϕ1 ◦ σkϕ2
(x)(x) = σkϕ2

(x) ◦ ϕ1(x)

= σkϕ2 (x) ◦ σkϕ1 (x)(x) = σkϕ1 (x) ◦ σkϕ2 (x)(x)

= σkϕ1
(x) ◦ ϕ2(x) = ϕ2 ◦ σkϕ1

(x)(x)

= ϕ2 ◦ ϕ1(x).

Therefore ϕ1 ◦ ϕ2 = ϕ2 ◦ ϕ1. �

2.5. Summary of group theoretic terminology. For convenience, we summa-
rize the algebraic properties that we prove Aut(X) may have. We say that a group
G is locally P if every finitely generated subgroup of G has property P . The group
G is virtually H if G contains H as a subgroup of finite index. The group G is
K-by-L if there exists a normal subgroup H of G which is K and such that the
quotient G/H is L.

3. Shifts of linear growth with a dense set of aperiodic points

3.1. Cassaigne’s characterization of linear growth. Linear growth can be
characterized in terms of the (first) difference of the complexity function:

Theorem 3.1 (Cassaigne [4]). A shift (X,σ) satisfies pX(n) = O(n) if and only if
the difference function pX(n+ 1)− pX(n) is bounded.

Definition 3.2. Let w = (a0, . . . , a|w|−1) ∈ L|w|(X). For fixed m ∈ N, we say
that w extends uniquely m times to the right if there is exactly one word w̃ =
(b0, . . . , b|w|+m−1) ∈ L|w|+m(X) such that ai = bi for all 0 ≤ i < |w|.

Corollary 3.3. Assume (X,σ) satisfies pX(n) = O(n). Then for any m,n ∈ N,
the number of words of length n that do not extend uniquely m times to the right
is at most Bm, where B = maxn∈N

(
pX(n+ 1)− pX(n)

)
.

Note that it follows from Cassaigne’s Theorem that B is finite.

Proof. For any N ∈ N, the quantity pX(N + 1)− pX(N) is an upper bound on the
number of words of length N that do not extend uniquely to the right. For any
word w of length n which does not extend uniquely m times to the right, there
exists 0 ≤ k < m such that w extends uniquely k times to the right, but not k + 1
times. For fixed k, the number of words for which this is the case is at most the
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number of words of length n + k that do not extend uniquely to the right. So the
number of words of length n that fail to extend uniquely m times to the right is at
most

m∑
k=1

(
pX(n+ k)− pX(n+ k − 1)

)
≤ Bm. �

3.2. Assuming a dense set of aperiodic points. We start by considering shifts
with a dense set of aperiodic points. This assumption holds in particular when the
shift has no isolated points: if X has no isolated points then, for any fixed period,
the set of periodic points with that period has empty interior. Then the Baire
Category Theorem implies that the set of all periodic points has empty interior. In
particular, the set of aperiodic points is dense. The two assumptions are equivalent
if the set of aperiodic points is nonempty.

Lemma 3.4. Suppose (X,σ) is a shift with a dense set of aperiodic points and
there exists k ∈ N such that

lim sup
n→∞

PX(n)

n
< k.

Then there exist x1, . . . , xk−1 ∈ X such that

X = O(x1) ∪ O(x2) ∪ · · · ∪ O(xk−1).

Proof. Suppose not and let x1 ∈ X. Since O(x1) 6= X, there is a word w1 ∈ L(X)
such that [w1]+0 ∩ O(x1) = ∅. Choose x2 ∈ X with x2 ∈ [w1]+0 . Let i < k and
suppose that we have constructed x1, . . . , xi ∈ X and w1, . . . , wi−1 ∈ L(X) such
that [wj1 ]0 ∩O(xj2) = ∅ whenever j2 ≤ j1. Since O(x1)∪ · · · ∪O(xi) 6= X, there is

a word wi ∈ L(X) such that [wi]
+
0 ∩O(x1)∪ · · · ∪O(xi) = ∅. Let xi+1 ∈ [wi]

+
0 and

we continue this construction until i = k.
Let N > max1≤i<k |wi| be a fixed large integer (to be specified later). Since x1 is

aperiodic, there are at least N + 1 distinct factors of length N in O(x1). Therefore
there are at least N + 1 distinct factors of length N in X which do not contain
the words w1, . . . , wk−1. We claim that for 1 ≤ i < k, there are at least N − |wi|
distinct factors in O(xi+1) which contain the word wi but do not contain any of the
words wi+1, wi+2, . . . , wk−1. Assuming this claim, then for any sufficiently large N

we have pX(N) ≥ kN −
∑k
i=1 |wi|, a contradiction of the complexity assumption.

We are left with proving the claim. Let 1 ≤ i < k be fixed. By construction,
the word wi appears in O(xi+1) but [wj ]

+
0 ∩ O(xi+1) = ∅ for any j > i. If wi

appears syndetically in xi+1 then so long as N is sufficiently large, every factor
of xi+1 of length N contains the word wi. In this case, since xi+1 is aperiodic,
there are at least N + 1 distinct factors in O(xi+1) which contain wi but not wj
for any j > i. Otherwise wi does not appear syndetically in xi+1 and so there are
arbitrarily long factors in xi+1 which do not contain wi. Since wi appears at least
once in xi+1, it follows that there are arbitrarily long words which appear in xi+1

which contain exactly one occurrence of wi and we can assume that wi occurs as
either the rightmost or leftmost factor. Without loss of generality, we assume that
there exists a word w of length N which contains wi as its rightmost factor and has
no other occurrences of wi. Choose j ∈ Z such that

w =
(
xi+1(j), xi+1(j + 1), . . . , xi+1(j + |w| − 1)

)
.



THE AUTOMORPHISM GROUP OF A SHIFT OF LINEAR GROWTH 7

By construction, if 0 ≤ s < |w| − |wi| then the word

w(s) :=
(
xi+1(j + s), xi+1(j + s+ 1), . . . , xi+1(j + s+ |w| − 1)

)
is a word of length N for which the smallest t ∈ {0, . . . , |w| − |wi|} such that

wi =
(
xi+1(j + t), xi+1(j + t+ 1), . . . , xi+1(j + t+ |wi| − 1

)
is t = |w| − |wi| − s. Therefore, the words w(s) are pairwise distinct and each
contains wi as a factor. By construction, they do not contain wj for any j > i, thus
establishing the claim. �

Proposition 3.5. Suppose that (X,σ) is a shift with a dense set of aperiodic points
and there exists k ∈ N such that

lim sup
n→∞

PX(n)

n
< k.

Then Aut(X) is locally a group of polynomial growth with polynomial growth rate
at most k−1. Moreover, if q ∈ N is the smallest cardinality of a set x1, . . . , xq ∈ X
such that O(x1) ∪ O(x2) ∪ · · · ∪ O(xq) is dense in X, then the polynomial growth
rate of any finitely generated subgroup of Aut(X) is at most q.

