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Abstract. Nilsystems are a natural generalization of rotations
and arise in various contexts, including in the study of multiple
ergodic averages in ergodic theory, in the structural analysis of
topological dynamical systems, and in asymptotics for patterns in
certain subsets of the integers. We show, however, that many nat-
ural classes in both measure preserving systems and topological
dynamical systems contain no higher order nilsystems as factors,
meaning that the only nilsystems they contain as factors are rota-
tions. Our main result is that in the topological setting, nilsystems
have a particular type of complexity of polynomial growth, where
the polynomial (with explicit degree) is an asymptotic both from
below and above. We also deduce several ergodic and topological
applications of these results.

1. The role of nilsystems

1.1. Nilsystems in various contexts. In studying multiple ergodic
averages in a measure preserving system (X,B, µ, T ), certain factors
called nilfactors with algebraic structure occur naturally: these are
the factors of the given system that have the structure of a measure
theoretic nilsystem (see Sections 1.2 and 2.2 for definitions).

As is often the case, the ergodic notions and results have counter-
parts in topological dynamics. As in the ergodic setting, we refer to
topological factors that are nilsystems as topological nilfactors. Topo-
logical nilfactors naturally arise in the structural analysis of topological
dynamical systems [23]. Nilsystems arise naturally in other contexts
such as additive combinatorics; as an example, we cite the recent use
of nilsequences (introduced in [3], these are functions evaluated on an
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orbit in a nilsystem) in the work on patterns in the primes, as described
in the program laid out in [19].

The main results of this paper are a detailed analysis of the existence
(or not) of nilfactors in the topological setting. Although we mostly
work in the topological setting, we start with the more classical mea-
sure theoretic point of view, as some ergodic results are used in our
topological study.

1.2. Nilsystems in ergodic theory. By a measure preserving sys-
tem, we mean a Lebesgue probability space (X,B, µ, T ) endowed with
a measurable, measure preserving transformation T : X → X. When
(X,B, µ, T ) and (Y,D, ν, S) are measure preserving systems, a map
f : X → Y is a factor map if it is measurable, carries the measure µ to
ν, and satisfies S ◦ f = f ◦ T µ-a.e.

The simplest factor is the invariant σ-algebra that arises in the von
Neumann mean ergodic theorem. Assuming henceforth that the sys-
tem is ergodic, the relevant factor for the study of the average of
f(T nx)f(T 2nx) is the Kronecker factor Z1(X) = Z1(X,B, µ, T ). This
is the factor spanned by the eigenfunctions of the system, and it is
isomorphic to a translation on a compact abelian group endowed with
its Haar measure.

For more intricate averages, for example the average of f(T nx) ·
f(T 2nx) · . . . ·f(T snx), we need a more sophisticated structural analysis
of the system. In [20], this is done by introducing a series of factors
Zs(X) = Zs(X,B, µ, T ) for s ≥ 1. The convergence of this average
then follows by analyzing the averages separately in the factor Zs(X)
and in its orthogonal complement.

Such structural analysis only becomes useful when the factors have
some sort of geometric or algebraic structure, and this is the content
of the structure theorem in [20]. More precisely, the factor Zs(X) is
the inverse limit of all s-step nilsystems that are factors of (X,B, µ, T ).
We call a factor of a system that is a nilsystem a nilfactor (for the
definition of a nilsystem, see Section 2.2). The factors Zs(X) have
since been used to understand other multiple ergodic averages (see, for
example, [21, 27, 17]) and to prove new results on multiple recurrence
(for example in [4, 17, 15]).

Our motivation in starting this work was to give examples of “sim-
ple” and “natural systems” with explicit, nontrivial factors Zs(X) for
some s > 1. Since all factors Zs(X), s ≥ 1, are trivial for weakly mix-
ing systems, we restrict our attention to non-weakly mixing ones. Of
course, the notion of a “natural system” is not precisely defined, but it
is clear that a system obtained by building an arbitrary extension of
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a given nilsystem is “artificial.” Somewhat surprisingly, we found the
task of finding non-artificial nilsystems harder than expected. It turns
out that for many natural classes of systems, the factors Zs(X) coin-
cide with the Kronecker factor Z1(X); there are spectral obstructions
that force this, and this is explained in Corollary 2.2. The interest in
such a spectral result is that it sets the context for the main results of
this paper, which are in the setting of topological dynamical systems.

In Sections 6.1 and 6.2, we give two applications for measure preserv-
ing systems that have no nilfactors other than rotation factors. The
first result is on optimal lower bounds for intersections of translates of
a set, and the second application is a strengthening of results in [22]
and [7] on the convergence of weighted polynomial multiple averages.

1.3. Nilsystems in topological dynamics. We turn now to the
counterparts of these notions in topological dynamics. Recall that a
topological dybamical system is a compact metric space endowed with
an homeomomorphism T of X. A factor from the topological system
(X,T ) to the topological factor (Y, S) is a map f : X → Y , continuous
and onto, such that S ◦ f = f ◦ T .