In Section 6.1, we give an example showing that the growth rate given in this
proposition is optimal.

Proof. By Lemma 3.4, there exist y1, . . . , yk−1 ∈ X such that the union of the
orbits O(y1) ∪ O(y2) ∪ · · · ∪ O(yk−1) is dense in X. Let x1, . . . , xq ∈ X be a set of
minimum cardinality for which O(x1) ∪ O(x2) ∪ · · · ∪ O(xq) is dense.

For 1 ≤ i ≤ q, define the constant

Ci := inf{|w| : w is a factor of xi and [w]+0 contains precisely one element}
and define Ci := 0 if no such factor exists. Define

(1) C := max
1≤i≤q

Ci.

Fix R ∈ N. For i = 1, . . . , q, let w̃i be a factor of xi such that

(a) |w̃i| ≥ 3R+ 1;
(b) for all u ∈ L2R+1(X), there exists i such that u is a factor of w̃i.

Note that (b) is possible since O(x1) ∪ O(x2) ∪ · · · ∪ O(xq) is dense.
Without loss of generality, we can assume that there exists M1 ≥ 0 such that

[w̃i]
+
0 contains precisely one element for all i ≤ M1 and contains at least two

elements for all i > M1 (otherwise reorder x1, . . . , xk−1). For each i > M1, either
there exists a ≥ 0 such that w̃i extends uniquely to the right a times but not a+ 1
times, or there exists a ≥ 0 such that w̃i extends uniquely to the left a times but
not a + 1 times. Again, reordering if necessary, we can assume that there exists
M2 ≥ M1 such that the former occurs for all M1 < i ≤ M2 and the latter occurs
when i > M2. For i = 1, . . . , q, we define words w1, . . . , wq as follows:

(i) For i = 1, . . . ,M1, the set [w̃i]
+
0 contains precisely one element. This must

be a shift of xi, and without loss of generality, we can assume it is xi itself.
In this case, we define ui to be the shortest factor of xi with the property
that [ui]

+
0 contains precisely one element and define wi to be the (unique)

extension 2R + 2 times both to the right and to the left of ui. Observe
that if ϕ,ϕ−1 ∈ AutR(X), then ϕ−1(ϕ(wi)) = ui. Since ϕ−1 is injective
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and sends every element of [ϕ(wi)]
+
0 to the one point set [ui]

+
0 , it follows

that [ϕ(wi)]
+
0 contains precisely one element and the word ϕ(wi) uniquely

determines the word ϕ(w̃i). Moreover, |ui| ≤ C, where C is the constant
in (1), and so |wi| ≤ C + 4R+ 4.

(ii) For i = M1 + 1, . . . ,M2, there exists ai ≥ 0 such that w̃i extends uniquely
to the right ai times but not ai + 1 times. Define wi to be the (unique)
word of length |w̃i| + ai which has w̃i as its leftmost factor. By choice of
the ordering, wi does not extend uniquely to its right.

(iii) For i = M2 + 1, . . . , q, there exists ai ≥ 0 such that w̃i extends uniquely to
the left ai times but not ai + 1 times. Define wi to the be (unique) word
of length |w̃i| + ai which has w̃i as its rightmost factor. By choice of the
ordering, wi does not extend uniquely to its left.

For ϕ ∈ AutR(X), we have that ϕ(wi) determines the word ϕ(w̃i) and so by
property (b) in the definition of w̃i, the block code determines what ϕ does to every
word in L2R+1(X). Thus the map Φ: AutR(X) → L|w1|−2R(X) × L|w2|−2R(X) ×
· · · × L|wq|−2R(X) defined by

Φ(ϕ) =
(
ϕ(w1), ϕ(w2), . . . , ϕ(wq)

)
is injective. We claim that for 1 ≤ i ≤ q, we have

(2)
∣∣{ϕ(wi) : ϕ,ϕ−1 ∈ AutR(X)

}∣∣ ≤ Bk(C + 4)(R+ 1),

where B is the constant appearing in Corollary 3.3 and C is the constant in (1).
Before proving the claim, we show how to deduce the proposition from this

estimate. It follows from (2) that |{Φ(ϕ) : ϕ,ϕ−1 ∈ AutR(X)}| ≤ (Bk(C+4))q(R+
1)q. Since Φ is injective, it follows that we have the bound

(3) |{ϕ ∈ AutR(X) : ϕ−1 ∈ AutR(X)}| ≤ (Bk(C + 4))q(R+ 1)q.

Given ϕ1, . . . , ϕm ∈ Aut(X), choose R ∈ N such that ϕ1, . . . , ϕm, ϕ
−1
1 , . . . , ϕ−1m ∈

AutR(X). Then for any n ∈ N, any e1, . . . , en ∈ {−1, 1}, and any f1, . . . , fn ∈
{1, . . . ,m}, we have

ϕe1f1 ◦ ϕ
e2
f2
◦ · · · ◦ ϕenfn ∈ AutnR(X).

In particular, if S := {ϕ1, . . . , ϕm, ϕ
−1
1 , . . . , ϕ−1m } is a (symmetric) generating set

for 〈ϕ1, . . . , ϕm〉, then any reduced word of length n (with respect to S) is an
element of {ϕ ∈ AutnR(X) : ϕ−1 ∈ AutnR(X)}. By (3), there are at most (Bk(C+
4))q(nR+ 1)q such words. Therefore 〈ϕ1, . . . , ϕm〉 is a group of polynomial growth
and its polynomial growth rate is at most q. This holds for any finitely generated
subgroup of Aut(X) (where the parameter R depends on the subgroup and choice
of generating set, but B, C, k, and q depend only on the shift (X,σ)). As q ≤ k−1,
the proposition follows.

We are left with showing that (2) holds. There are three cases to consider,
depending on the interval in which i lies.

(i) Suppose 1 ≤ i ≤ M1. Then |wi| ≤ C + 4R + 4 and so ϕ(wi) is a word of
length |wi| − 2R ≤ C + 2R+ 4. Therefore, there are at most

pX(|wi| − 2R) ≤ pX(C + 2R+ 4) ≤ k · (C + 2R+ 4) ≤ k(C + 4)(R+ 1)

possibilities for the word ϕ(wi).
(ii) Suppose M1 < i ≤ M2. Then wi does not extend uniquely to its right.

If ϕ ∈ Aut(X) is such that ϕ,ϕ−1 ∈ AutR(X), then the word ϕ(wi) ∈
L|wi|−2R(X) cannot extend uniquely R+ 1 times to its right (as otherwise
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this extended word would have length 2R + 1 and applying ϕ−1 to it
would show that there is only one possible extension of wi to its right).
By Corollary 3.3, there are at most B(R + 1) such words. Therefore
{ϕ(wi) : ϕ,ϕ−1 ∈ AutR(X)} has at most B(R+ 1) elements.

(iii) Suppose i > M2. Then wi does not extend uniquely to its left. As in
Case (ii), if ϕ ∈ Aut(X) is such that ϕ,ϕ−1 ∈ AutR(X), then ϕ(wi)
cannot extend uniquely R+ 1 times to its left. By Corollary 3.3, there are
at most B(R+ 1) such words. Therefore {ϕ(wi) : ϕ,ϕ−1 ∈ AutR(X)} has
at most B(R+ 1) elements.

This establishes (2), and thus the proposition. �

3.3. The automorphism group of a transitive shift.

Lemma 3.6. Suppose (X,σ) is a transitive shift and there exists k ∈ N such that

lim sup
n→∞

PX(n)

n
< k.

If x0 ∈ X has a dense orbit, then the set

{ϕ(x0) : ϕ ∈ Aut(X)}
is contained in the union of finitely many distinct orbits.

Proof. If X consists entirely of periodic points, then the result follows easily. Thus
we assume that X contains at least one aperiodic point. We proceed by contradic-
tion and suppose that the result does not hold.

Let ϕ1, ϕ2, . . . ∈ Aut(X) be such that ϕi(x0) /∈ O(ϕj(x0)) whenever i 6= j. For

N ∈ N, letR(N) be the smallest integer such that we have ϕ1, . . . , ϕN , ϕ
−1
1 , . . . , ϕ−1N ∈

AutR(N)(X). For 1 ≤ i ≤ N , m ∈ N, and −n ≤ j ≤ n, we have ϕ±1i ◦ σj ∈
AutR(N)+n(X). As automorphisms take aperiodic points to aperiodic points, for
fixed i, the set

{ϕi ◦ σj : − n ≤ j ≤ n}
contains 2n + 1 elements. If i1 6= i2 and −n ≤ j1, j2 ≤ n, then ϕi1 ◦ σj1(x0) /∈
O(ϕi2 ◦ σj2(x0)). Thus the set

{ϕi ◦ σj : 1 ≤ i ≤ N and − n ≤ j ≤ n}
contains 2Nn+N elements. Therefore,

|{ϕ ∈ AutR(N)+n(X) : ϕ−1 ∈ AutR(N)+n(X)}| ≥ 2Nn+N.

It follows that

lim sup
R→∞

|{ϕ ∈ AutR(X) : ϕ−1 ∈ AutR(X)}|
R

≥ 2N.

Since N ∈ N was arbitrary, we have

(4) lim sup
R→∞

|{ϕ ∈ AutR(X) : ϕ−1 ∈ AutR(X)}|
R

=∞.

On the other hand, since (X,σ) is transitive, the parameter q in the conclusion
of Proposition 3.5 is 1. Then by (3), we have

|{ϕ ∈ AutR(X) : ϕ−1 ∈ AutR(X)} ≤ Bk(C + 2)(R+ 1),

where B, k, C are as in Proposition 3.5, which depend only on the shift (X,σ) and
not on R. This estimate holds for any R ∈ N, a contradiction of (4). �
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We use this to complete the proof of Theorem 1.3, characterizing the automor-
phism group of transitive shifts of linear growth:

Proof of Theorem 1.3. Assume (X,σ) is a transitive shift satisfying

lim sup
n→∞

PX(n)/n < k

for some k ∈ N. An automorphism in a transitive shift is determined by the
image of a point whose orbit is dense, and so Lemma 3.6 implies that the group
Aut(X)/(Aut(X)∩ [σ]) is finite (Lemma 2.2 implies that Aut(X)∩ [σ] is normal in
Aut(X)). However, the only orbit preserving automorphisms in a transitive shift
are elements of 〈σ〉, since such an automorphism acts like a power of the shift on a
point whose orbit is dense. �

Theorem 1.3 shows that if (X,σ) is transitive and has low enough complexity,
then Aut(X) is highly constrained. One might hope to have a converse to this
theorem: if (X,σ) is transitive and is above some “complexity threshold” then
Aut(X) is nontrivial. In Section 6.2, we give an example showing that no such
converse holds.

3.4. The automorphism group of a shift with dense aperiodic points.

Lemma 3.7. Suppose (X,σ) has a dense set of aperiodic points and there exists
k ∈ N such that

lim sup
n→∞

PX(n)

n
< k.

Let x1, . . . , xq ∈ X be a set (of minimal cardinality) such that O(x1) ∪ · · · ∪ O(xq)
is dense in X. Then for each 1 ≤ i ≤ q, the set

{ϕ(xi) : ϕ ∈ Aut(X)}
is contained in the union of finitely many distinct orbits.

Proof. By minimality of the set {x1, . . . , xq}, we have

xi /∈
⋃
j 6=i

O(xj)

for any 1 ≤ i ≤ q. Therefore there exists wi ∈ L(X) such that [wi]
+
0 ∩ O(xi) 6= ∅

but [wi]
+
0 ∩

⋃
j 6=iO(xj) = ∅. This implies that [wi]

+
0 ⊆ O(xi).

Let ϕ ∈ Aut(X) and note that ϕ is determined by ϕ(x1), . . . , ϕ(xq). If for some
1 ≤ i ≤ q we have O(ϕ(xj)) ∩ [wi]

+
0 = ∅ for all j, then ϕ(X) ∩ [wi]

+
0 = ∅ and

ϕ is not surjective, a contradiction. Therefore, for each i there exists 1 ≤ ji ≤ q
such that O(ϕ(xji)) ∩ [wi]

+
0 6= ∅. By construction, if O(ϕ(xji)) ∩ [wi]

+
0 6= ∅, then

ϕ(xji) ∈ O(xi) and so O(ϕ(xji))∩ [wk]+0 = ∅ for any k 6= i. That is, the map i 7→ ji
is a permutation on the set {1, 2, . . . , q}. Let πϕ ∈ Sq, where Sq is the symmetric
group on q letters, denote this permutation.

Let
H := {πϕ : ϕ ∈ Aut(X)} ⊆ Sq.

For each h ∈ H, choose ϕh ∈ Aut(X) such that h = πϕh . Then if ϕ ∈ Aut(X) and

h = πϕ, the permutation induced by ϕ−1h ◦ϕ is the identity. It follows that ϕ−1h ◦ϕ
preserves each of the sets O(x1), . . . ,O(xq). Consequently, for each 1 ≤ i ≤ q, the

restriction of ϕ−1h ◦ ϕ to O(xi) is an automorphism of the (transitive) subsystem(
O(xi), σ

)
. By Lemma 3.6, the set {ψ(xi) : ψ ∈ Aut(O(xi))} is contained in the
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union of finitely many distinct orbits. Therefore, the set {ϕ−1πϕ ◦ϕ(xi) : ϕ ∈ Aut(X)}
is contained in the union of finitely many distinct orbits. Since

{ϕ(xi) : ϕ ∈ Aut(X)} ⊆
⋃
h∈H

ϕh

(
{ϕ−1πϕ ◦ ϕ(xi) : ϕ ∈ Aut(X)}

)
and automorphisms take orbits to orbits, it follows that {ϕ(xi) : ϕ ∈ Aut(X)} is
contained in the union of finitely many distinct orbits. �

Lemma 3.8. Let (X,σ) be a shift with a dense set of aperiodic points and assume
that there exists k ∈ N such that

lim sup
n→∞

PX(n)

n
< k.