As in the ergodic setting, we refer to topological factors that are
nilsystems as topological nilfactors. Topological nilfactors naturally
arise in the structural analysis of topological dynamical systems [23].
The main results of this paper are a detailed analysis of the existence
(or not) of nilfactors in the topological setting.

We recall some definitions ([23], see also [32]). Let (X,T ) be a
transitive topological system, meaning that X is a compact metric
space endowed with a homeomorphism T : X → X such that the orbit
{T nx : n ∈ Z} of some point x ∈ X is dense. We can associate to this
system an increasing sequence Ztop,s(X), s ≥ 1, of topological factors.
The first factor Ztop,1(X) is the maximal equicontinuous factor, also
called the topological Kronecker factor, of (X,T ). It is spanned by the
continuous eigenfunctions of the system, and is topologically isomor-
phic to a translation on a compact abelian group. For s > 1, Ztop,s(X)
is the inverse limit of all s-step topological nilfactors of (X,T ). In [23]
and [32], it is shown that topological nilfactors can be characterized by
dynamically defined “cubic subsets” of X2s+1 , leading to a topological
analog of the ergodic theoretic structure theorem.

Finding natural topological systems with nilsystems as topological
nilfactors also turns out to be nontrivial. One already has obstructions
that arise from the ergodic setting, by considering any invariant mea-
sure on the system. Secondly, since nilsystems have zero entropy, it is
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only of interest to consider distal systems with zero entropy. The rele-
vant property seems to be some sort of complexity, and the notion we
use is the topological complexity inspired in the notion of ε–n spanning
sets (see for example [35] for the origin of this definition in the work of
Dinaburg and Bowen):

Definition 1.1. Let (X,T ) be a topological dynamical system and let
d be a distance on X defining its topology. For ε > 0 and n ≥ 1, an
ε–n spanning set for (X,T ) is a finite subset {x1, . . . , xm} of X such
that for every x ∈ X there exists j ∈ {1, . . . ,m} such that

d(T kx, T kxj) < ε for every k ∈ {0, . . . , n− 1}.

Let SX,T,d(ε, n) denote the minimal cardinality of an ε–n spanning set
of (X,T ). When there is no possible ambiguity, we omit the system
and metric from the notation and write S(ε, n). We call the function S

the topological complexity of the system (X,T ).

Clearly, this notion depends on the choice of the distance d on X.
However, if d and d′ are distances on X defining its topology, then for
every ε > 0 there exist η1 > 0 and η2 > 0, both tending to zero with ε,
such that

SX,T,d(η1, n) ≤ SX,T,d′(ε, n) ≤ SX,T,d(η2, n)

for every n ∈ N.
We also could have defined this in terms of ε-n separated sets: an ε-n

separated set for (X,T ) is a finite set {x1, . . . , xm} of X such that for
all xi 6= xj there exists k ∈ {0, . . . , n− 1} such that d(T kxi, T

kxj) ≥ ε.
Taking sX,T,d(ε, n) to be the maximal cardinality of an ε-n separated
set in X, we obtain the same behavior as n tends to infinity and ε tends
to 0. This remark is used (Section 4.2.2) to give an upper bound for
the complexity of nilsystems.

The notion of topological complexity used here is closely related to
the notion of the complexity of a cover studied in [5] and our results
can be rephrased in this language (see Section 3.1).

We show that every nilsystem (X,T ) has polynomial complexity
(Theorem 3.2) with an explicit degree, and most importantly, the de-
gree is the same both above and below. This places a constraint on any
system having such a system as a factor. The upper bound is related
to the well known fact that in a nilsystem, the orbits of two distinct
points diverge at a polynomial rate. However, our bound is a global
invariant, as opposed to such an infinitesimal characterization, and it
describes the long time behavior. A polynomial upper bound was given
in [9], but without a clear control on the exponent.



COMPLEXITY OF NILSYSTEMS 5

A natural question is what systems have the same complexity as nil
systems, as shown in Theorem 3.2:

Question 1. Characterize the minimal topological dynamical systems
(X,T ) such that for every ε > 0, there exist constants c(ε), c′(ε) > 0
such that

c(ε)n ≤ SX,T,d(ε, n) ≤ c′(ε)n

for every n ∈ N and c(ε) → ∞ as ε → 0. If, in addition, we assume
that (X,T ) is distal system, then is it a 2-step nilsystem ?

1.4. Nilsystems in symbolic dynamics. We recall that a subshift
over the alphabet A is a closed, shift invariant subset X of AZ, where
A is a finite set and AZ is endowed with the natural compact topology
and with the shift transformation. Endowed with the restriction of the
shift, a subshift is a particular type of topological dynamical system.

In a similar spirit to the ergodic and topological questions, we ask
how to decide whether a given subshift has any nilfactor other than
a rotation. Conversely, given a nilsystem, we can ask what kinds of
subshifts admit it as a factor? This leads us to a notion of complexity
classically used for subshifts:

Definition 1.2 (see for example [12]). Let (X,T ) be a subshift on the
finite alphabet A. For every integer n ≥ 1, let CX(n) be the number
of words of length n occurring in X. The combinatorial complexity of
(X,T ) is the function n 7→ CX(n). When there is no possible ambiguity,
we omit the space from the notation and write C(n).