Then Aut(X) ∩ [σ] ∼= Zd for some d < k.

Proof. By Lemmas 2.2 and 2.3, Aut(X)∩ [σ] is abelian and normal in Aut(X). By
Lemma 3.4, there exist points x1, . . . , xk−1 ∈ X such that O(x1) ∪ · · · ∪ O(xk−1)
is dense in X. If ϕ ∈ Aut(X) ∩ [σ], then there exist e1(ϕ), . . . , ek−1(ϕ) ∈ Z such
that ϕ(xi) = σei(ϕ)(xi) for all 1 ≤ i ≤ q. As an automorphism is determined
by the images of x1, . . . , xk−1, the map ϕ 7→ (e1(ϕ), . . . , ek−1(ϕ)) is an injective
homomorphism from Aut(X) ∩ [σ] to Zk−1. �

Proof of Theorem 1.2. By Lemma 3.4, there exist x1, . . . , xk−1 ∈ X such that
O(x1)∪· · ·∪O(xk−1) is dense in X. If ϕ ∈ Aut(X), then ϕ is determined by the val-
ues of ϕ(x1), . . . , ϕ(xk−1). By Lemma 3.7, the set {ϕ(xi) : ϕ ∈ Aut(X)} is contained
in the union of finitely many distinct orbits in X. Therefore, modulo orbit preserv-
ing automorphisms, there are only finitely many choices for ϕ(x1), . . . , ϕ(xk−1). It
follows that the group Aut(X)/(Aut(X) ∩ [σ]) is finite. By Lemma 3.8, Aut(X) ∼=
Zd for some d < k. �

4. General shifts of linear growth

Lemma 4.1. Suppose (X,σ) is a shift and w ∈ L(X) is such that [w]+0 is infinite.
Then there exists aperiodic xw ∈ X such that xw ∈ [w]+0 .

Proof. Either w occurs syndetically in every element of [w]+0 with a uniform bound
on the gap, or there exists a sequence yw of elements of [w]+0 along which the gaps
between occurrences of w in yw grow.

In the first case, the subsystem{
σix : x ∈ [w]+0 , i ∈ Z

}
is infinite and so contains an aperiodic point xw. Since w occurs syndetically with
the same bound in every element of [w]+0 , it also occurs syndetically in any limit
taken along elements of [w]+0 , and in particular in xw.

In the second case, there is an element of xw ∈ O(yw) ∩ [w]+0 for which either
w occurs only finitely many times or infinitely many times with gaps tending to
infinity in the semi-infinite word {x(n) : n ≥ 0}, or the same behavior occurs in the
semi-infinite word {x(n) : n ≤ 0}. In either case, xw is aperiodic. �

We use this to complete the proof of Theorem 1.1, characterizing the finitely
generated subgroups of a shift of linear growth:
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Proof of Theorem 1.1. Let (X,σ) be a shift and assume there exists k ∈ N such
that

lim sup
n→∞

PX(n)

n
< k.

Let

XNP := {x ∈ X : σi(x) 6= x for all i 6= 0}
be the closure of the set of aperiodic points in X. As automorphisms take aperiodic
points to aperiodic points, every element of Aut(X) preserves XNP . Consequently,
restriction to XNP defines a natural homomorphism h : Aut(X)→ Aut(XNP ).

Let ϕ1, . . . , ϕN ∈ Aut(X) and chooseR ∈ N such that ϕ1, . . . , ϕN , ϕ
−1
1 , . . . , ϕ−1N ∈

AutR(X). By Lemma 3.4, there exists a set x1, . . . , xk−1 ∈ XNP such that

O(x1) ∪ · · · ∪ O(xk−1)

is dense in XNP . Let {x1, . . . , xq} ⊆ XNP be a set of minimal cardinality with the
property that

O(x1) ∪ · · · ∪ O(xq)

is dense in XNP . Then for any ϕ ∈ 〈ϕ1, . . . , ϕN 〉, the restriction of ϕ to XNP is
determined by ϕ(x1), . . . , ϕ(xq). By Lemma 3.7, for each 1 ≤ j ≤ q, the set

{ϕ(xj) : ϕ ∈ 〈ϕ1, . . . , ϕN 〉}

is contained in the union of finitely many distinct orbits. Therefore there exists
a finite collection of automorphisms ψ1, . . . , ψM ∈ 〈ϕ1, . . . , ϕN 〉 such that for any
ϕ ∈ 〈ϕ1, . . . , ϕN 〉, there exists 1 ≤ t(ϕ) ≤M such that for all 1 ≤ j ≤ q, we have

ϕ(xj) ∈ O(ψt(ϕ)(xj)).

Thus the restriction of ψ−1t(ϕ) ◦ ϕ to XNP is orbit preserving. Let

K := {ϕ ∈ 〈ϕ1, . . . , ϕN 〉 : the restriction of ϕ to XNP is orbit preserving}.

Clearly K is a subgroup of 〈ϕ1, . . . , ϕN 〉.
For each 1 ≤ i ≤ N , we have that ϕi is a block code of range R. Let

WR :=
{
w ∈ L2R+1(X) : [w]+0 ∩XNP = ∅

}
.

Then by Lemma 4.1, the set

Y :=
⋃

w∈WR

[w]+0

is finite. Since every element of Y is periodic and automorphisms preserve the
minimal period of periodic points, the (〈ϕ1, . . . , ϕN 〉-invariant) set

Z :=
{
ϕe1i1 ◦ · · · ◦ ϕ

eS
iS

(y) : i1, . . . , iS ∈ {1, . . . , N}, e1, . . . , eS ∈ {−1, 1}, S ∈ N, y ∈ Y
}

is finite. For any 1 ≤ i ≤ N , the restriction of ϕi to XNP uniquely determines the
restriction of ϕi to X \Z (since by definition ofWR, all words of length 2R+1 that
occur in elements of X\Z also occur in XNP ). Since ϕ1, . . . , ϕN are automorphisms
that preserve Z, they take elements of X \ Z to elements of X \ Z. Thus for any
ϕ ∈ 〈ϕ1, . . . , ϕN 〉, the restriction of ϕ to XNP uniquely determines the restriction
of ϕ to X \Z. In particular, this holds for all ϕ ∈ K. Since Z is finite, there exists
a finite collection of automorphisms α1, . . . , αT ∈ K such that for all ϕ ∈ K, there
is an integer 1 ≤ s(ϕ) ≤ T such that α−1s(ϕ) ◦ ϕ acts trivially on Z.
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With the functions t(ϕ) and s(ϕ) defined as above, we have that for any ϕ ∈
〈ϕ1, . . . , ϕN 〉, the automorphism