We show (Corollary 3.3) that a subshift with very low combinatorial
complexity does not admit any nilfactor other than a rotation. More
generally, subshifts with low combinatorial complexity do not admit
any nilfactor of large order. Some applications of these results are
given in Section 5.

The classical Morse-Hedlund Theorem states that a subshift X is
finite (and thus only consists of periodic sequences) if and only if C(n) =
n for some n. On the other hand, Sturmian systems satisfy C(n) = n+1
for every n ≥ 1, and such systems are codings of irrational rotations
on the circle. This leads to the following question:

Question 2. Find an “optimal” coding of a minimal nilsystem (X,T ).
More precisely, define a subshift (Y, S) having (X,T ) as a nilfactor and
with minimal possible complexity CY .

1.5. Some questions. The discussion in Section 1.2 leads naturally
to other questions. In the topological study of nilsystems (Section 1.3),
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notions of complexity play a key role in understanding the existence of
nilfactors. We ask if something analogous holds in the ergodic setting:

Question 3. Does the conclusion of Corollary 2.2 remain valid when
the spectral hypothesis is replaced by some hypothesis on the “measure-
theoretic complexity” [13] or on the “slow entropy” [24] of the system?

A related question is:

Question 4. Compute the “measure-theoretic complexity” or the “slow
entropy” of ergodic nilsystems.

The ergodic results of this paper deal with factors. A natural gener-
alization consists in proving similar results for joinings:

Conjecture. Let (X,µ, T ) be an ergodic system satisfying the spectral
hypothesis of Corollary 2.2 and let (Y, ν, S) be an ergodic nilsystem.
Then every joining of these two systems is relatively independent with
respect to the corresponding joining of their Kronecker factors.

We conclude by returning to our original motivation:

Question 5. Find “natural” nontrivial systems in any of the settings
considered here (ergodic, topological or symbolic) that have an explicit
nilfactor other than a rotation, meaning systems such that Z1(X) 6=
Z2(X). More generally, describe classes of systems with Zs(X) 6=
Zs+1(X) for some s ≥ 1.

Acknowledgments. We thank Dave Morris, Terry Tao, and Jean-
Paul Thouvenot for helpful discussions.

2. Notation and basic definitions

2.1. Measure preserving systems. Throughout the article, we omit
the σ-algebra of measure preserving systems from our notation and
write (X,µ, T ) instead of (X,B, µ, T ). All subsets of X and functions
on X are implicitly assumed to be measurable. If X is given a topolog-
ical structure, the σ-algebra is assumed to be the Borel σ-algebra. For
simplicity we always assume that the transformation T is invertible.
When f is a function on X, we write, as usual, Tf instead of f ◦ T .
Also, in a mild abuse of notation, we use T to denote the unitary
operator f 7→ f ◦ T of L2(µ).

2.2. Nilsystems. Let G be a group. For a, b ∈ G, the commutator
(making a conventional choice in the order) of these elements is defined
to be

[a, b] = aba−1b−1.
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Throughout, we make use of several standard identities: for a, b ∈ G,
we have [b, a] = [a, b]−1 and for a, b, c ∈ G,

(1) [a, bc] = [a, b] [b, [a, c]] [a, c].

IfA,B are subsets ofG and a ∈ A, we write [a,B] for the group spanned
by {[a, b] : b ∈ B} and [A,B] for the group spanned by {[a, b] : a ∈
A, b ∈ B}. The subgroups Gj, j ≥ 1, of G are defined inductively by

G1 = G ; Gj+1 = [G,Gj] for every j ≥ 1.

One can check that

(2) for all k, ` ≥ 1, [Gk, G`] ⊂ Gk+`.

Let s ≥ 1 be an integer. The group G is s-step nilpotent if Gs+1 =
{1G}. In particular, G is 1-step nilpotent if and only if it is abelian. If
s ≥ 2 and G is s-step nilpotent but not (s− 1)-step nilpotent, then we
have

(3) G1 ) G2 ) G3 ) · · · ) Gs−1 ) Gs 6= {1G}.

If G is a Lie group, then G0 denotes the connected component of its
unit element 1G.

Let s ≥ 2 be an integer, G be an s-step nilpotent Lie group, and
Γ be a discrete and cocompact subgroup of G. The compact manifold
X = G/Γ is called an s-step nilmanifold. The group G acts on X by
left translation, and we write this action as (g, x) 7→ g · x. The Haar
measure µ on X is the unique Borel probability measure µ on X that
is invariant under this action.

Let τ be a fixed element ofG and let T : X → X be the map x 7→ τ ·x.
Then (X,T ) is called a topological s-step nilsystem and (X,µ, T ) a
measure theoretical s-step nilsystem, or just an s-step nilsystem. The
basic properties of nilsystems were established in [1] and [30], and a
more modern presentation is found in [25]. In particular, we have the
equivalences: (X,T ) is transitive if and only if it is minimal if and only
if it is uniquely ergodic if and only if (X,µ, T ) is ergodic.

If (X,T ) is minimal then, writing G′ for the subgroup of G spanned
by G0 and τ and setting Γ′ = Γ ∩ G′, we have that G = G′Γ. Thus
(X,T ) ∼= (X ′, T ′) where X ′ = G′/Γ′ and T ′ is the translation by τ on
X ′. Therefore, without loss of generality we can restrict to the case
that G is spanned by G0 and τ .

We can also assume that G0 is simply connected (see for example [28]
or [1] for the case that G = G0 and [26] for the general case).
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2.3. The spectrum of a nilsystem. Improving a result of Green [1],
Stepin proved (see Starkov [33] for history and comments):

Theorem ([34]). Let (X = G/Γ, µ, T ) be an ergodic nilsystem with
connected, simply connected group G. Then L2(µ) can be written as
the orthogonal sum L2(µ) = H ⊕ H′ of two T -invariant subspaces.
The space H consists of functions f ∈ L2(µ) that factorize through
G/G2Γ and the restriction of T to this space has discrete spectrum. The
restriction of T to H′ has Lebesgue spectrum of infinite multiplicity.

Green, Stepin, and Starkov only consider the case of a connected,
simply connected group. But, in view of our applications, we need a
similar result without any assumption that the group be connected.
While the extension of Stepin’s result to connected, but not simply
connected groups, is standard, the generalization for non-connected
groups is harder. Nilsystems arising from non-connected groups can be
quite different than those arising from connected ones, and there does
not seem to be a direct method of deducing the general case from the
particular one. Adapting the existing proofs requires many changes,
and so instead of modifying existing proofs we give a different one.

For any s > 2, any s-step ergodic nilsystem that is not a rotation
admits a 2-step nilfactor that is not a rotation. Thus, we only need
such a spectral result for 2-step nilsystems:

Proposition 2.1. Let (X = G/Γ, µ, T ) be an ergodic 2-step nilsystem
that is not a rotation. Then L2(µ) can be written as the orthogonal
sum L2(µ) = H⊕H′ of two closed T -invariant subspaces such that the
restriction of T to H has discrete spectrum and its restriction to H′
has Lebesgue spectrum of infinite multiplicity.

The proof is elementary, but lengthy, and so we postpone it to Ap-
pendix A.

Corollary 2.2. Let (X,µ, T ) be an ergodic system and assume that its
spectrum does not admit a Lebesgue component with infinite multiplic-
ity. Then this system does not admit any nilsystem as a factor, other
than a rotation factor.

This result applies, in particular, to
• Weakly mixing systems.
• Systems with singular maximal spectral type.
• Systems with finite spectral multiplicity. This class includes:

– Systems of finite rank, for example substitution dynam-
ical systems, linearly recurrent systems, Bratteli-Vershik
systems of finite topological rank, and interval exchange
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transformations (for definitions and references, see for ex-
ample [29, 31, 8, 6, 18]).

– Systems of local rank one or of funny rank one (see [10, 11],
where the definitions are attributed to J.-P. Thouvenot).

Since nilsystems have zero entropy, the result also applies to
• Systems whose Pinsker factor belongs to one of the preceding
types.

3. Complexity of topological nilsystems

3.1. Complexity and commutator dimension. Before stating the
theorem, we define:

Definition 3.1. If (X = G/Γ, T ) is an s-step nilsystem for some s ≥ 1
and if τ ∈ G is the element defining T , the total commutator dimension
p of X is defined to be

(4) p =
s−1∑
`=1

dim
(
range

(
Adτ − id)`

))
.

Our main result is:

Theorem 3.2. Let (X = G/Γ, T ) be a minimal s-step nilsystem for
some s ≥ 2 and assume that (X,T ) is not an (s − 1)-step nilsystem.
Let dX be a distance on X defining its topology. Then for every ε > 0
that is sufficiently small, there exist positive constants C(ε) and C ′(ε)
such that the topological complexity S(ε, n) of (X,T ) for the distance
dX satisfies

(5) C(ε)np ≤ S(ε, n) ≤ C ′(ε)np for every n ≥ 1,

where p is the total commutator dimension of X. Moreover, p ≥ s− 1
and C(ε)→ +∞ when ε→ 0.

Furthermore, for a suitably chosen distance on X, one can take
C(ε) = Cε−d and C ′(ε) = C ′ε−d, where C and C ′ are positive con-
stants and d is the dimension of X.

The result can be translated into the language of complexity of covers
studied in [5]. We start by reviewing the definition. Let U be an open
cover of X, and for every integer n ∈ N, write

Un−1
0 :=

n−1∨
j=0

T−jU .

Define N(U , n) to be the minimal cardinality of a subcover of Un−1
0 ;

the complexity function of U is the map n 7→ N(U , n). We have that
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S(ε, n) ≤ c(ε) for every ε > 0 is equivalent to N(U , n) ≤ C ′(U) for
every open cover U of X, and these conditions are equivalent to the
system being a rotation. The upper bound in (5) can be rephrased
as saying that for every open cover U of X, there exists a constant
C ′(U) with N(U , n) ≤ C ′(U)np for every n ∈ N. The lower bound
means that there exists an open cover U and a constant C(U) such
that N(U , n) ≥ C(U)np for every n ∈ N.