α−1
s
(
ψ−1
t(ϕ)
◦ϕ

) ◦ ψ−1t(ϕ) ◦ ϕ
acts trivially on Z and its restriction to XNP is orbit preserving. Define H ⊆
〈ϕ1, . . . , ϕN 〉 to be the subgroup of elements ϕ ∈ 〈ϕ1, . . . , ϕN 〉 such that ϕ acts
trivially on Z and the restriction of ϕ to XNP is orbit preserving. Every element
of H is uniquely determined by its restriction to XNP , and so H is isomorphic to a
subgroup of Aut(XNP )∩ [σ]. By Lemma 3.8, this subgroup is isomorphic to Zd for
some d < k. On the other hand, for any ϕ ∈ 〈ϕ1, . . . , ϕN 〉, there exist 1 ≤ t ≤ M
and 1 ≤ s ≤ T such that α−1s ◦ ψ−1t ◦ ϕ ∈ H. Therefore H has finite index in
〈ϕ1, . . . , ϕN 〉.

Finally, if ϕ ∈ H, then there is a function k : XNP → Z such that for all x ∈ XNP

we have ϕ(x) = σk(x)(x). Thus if ψ ∈ 〈ϕ1, . . . , ϕN 〉 and x ∈ XNP , we have

ψ ◦ ϕ ◦ ψ−1(x) = ψ ◦ σk(ψ
−1(x)) ◦ ψ−1(x) = σk(ψ

−1(x))(x)

and if x ∈ Z, we have

ψ ◦ ϕ ◦ ψ−1(z) = z.

Therefore ψ ◦ ϕ ◦ ψ−1 ∈ H and so H is a normal subgroup of Aut(X).
It follows that 〈ϕ1, . . . , ϕN 〉 is virtually Zd. This argument holds for any finitely

generated subgroup of Aut(X) and so every finitely generated subgroup of Aut(X)
is virtually Zd for some d < k. �

Remark 4.2. We note that the proof of Theorem 1.1 actually gives a slightly stronger
result: for every finitely generated subgroup of Aut(X), there exists d < k such
that this subgroup is Zd-by-finite (i.e. the finite-index subgroup isomorphic to Zd
is normal).

5. Minimal shifts of linear growth

For minimal shifts, we need more information on the words that are uniquely
extendable:

Definition 5.1. For x ∈ X, define

xR := {y ∈ X : y(i) = x(i) for all i ≥ 0}.

For x, y ∈ X, we write x ∼R y if xR = yR and define XR := X/∼R to be X modulo
this relation.

It is easy to check that ∼R is an equivalence relation on X and so XR is well
defined. We view (XR, σ) as a one sided shift. If ϕ ∈ Aut(X), then ϕ is a block
code (say of range N) and so determines an endomorphism on (XR, σ) as follows:
if y ∈ xR and N ∈ N is the minimal range of ϕ, then ϕ(xR) :=

(
σN ◦ ϕ(y)

)
R

. It is

easy to check that ϕ(xR) is well defined.

Definition 5.2. For x ∈ X, we say that xR is uniquely left extendable if it has a
unique preimage under the shift σ in XR and nonuniquely left extendable otherwise.

If w ∈ Ln(X) is a word of length n in the language of X, we say that w is
uniquely left extendable if there is a unique ŵ ∈ Ln+1(X) that ends with w.
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Boshernitzan [1] showed that if (X,σ) is minimal and there exists k ∈ N such
that

lim inf
n→∞

PX(n)− kn = −∞,

then the number of ergodic probability measures on (X,σ) is finite. In his proof,
he makes use of a counting lemma and we use an infinite version of this lemma to
study minimal shifts of linear growth:

Lemma 5.3 (Infinite version of Boshernitzan’s Lemma). Let (X,σ) be a shift for
which there exists k ∈ N such that

(5) lim inf
n→∞

PX(n)− kn = −∞.

Then there are at most k − 1 distinct elements of (XR, σ) which are nonuniquely
left extendable.

Proof. We first claim that for infinitely many n, the number of words of length n
that are nonuniquely left extendable is at most k− 1. If not, let Ln be the number
of words of length n that do not extend uniquely to their left. Then by assumption
there exists N ∈ N such that for all n ≥ N we have Ln ≥ k. However,

PX(n+ 1) ≥ PX(n) + Ln,

and so PX(n) ≥ PX(N) + k · (n−N) for all n ≥ N . This contradicts (5), and the
claim follows.

We use this to show that there are at most k − 1 elements in XR which are
nonuniquely left extendable. If not, there exist distinct elements x1, . . . , xk ∈ XR

which are all nonuniquely left extendable. Choose M ∈ N such that for any 1 ≤ i <
j ≤ k, there exists 0 ≤ m < M such that xi(m) 6= xj(m). By the first claim, there
exists n > M such that there are at most k words of length n that are nonuniquely
left extendable. For all 1 ≤ i ≤ k, the word

(xi(0), xi(1), . . . , xi(n− 2), xi(n− 1))

is a word of length n that is nonuniquely left extendable and these words are pairwise
distinct since n > M , leading to a contradiction. Thus the number of elements of
(XR, σ) that are nonuniquely left extendable is at most k − 1. �

Notation 5.4. We write Υ0 ⊆ XR for the collection of nonuniquely left extendable
points in XR. For m ∈ N, we write Υm := σm(Υ0) for the collection of elements of
XR whose preimage under m iterates of σ contains more than one point.

Lemma 5.5. Suppose X is infinite and XR, Υ0 are as in notation 5.4. Then
Υ0 6= ∅.

Proof. Since X is infinite, XR is also infinite. The Morse-Hedlund Theorem implies
that PXR(n) is unbounded and so there are infinitely many n ∈ N such that PXR(n+
1) > PXR(n); let (ni) be a sequence of such n. If every word of length n in L(X)
extended (left) uniquely to a word of length n+ 1, then PXR(n+ 1) = PXR(n). So
for all i, there exists a word wi ∈ Lni(XR) and two words ui, vi ∈ Lni+1(XR) such
that ui 6= vi but the rightmost factor (of length ni) of both ui and vi is wi. For
each i ∈ N, let xi ∈ [ui]

+
0 and let yi ∈ [vi]

+
0 . By compactness of XR, we can pass

to a subsequence xij that converges to some x∞ ∈ XR. By passing to a further
subsequence if necessary, we can assume that yij also converges to some y∞ ∈ XR.
By construction, σ(x∞) = σ(y∞) but x∞ 6= y∞. Thus σ(x∞) ∈ Υ0. �
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Lemma 5.6. If y ∈ XR\
⋃∞
m=0 Υm, then there is a unique z ∈ X for which y = zR.