Corollary 3.3. Let s ≥ 1 and let (X = G/Γ, T ) be a minimal nilsystem
that is not an s-step nilsystem. Then

lim inf
n→+∞

1

ns
S(ε, n)→ +∞ as ε→ 0.

Applications of these results are given in Section 5.

3.2. Conventions and notation. In the sequel, s ≥ 2 is an inte-
ger and (X = G/Γ, T ) is a minimal s-step nilsystem that is not an
(s − 1)-step nilsystem. We let τ denote the element of G defining the
transformation T .

As explained in Section 2.2, the assumption of minimality allows us
to assume that G is spanned by the connected component G0 of the
unit element 1G and τ . We make further assumptions on the choice of
the presentation G/Γ of the nilsystem X and then prove Theorem 3.2
under these additional assumptions. This clearly implies the result in
the general case.

Let µ denote the Haar measure of X and let λ denote the Haar
measure of G. We normalize λ such that the measure of any (Borel)
fundamental domain of the projection π : G→ X is equal to 1.

Here, and again in Section 4.1, we impose conditions on the dis-
tance dX on X defining the topology on X. Again, the conclusions of
Theorem 3.2 remain valid for a general distance defining the topology.

Throughout the proof, we often fix some ε > 0 and assume that ε
is sufficiently small. This means that it is smaller than some constant
depending only on the nilsystem (X = G/Γ, T ) and the distance dX
defined on it, and not on any other parameter such as the integer n.

Finally, we choose a bounded Borel fundamental domain D of the
projection π : G→ X.

3.3. Some preliminaries.

3.3.1. Choosing a distance on X. First, we choose a distance dG on the
group G that defines its topology. For the moment, we only assume
that this distance is invariant under right translations, meaning that
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for all g, g′, h ∈ G,
dG(gh, g′h) = dG(g, g′).

The nilmanifold X is endowed with the quotient distance, meaning
that for x, y ∈ X,

(6) dX(x, y) = inf
{
dG(g, h) : π(g) = x and π(h) = y}.

In other words, for all g, h ∈ G, we have

(7) dX
(
π(g), π(h)

)
= inf

α,β∈Γ
dG(gα, hβ) = inf

γ∈Γ
dG(g, hγ).

Since the inverse image under π of every point of X is discrete, the
infimums in these last two formulas are attained.

We recall that for 2 ≤ j ≤ s, Gj and GjΓ are closed subgroups of
G and that Γ ∩ Gj is a cocompact subgroup of Gj. In particular, we
deduce that there exists δ0 > 0 such that for 2 ≤ j ≤ s,

(8) if γ ∈ Γ is within a distance δ0 of Gj, then γ ∈ Gj ∩ Γ.

In particular, we deduce that

(9) if dG(g, g′) < δ0 and π(g) = π(g′), then g = g′.

3.3.2. Commutators. The following lemma is used to prove that the
exponent p of Theorem 3.2 is ≥ s− 1.

Lemma 3.4. For 1 ≤ ` ≤ s− 1, we have that [τ,G`] 6⊂ G`+2.

Proof. Let G′ = G/G`+2, π : G → G′ be the quotient homomorphism,
Γ′ = π(Γ) and τ ′ = π(τ). Let T ′ be the translation by τ ′ onX ′ = G′/Γ′.
Then for every j ≥ 1, we have that π(Gj) = G′j. Therefore G′`+2 =
{1G′} and (X ′, T ′) is an (` + 1)-step nilsystem. But G`+1 6= G`+2 and
so G′`+1 6= {1G′}. Thus (X ′, T ′) is not a `-step nilsystem. Moreover,
since (X ′, T ′) is a factor of (X,T ), it is minimal.

We remark that π([τ,G`]) = [τ ′, G′`]. Therefore, substituting X ′ for
X, we are reduced to showing that τ does not commute with G` when
X is a (`+ 1)-step, but not `-step, nilsystem.

Assume that τ commutes with G`. Consider the commutator map
G` × G0 → G`+1. Since G is (` + 1)-step nilpotent, by (1) this map
is multiplicative in each coordinate separately. But by (2), [G`, G2] is
trivial and so this commutator map induces a continuous map G` ×
G0/G2 → G`+1. Finally, G` and G0/G2 are abelian and so this contin-
uous map is bilinear.

On the other hand, by minimality the subgroup of G spanned by
Γ and τ is dense in G. This and the hypothesis imply that [G` ∩
Γ, G] = [G` ∩ Γ,Γ] ⊂ Γ. Therefore, for γ ∈ G` ∩ Γ, the map g 7→ [γ, g]
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continuously maps the connected group G0 to the discrete group Γ, and
so this map is trivial. We conclude that G` ∩ Γ commutes with G0.

Therefore, the commutator map G` ×G0 → G`+1 induces a bilinear
continuous map

(10) ψ :
G`

G` ∩ Γ
× G0

G2

→ G`+1.

Let χ : G`+1 → T be a character of the abelian group G`+1. Then
χ ◦ ψ : G`/(G` ∩ Γ) × G0/G2 → T induces a continuous group homo-
morphism from group G0/G2 to the dual group of the compact abelian
group G`/(G` ∩ Γ). Since this dual group is discrete and G0/G2 is
connected, this group homomorphism is trivial. It follows that χ ◦ψ is
the trivial map.

As this holds for every character χ of G`+1, ψ is the trivial map.
Combining this with definition (10), it follows that the commutator
map G` ×G0 → G`+1 is trivial, and so G` commutes with G0.

By assumption, G is spanned by G0 and τ and G` commutes with τ .
It follows that G` is included in the center of G, that G`+1 is trivial,
and thus that G is `-step nilpotent, a contradiction. �

3.3.3. Some linear algebra. We make use of the following estimate from
linear algebra. The proof is postponed to Appendix B.

Proposition 3.5. Let Rd be endowed with the Euclidean norm ‖·‖ and
let the Lebesgue measure of a Borel subset K of Rd be written |K|.
Let A be a d× d matrix and assume that it is unipotent, meaning that
(id−A)d = 0. For every integer n ≥ 2, let

Wn =
{
ξ ∈ Rd : ‖Akξ‖ ≤ 1 for 1 ≤ k < n

}
.

If

p =
d−1∑
k=1

dim(range(id−A)k),

there exist positive constants C and C ′ (depending on d and on A) such
that

(11) Cn−p ≤ |Wn| ≤ C ′n−p

for every n.

3.4. Reduction to a local problem. Throughout this section, n > 1
is an integer. We assume that ε is given and is sufficiently small, x0 is
a point in X, and h ∈ D is chosen such that π(h) = x0.

For the moment, we view x0 and h as fixed, but it is important that
the bounds do not depend on x0 ∈ X, and thus also not on h ∈ D.
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We study the set V ⊂ X defined by

V = {x ∈ X : dX(T kx0, T
kx) < ε for 0 ≤ k < n}.

Since the infimum in the definition of dX (see (7)) is attained, for
every x ∈ V there exists g ∈ G with

(12) x = g · x0 and dG(g, 1G) = dX(x, x0).

Furthermore, for sufficiently small ε, it follows from (9) that these
conditions completely define g. Let W denote the set of elements g
associated in this way to points of V . Again, the choice of small ε
implies that W is included in the connected component G0 of 1G in G.

Convention. In the sequel, we often view x, and so g, fixed. When
needed, we emphasize the dependence of g on x satisfying (12) by
writing g(x) instead of g.

By hypothesis and (7), for 0 ≤ k < n, there exists γk ∈ Γ with

(13) dG(τ khγk, τ
kgh) = dX(τ k · x0, τ

kg · x0) = dX(T kx0, T
kx) < ε

and, by (9) again, this γk is unique. Clearly, γ0 = 1G.
In the remainder of this section, we show:

Lemma 3.6. Let x0, x, g, and γk be as above. Then γk = 1G for
0 ≤ k < n.

3.4.1. Initial computations. From the characterization (13) of γk, it
follows that for 0 ≤ k < n,

ε > dG
(
[τ kh, γk]γkτ

kh , τ kgh
)

= dG
(
[τ kh, γk]γkτ

k , τ kg
)
by right invariance

= dG
(
[τ kh, γk]γkτ

k , g[g−1, τ k]τ k
)

= dG
(
[τ kh, γk]γk , g[g−1, τ k]

)
by right invariance (again).

Since dG(g, 1G) < ε, we have that

(14) dG
(
[τ kh, γk]γk , [g−1, τ k]

)
< 2ε for 0 ≤ k < n.

We proceed by induction on the degree s of the s-step nilsystem X.

3.4.2. The case s = 2. Since G2 is included to the center of G, it
follows from (1) that the map (x, y) 7→ [x, y] from G × G to G2 is
bilinear and thus [g−1, τ k] = [g, τ ]−k = [τ, g]k for every k. Moreover,
[τ kh, γk] belongs to the center of G, and Equation (14) can be rewritten
as

(15) dG
(
γk , [τ kh, γk]

−1[τ, g]k
)
< 2ε for 0 ≤ k < n.
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Therefore, for 0 ≤ k < n, we have that γk is within distance 2ε of G2.
By Remark (8), we have that

γk ∈ G2 ∩ Γ,

and in particular γk belongs to the center of G. Then (15) implies that

(16) dG(γk, [τ, g]k) < 2ε for 0 ≤ k < n.

Since dG(g, 1G) < ε, it follows that dG([τ, g], 1G) < Cε for some
C > 0. Thus dG(γ1, 1G) < (C + 2)ε. Since Γ is discrete and ε is small,

γ0 = γ1 = 1G.

On the other hand, by (16) again,

dG
(
γkγ

−2
k+1γk+2 , 1G) < 8ε for 0 ≤ k < n− 2.

Since Γ is discrete and ε is small,

γkγ
−2
k+1γk+2 = 1G for 0 ≤ k < n− 2.