Proof. If not, there exist distinct z1, z2 ∈ X and y = (z1)R = (z2)R. Thus
there exists i ∈ N such that z1(−i) 6= z2(−i). Set i0 to be the minimal such i.
Then σ−i0+1y = (σ−i0+1z1)R = (σ−i0+1z2)R, but (σ−i0z1)R 6= (σ−i0z2)R. Thus
σ−i0+1y ∈ Υ0, which implies that y ∈ Υ−i0+1, a contradiction. �

Lemma 5.7. If (X,σ) is a shift, ϕ ∈ Aut(X), and y ∈ Υ0, then there exists m ≥ 0
such that ϕ(y) ∈ Υm.

Proof. It not, then ϕ(y) ∈ XR \
⋃∞
m=0 Υm and so Lemma 5.6 implies that there is

a unique z ∈ X such that ϕ(y) = zR. Since ϕ is an automorphism, it follows that
ϕ−1(z) is the only solution to the equation y = xR, a contradiction of y ∈ Υ0. �

We use this to complete the characterization of the automorphism group for
minimal aperiodic shifts with linear growth:

Proof of Theorem 1.4. Assume (X,σ) is an aperiodic minimal shift such that there
exists k ∈ N with lim infn→∞ PX(n)/n < k.

Fix y ∈ Υ0 (which is nonempty by Lemma 5.5) and let ϕ ∈ Aut(X). By
Lemma 5.7, there exists m ∈ N such that ϕ(y) ∈ Υm. Let mϕ ≥ 0 be the smallest
non-negative integer for which ϕ(y) ∈ Υmϕ . Then there exists zϕ ∈ Υ0 such that
σmϕ(zϕ) = ϕ(y).

Now suppose ϕ1, ϕ2 ∈ Aut(X) and zϕ1
= zϕ2

. We claim that ϕ1 and ϕ2 project
to the same element in Aut(X)/〈σ〉. Without loss of generality, suppose mϕ1 ≤
mϕ2 . Then

ϕ2(y) = σmϕ2 (zϕ2
) = σ(mϕ2

−mϕ1
) ◦ σmϕ1 (zϕ1

) = σ(mϕ2
−mϕ1

) ◦ ϕ1(y).

By minimality, every word in L(X) of every length occurs syndetically in every
element of (X,σ). It follows that all words occur syndetically in every element
of (XR, σ), and in particular, all words occur syndetically in y. Both ϕ2 and
σ(mϕ2

−mϕ1
) ◦ ϕ1 are sliding block codes. Since ϕ2(y) = σ(mϕ2

−mϕ1
) ◦ ϕ1(y), it

follows that ϕ2 and σ(mϕ2
−mϕ1

) ◦ϕ1 have the same image on every word, meaning
that they define the same block code. In other words, ϕ1 and ϕ2 project to the
same element in Aut(X)/〈σ〉, proving the claim.

Since |Υ0| ≤ k − 1, Lemma 5.3 implies that there can be at most k − 1 distinct
elements of (XR, σ) that arise as zϕ for ϕ ∈ Aut(X). Therefore, there are at most
k − 1 distinct elements of Aut(X)/〈σ〉. �

This can be used to characterize the automorphism groups for particular systems.
We note the simplest case of a Sturmian shift for later use (see [12, Example 4.1]):

Corollary 5.8. If (X,σ) is a Sturmian shift, then Aut(X) = 〈σ〉.

Proof. For a Sturmian shift, (X,σ) is minimal, aperiodic, and PX(n) = n + 1 for
all n ∈ N. Applying Theorem 1.4 with k = 2, we have that |Aut(X)/〈σ〉| = 1. �

More generally:

Corollary 5.9. If (X,σ) is aperiodic, minimal and there exists k ∈ N such that

lim inf
n→∞

PX(n)− kn = −∞,

then Aut(X) is the semi-direct product of a finite group and Z.
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Proof. By Theorem 1.4, Aut(X)/〈σ〉 is finite. Since 〈σ〉 has infinite order and is
contained in the center of Aut(X), it follows from the classification of virtually
cyclic groups (see [15]) that Aut(X) is the semi-direct product of a finite group and
Z. �

6. Examples

6.1. Automorphism group with large polynomial growth. Proposition 3.5
shows that if (X,σ) is a shift satisfying

lim sup
n→∞

PX(n)

n
< k

then Aut(X) is locally a group of polynomial growth, with polynomial growth rate
at most k−1. The following proposition shows that this estimate of the polynomial
growth rate of Aut(X) is optimal.

Proposition 6.1. Let k ∈ N be fixed and let A = {0, 1} × {1, . . . , k}. There is a
shift X ⊆ AZ with a dense set of aperiodic points such that PX(n) = kn + k and
Aut(X) ∼= Zk.

Proof. Recall that a Sturmian shift is an aperiodic, minimal shift of {0, 1}Z whose
complexity function satisfies PX(n) = n + 1 for all n. There are uncountably
many Sturmian shifts and any particular Sturmian shift only factors onto countably
many other Sturmian shifts (since the factor map must be a sliding block code, of
which there are only countably many). Therefore there exist k Sturmian shifts
X1, X2, . . . , Xk such that there exists a sliding block code taking Xi to Xj if and
only if i = j. We identify Xi with in a natural way with a shift of AZ by writing
the elements of Xi with the letters (0, i) and (1, i) and will abuse notation by also
referring to this shift as Xi. Let X := X1∪· · ·∪Xk (which is clearly shift invariant,
and is closed because the minimum distance between a point in Xi and Xj is 1
whenever i 6= j).

Let ϕ ∈ Aut(X). As ϕ is given by a sliding block code, ϕ must preserve the sets
X1, . . . , Xk. Therefore Aut(X) ∼= Aut(X1) × · · · × Aut(Xk). By Corollary 5.8 we
have Aut(Xi) = 〈σ〉 ∼= Z for i = 1, . . . , k. So Aut(X) ∼= Zk. �

6.2. Quickly growing transitive shifts with trivial automorphism group.
Next we describe a general process which takes a minimal shift of arbitrary growth
rate and produces a transitive shift with essentially the same growth, but whose
automorphism group consists only of powers of the shift. This shows that there
is no “complexity threshold” above which the automorphism group of a transitive
shift must be nontrivial.

Lemma 6.2. If (X,σ) is a transitive shift with precisely one dense orbit, then
Aut(X) = 〈σ〉.

Proof. Suppose that there exists x0 ∈ X such that

{y ∈ X : y has a dense orbit} = O(x0).