We deduce that γk = 1G for 0 ≤ k < n, as announced.

3.4.3. The general case. Assume that X is an s-step nilsystem for some
s > 2 and that the result has been proven for an (s−1)-step nilsystem.
Maintaining the same notation and conventions as above, we show that
γk = 1 for every k.

Taking the quotient by Gs, the induction hypothesis implies that

γk ∈ Gs for 1 ≤ k < n

and in particular γk belongs to the center of G. For every k ∈ Z, we
write

(17) g(k) := [g−1, τ k].

By the estimate in Equation (14), we have that

(18) dG
(
γk , g(k)

)
< 2ε for 0 ≤ k < n.

A new difficulty arises here that does not come up for s = 2, as in
general g(k) does not belong to the center of G. We begin by showing
that the map k 7→ g(k) is a polynomial map from Z to G2 (see [25]).
The computations for this are fairly explicit and we include them.

First, since dG(g, 1G) < ε, there exists a constant C > 0 such that
dG
(
[g−1, τ k], 1G

)
< Cε for 0 ≤ k ≤ s− 1 and, by definition (17) of g(k)

and (18), dG(γk, 1G) < (C + 2)ε for 0 ≤ k ≤ s− 1. Since Γ is discrete
and ε is small, we deduce that

(19) γk = 1G for 0 ≤ k ≤ s− 1.
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On the other hand, recall that the difference operator D maps a
sequence (h(k) : k ≥ 0) with values inG to the sequence (Dh(k) : k ≥ 0)
given by

Dh(k) = h(k)−1h(k + 1) for every k ≥ 0.

Applying this definition to the sequence
(
g(k) : k ≥ 0

)
defined by (17),

it is easy to check by induction that for every j ≥ 1,

Djg(k) = τ kvjτ
−k,

where
v1 = [g−1, τ ] and vj+1 = [v−1

j , τ ].

Therefore, for every j ≥ 1 we have vj ∈ Gj+1 and Djg(k) ∈ Gj+1

for every k. (In the vocabulary of Leibman [25], this means that the
sequence

(
g(k) : k ≥ 0

)
belongs to the class P(0,1,2,... )G.) In particular

vs = 1G and
Dsg(k) = 1G for every k ≥ 0.

By the definition of the difference operator and by induction, we have
that the sequence (g(k) : k ≥ 0) satisfies a recurrence relation of the
form: for every k ≥ 0,

1G = Dsg(k) = g(k +m1)η1g(k +m2)η2 . . . g(k +m2s)
η2s ,

where

(20) 0 ≤ mj < s and ηj = ±1 for 1 ≤ j < 2s ; m2s = s and η2s = 1.

Since γ` belongs to the center of G for every `,

dG

(
1G , γ

η1
k+m1

. . . γη2sk+m2s

)
= dG

((
g(k +m1)η1 . . . g(k +m2s)

η2s
)(
γη1k+m1

. . . γη2sk+m2s

)−1
, 1G)

= dG

(
(g(k +m1)γ−1

k+m1
)η1 . . . (g(k +m2s)γ

−1
k+m2s

)η2s , 1G

)
≤

2s∑
j=1

dG
(
g(k +mj)γ

−1
k+mj

, 1G
)
< 2s+1ε by (18).

Since Γ is discrete and ε is small, we deduce that

(21) γη1k+m1
. . . γη2sk+m2s

= 1G for every k ≥ 0.

In other words, the sth iterated difference (Dsγk) of the sequence (γk : k ≥
0) is trivial, and this sequence is a polynomial sequence in the abelian
group Gs ∩ Γ.

Recalling that m2s = s and η2s = 1, combining (19), (21) and (20)
and using induction, we have that γk = 1G for 0 ≤ k < n (see also
Proposition 3.1 in [25]).
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This concludes the proof of Lemma 3.6. �

3.4.4. A summary.

Corollary 3.7. Let x0 ∈ X and h ∈ D with π(h) = x0. Define

V = {x ∈ X : dX(T kx0, T
kx) < ε for 0 ≤ k < n}.

Then, for every x ∈ V , there exists a unique g = g(x) ∈ G satisfying

x = g · x0 and dG(g, 1) = dX(x, x0).

We have

(22) dG(τ kgτ−k, 1G) < ε for 0 ≤ k < n.

The last formula follows from (13), Lemma 3.6 and invariance of the
distance under right translations.

4. Proof of Theorem 3.2: computing the complexity

4.1. Working in the Lie algebra. As discussed in Section 2.2, we
can assume that the connected component G0 of the identity 1G is
simply connected.

As we consider neighborhoods W of 1G such that dG(g, 1G) < ε
for every g ∈ W , we have that W ⊂ G0. Thus it suffices to give a
description of G0.

Recall that the exponential map is a homeomorphism from the Lie
algebra G onto G0. For every j ≥ 1, we denote the Lie algebra of Gj

by Gj and the exponential map takes Gj onto Gj.
Let G be endowed with some Euclidean norm ‖·‖ and some orthonor-

mal basis for this norm. We use this basis to identify G and Rd.
Let the distance dG on G be the right invariant Riemannian distance

such that the associated norm on the Lie algebra G is ‖·‖. We have
(23) dG(exp(ξ), 1G) = ‖ξ‖ for every ξ ∈ G.