If ϕ ∈ Aut(X), then ϕ(x0) has a dense orbit and so there exists k ≥ 0 such that
ϕ(x0) = σk(x0). It follows that ϕ and σk agree on the (dense) orbit of x0. Since
both functions are continuous, they agree everywhere. �
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Example 6.3. Let A = {0, 1, 2, . . . , d−1} and let X ⊆ AZ be a minimal shift. Let

Ã = A ∪ {d}, where we add the symbol d to the alphabet and d /∈ A. Fix x0 ∈ X
and define x̃0 ∈ ÃZ by:

x̃0(i) =

{
x0(i) if i 6= 0;

d if i = 0.

Let X̃ ⊆ ÃZ be the orbit closure of x̃0. Then X̃ = X ∪ O(x̃0), (X̃, σ) is transitive,

pX̃(n) = pX(n) + n for all n ∈ N (for n ∈ N, Ln(X) ⊆ Ln(X̃) by minimality

but Ln(X̃) has exactly n additional words that contain the symbol d), and X̃ has

precisely one dense orbit. By Lemma 6.2, Aut(X̃) = 〈σ〉.

6.3. Aut(X) and Aut(X)/(Aut(X) ∩ [σ]) are not always finitely generated.
Theorem 1.1 shows that every finitely generated subgroup of Aut(X) is virtu-
ally Zd. When X has a dense set of aperiodic points, Theorem 1.2 shows that
Aut(X)/(Aut(X) ∩ [σ]) is finite. In this section we show that the result of The-
orem 1.2 cannot be extended to the general case, and the words “every finitely
generated subgroup of” cannot be removed from the statement of Theorem 1.1.
We begin with an example to set up our construction.

Example 6.4. Let A = {0, 1} and for n ∈ N, let xn ∈ AZ be the periodic point

xn(i) =

{
1 if i ≡ 0 (mod 2n);

0 otherwise.

Let X be the closure of the set {xn : n ∈ N} under σ. If we define

x∞(i) =

{
1 if i = 0;

0 otherwise,

and 0 to be the A-coloring of all zeros, then we have

X = {0} ∪ O(x∞) ∪
∞⋃
n=1

O(xn).

Suppose R ∈ N is fixed and ϕ ∈ AutR(X). Since ϕ preserves the period of periodic
points, ϕ(0) = 0. In particular, the block code ϕ takes the block consisting of all
zeros to 0. It follows that there exists k ∈ [−R,R] such that ϕ(x∞) = σk(x∞). For
any m > 2R+ 1, the blocks of length 2R+ 1 occurring in xm are identical to those
appearing in x∞ and so ϕ(xm) = σk(xm) for all such m.

Now let ϕ1, . . . , ϕn ∈ Aut(X) and findR ∈ N such that ϕ1, . . . , ϕn, ϕ
−1
1 , . . . , ϕ−1n ∈

AutR(X). For 1 ≤ i ≤ n, let ki ∈ [−R,R] be such that for all m > 2R + 1
we have ϕi(xm) = σki(xm). Then for N ∈ N, any e1, . . . , eN ∈ {1, . . . , n}, any
ε1, . . . , εN ∈ {−1, 1}, and any m > 2R+ 1, we have(

ϕε1e1 ◦ ϕ
ε2
e2 ◦ · · · ◦ ϕ

εN
eN

)
(xm) = σ(ε1·ke1+ε2·ke2+···+εN ·keN )(xm).

Then if ϕ ∈ Aut(X) is the automorphism that acts like σ on O(x2R+2) and acts
trivially on X \ O(x2R+2) (this map is continuous because x2R+2 is isolated), then
ϕ /∈ 〈ϕ1, . . . , ϕN 〉. Therefore 〈ϕ1, . . . , ϕN 〉 6= Aut(X). Since ϕ1, . . . , ϕn ∈ Aut(X)
were general, it follows that Aut(X) is not finitely generated.

On the other hand we can compute the value of PX(n) as follows. There are
exactly n+1 words in Ln(X) that contain at most one 1. For all m ≤ blog2(n)c−1,
there are exactly 2m words in Ln(X) that arise as factors of xm (all such words
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contain at least two 1’s and their period can be read off as the spacing between the
1’s). In addition, there are exactly n− 2blog2(n)c words in xblog2(n)c that contain at
least two 1’s. Therefore

PX(N) = (n+1)+

blog2(n)c−1∑
m=1

2m+(n−blog2(n)c) = 2n+2blog2(n)c−blog2(n)c−1 < 4n

for all n, so PX(n) grows linearly. We also remark that Aut(X) = Aut(X)∩ [σ] for
this shift.

Proposition 6.5. There exists a shift (X,σ) of linear growth that has a dense set
of periodic points and is such that none of the groups Aut(X), Aut(X) ∩ [σ], and
Aut(X)/(Aut(X) ∩ [σ]) are finitely generated.

Proof. Let X1 be the shift of {0, 1}Z constructed in the previous example. Let
X2 be the same shift, constructed over the alphabet {2, 3} (by identifying 0 with
2 and 1 with 3). Let X = X1 ∪ X2 and observe that d(X1, X2) = 1. Since
Aut(Xi)∩ [σ] = Aut(Xi) for i = 1, 2, we have Aut(X)∩ [σ] ∼= Aut(X1)×Aut(X2).
Therefore Aut(X) ∩ [σ] is not finitely generated. On the other hand,

PX(n) = PX1
(n) + PX2

(n) = 2 · PX1
(n) < 8n

so X is a shift of linear growth (and has a dense set of periodic points).
We claim that Aut(X)/(Aut(X) ∩ [σ]) is not finitely generated. Define δ ∈

Aut(X) to be the involution of range 0 (or, equivalently, the 1-block code) that
exchanges 0 with 2 and 1 with 3. For each m ∈ N let δm ∈ Aut(X) be the
involution of range (2m+1 + 1) which exchanges the (unique) orbit of period 2m in
X1 with the (unique) orbit of period 2m in X2 by exchanging 0 with 2 and 1 with

3 in these orbits only (and fixing the remainder of X). For i ∈ N let δ̃i be the

projection of δi to Aut(X)/(Aut(X) ∩ [σ]) and let δ̃ be the projection of δ. These

involutions commute pairwise and one can check that the set {δ̃i : i ∈ N} ∪ {δ̃}
generates a subgroup of Aut(X)/(Aut(X)∩ [σ]) that is isomorphic to

∏∞
i=1(Z/2Z).

Now let x ∈ X1 be the point x(i) = 1 if and only if i = 0, and let y ∈ X2 be
the point y(i) = 3 if and only if i = 0. Let ϕ ∈ Aut(X) be fixed and observe that
either ϕ(x) ∈ O(x) or ϕ(x) ∈ O(y). In the former case define ε := 0 and in the
latter case define ε := 1, so that ϕ ◦ δε preserves the orbit of x (hence also the orbit
of y). As ϕ ◦ δε is given by a block code which carries the block of all 0’s to 0,
there are at most finitely many m such that ϕ ◦ δε does not preserve the orbit of
the (unique) periodic orbit of period 2m in X1. Let m1 < · · · < mn be the set of
m for which it does not preserve the orbit. Then

ϕ ◦ δε ◦ δm1 ◦ · · · ◦ δmn ∈ Aut(X) ∩ [σ].

Therefore Aut(X)/(Aut(X) ∩ [σ]) is the group generated by δ̃, δ̃1, δ̃2, δ̃3, . . . This
group is isomorphic to

∏∞
i=1(Z/2Z) so Aut(X)/(Aut(X) ∩ [σ]) is not finitely gen-

erated. Finally, as Aut(X) factors onto a group that it not finitely generated, it is
not finitely generated either. �

7. Automorphisms of periodic shifts

We characterize which finite groups arise as automorphism groups of shifts.
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Definition 7.1. For n > 1 and m ∈ N, let

Zmn := Zn × Zn × · · · × Zn︸ ︷︷ ︸
m times

where Zn denotes Z/nZ. Let Sm denote the symmetric group on m letters and
define a homomorphism ψ : Sm → Aut(Zmn ) by

(ψ(π)) (i1, . . . , im) := (iπ(1), . . . , iπ(m)).

Then the generalized symmetric group is defined as in [13] to be

S(n,m) := Zmn oψ Sm.

Equivalently, S(n,m) is the wreath product Zn o Sm.

Theorem 7.2. Suppose G is a finite group. There exists a shift (X,σ) for which
Aut(X) ∼= G if and only if there exist s ∈ N, n1 < n2 < · · · < ns, and m1,m2, . . . ,ms ∈
N such that

G ∼= S(n1,m1)× S(n2,m2)× · · · × S(ns,ms).

Proof. Suppose (X,σ) is a shift for which Aut(X) is finite. Since σ ∈ Aut(X), there
exists k ∈ N such that σk(x) = x for all x ∈ X. That is, X is comprised entirely of
periodic points such that the minimal period of each point is a divisor of k. Since
a shift can have only finitely many such points, X is finite. Let x1, . . . , xN ∈ X
be representatives of the orbits in X, meaning that O(xi) ∩ O(xj) = ∅ whenever
i 6= j and for all x ∈ X there exist i, k ∈ N such that x = σk(xi). For i = 1, . . . , N ,
let pi be the minimal period of xi and, without loss of generality, assume that
p1 ≤ p2 ≤ · · · ≤ pN . Define n1 := p1 and inductively define n2, n3, . . . , ns by

ni+1 := min{pj : pj > ni},

where s is the number of steps before the construction terminates. Define

mi := |{j : pj = ni}|.

Let ϕ ∈ Aut(X). Then for 1 ≤ i ≤ s, ϕ induces a permutation on the set of
periodic points of minimal period ni. More precisely, for fixed 1 ≤ i ≤ s, we can
define πϕi ∈ Smi to be the permutation that sends j ∈ {1, 2, . . . ,mi} to the unique
integer k ∈ {1, 2, . . . ,mi} such that ϕ(xm1+···+mi−1+j) ∈ O(xm1+···+mi−1+k). For

1 ≤ j ≤ mi, choose kij ∈ Zni such that

ϕ(xm1+···+mi−1+j) = σk
i
j (xm1+···+mi−1+π

ϕ
i (j)

).

Then the map Φ given by

Φ(ϕ) = (k11, k
1
2, . . . , k

1
m1
, πϕ1 , k

2
1, . . . , k

2
m2
, πϕ2 , . . . , k

s
1, . . . , k

s
ms , π

ϕ
s )

is a homomorphism from Aut(X) to S(n1,m1) × · · · × S(ns,ms). The kernel of
this map is trivial since any such automorphism fixes xi for all i (and so also fixes
every element of X). To check that it is surjective, if π1, . . . , πs are permutations
(πi ∈ Smi for all i), then define

ϕπ1,...,πs(xm1+···+mi−1+j) = xm1+···+mi−1+πi(j)

and extend this to an automorphism of (X,σ). Similarly, for 1 ≤ i ≤ N , define

ϕi(σ
k(xj)) := σk+δi,j (xj),
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where δi,j is the Kronecker delta. Note that each of these maps is given by a block
code, where the range is the smallest R such that σR(x) = x for all x ∈ X. Taken
together, this shows that the map Φ is surjective and thus is an isomorphism.

Conversely, suppose that n1 < · · · < ns and m1, . . . ,ms ∈ N are given. For
1 ≤ i ≤ s and 1 ≤ j ≤ mi, define

xi,j(k) :=

{
j if k ≡ 0 (mod ni);

0 otherwise.

Let

X ′ =

s⋃
i=1

ni⋃
j=1

xi,j

and let X be the closure of X ′ under σ. Then X consists of periodic points, with
precisely mi distinct orbits of minimal period ni, for 1 ≤ i ≤ s. The reader can
check that the automorphism group of a shift that consists of exactly m distinct
orbits of minimal period n is isomorphic to S(n,m). Thus we have

Aut(X) ∼= S(n1,m1)× · · · × S(ns,ms). �
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[14] V. Salo & I. Törmä. Block Maps between Primitive Uniform and Pisot Substitutions.

arXiv:1306.3777.

[15] P. Scott & T. Wall. Topological methods in group theory. Homological group theory (Proc.
Sympos., Durham, 1977), pp. 137203, London Math. Soc. Lecture Note Ser., 36, Cambridge

Univ. Press, Cambridge-New York, 1979.



THE AUTOMORPHISM GROUP OF A SHIFT OF LINEAR GROWTH 21

[16] T. Ward. Automorphisms of Zd-subshifts of finite type. Indag. Math. (N.S.) 5 (1994), no.

4, 495–504.

Bucknell University, Lewisburg, PA 17837 USA

E-mail address: van.cyr@bucknell.edu

Northwestern University, Evanston, IL 60208 USA

E-mail address: kra@math.northwestern.edu


	1. Introduction
	2. Background and notation
	2.1. Shift systems
	2.2. Complexity of shifts
	2.3. The automorphism group of a shift
	2.4. Automorphisms and the full group
	2.5. Summary of group theoretic terminology

	3. Shifts of linear growth with a dense set of aperiodic points
	3.1. Cassaigne's characterization of linear growth
	3.2. Assuming a dense set of aperiodic points
	3.3. The automorphism group of a transitive shift
	3.4. The automorphism group of a shift with dense aperiodic points

	4. General shifts of linear growth
	5. Minimal shifts of linear growth
	6. Examples
	6.1. Automorphism group with large polynomial growth
	6.2. Quickly growing transitive shifts with trivial automorphism group
	6.3. Aut(X) and Aut(X)/(Aut(X)[]) are not always finitely generated

	7. Automorphisms of periodic shifts
	References