As before, we denote the Lebesgue measure of a subset L of G by |L|.
In general, the exponential map does not take the Lebesgue measure
of G to the Haar measure λ of G. But, because all elements g under
consideration belong to the compact subset

K := {g ∈ G : dG(g, 1G) ≤ 1}
of G, the density (with respect to λ) of the image of Lebesgue mea-
sure under the exponential map is bounded above and below by some
positive constants C and C ′:

(24) for every L ⊂ K,

C
∣∣{ξ ∈ G : exp(ξ) ∈ L

}∣∣ ≤ λ(L) ≤ C ′
∣∣{ξ ∈ G : exp(ξ) ∈ L

}∣∣.
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We recall that the linear map Adτ : G → G is defined to be the
differential of the map g 7→ τgτ−1 from G to itself, evaluated at the
point 1G.

We have that

(25) τ exp(ξ)τ−1 = exp(Adτ ξ) for every ξ ∈ G.

Notation. We write Φτ : G→ G for the map g 7→ τgτ−1g−1.

The differential of Φτ evaluated at 1G is Adτ − id : G → G. Since G
is s-step nilpotent, the sth iterate of Φτ is the constant map 1G. Thus

(Adτ − id)s = 0,

meaning that the map Adτ − id is nilpotent. More precisely, for every
k ≥ 1, we have that Φτ (Gk) ⊂ Gk+1 and thus (Adτ − id)Gk ⊂ Gk+1.

Lemma 4.1. The total commutator dimension p (Definition 3.1) of X
satisfies

p ≥ dim
(
range(Adτ − id)

)
≥ s− 1.

Proof. For 1 ≤ ` ≤ s−1, the restriction of the map Φτ to G` maps this
group to G`+1. Composing it with the factor map G`+1 → G`+1/G`+2

we obtain a map Ψ` : G` → G`+1/G`+2. By (1), this map is a group
homomorphism. By Lemma 3.4, this homomorphism is not trivial.

Now we take differentials at the unit element 1G ofG. The differential
of Φτ at 1G is Adτ − id, the differential at 1G of the quotient map
G`+1 → G`+1/G`+2 is the quotient map p` : G`+1 → G`+1/G`+2, and
thus the differential of Ψ` at this point is p` ◦ (Adτ − id). Since the
group homomorphism Ψ` is not trivial, its differential at 1G is not zero
and thus p` ◦ (Adτ − id) is not trivial.

We conclude that (Adτ − id)G` 6⊂ G`+2. Since (Adτ − id)G`+1 ⊂ G`+2,
it follows that (Adτ − id)G` 6= (Adτ − id)G`+1. Thus

dim
(
(Adτ − id)G`

)
≥ dim

(
(Adτ − id)G`+1

)
+ 1.

Summing this inequality for 1 ≤ ` ≤ s− 1, we conclude that

dim
(
(Adτ − id)G

)
≥ s− 1.

�

4.2. Bounding the complexity.

Notation. Set
K := {ξ ∈ G : exp(ξ) ∈ K},
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and note that K is a compact subset of G. Set
Wn :=

{
ξ ∈ G : ‖Adkτ ξ‖ ≤ 1 for 0 ≤ k < n

}
;

Wε,n :=
{

exp(ξ) : ξ ∈ εWn

}
=
{
g ∈ G : dG(τ kgτ−k, 1G) < ε for 0 ≤ k < n

}
by (25) and (23).

(In the last line, we can write g ∈ G instead of G0, as ε small implies
that all points of G at a distance < ε of 1G belong to G0.)

Since the matrix of Adτ is unipotent, by definition (4) of p and
Proposition 3.5, we have that Cεdn−p ≤ |εWn| ≤ C ′εdn−p. Thus, since
Wε,n ⊂ K, by (24) it follows that:

Corollary 4.2. For every sufficiently small ε > 0 and every n ∈ N,
(26) Cεdn−p ≤ λ(Wε,n) ≤ C ′εdn−p.

4.2.1. Lower bound for the complexity. We use this description to prove
the lower bound of Theorem 3.2.

Assume that ε > 0 is sufficiently small and that {x1, . . . , xN} is an
ε-n spanning set for X. Let

Vj = {x ∈ X : dX(T kxj, T
kx) < ε for 0 ≤ j < n}.

By hypothesis, the union of the sets Vj cover X.
For 1 ≤ j ≤ N , choose hj ∈ D such that π(hj) = xj. We are in the

setting of Corollary 3.7. For every j ≥ 1 and every x ∈ Vj, there exists
a unique gj(x) ∈ G with x = gj(x)·xj = π(gj(x)hj) and dG(gj(x), 1G) =
dX(xj, x) < ε. By (22), we have that dG(τ kgj(x)τ−k, 1G) < ε for 0 ≤
k < n. In other words, by definition of the set Wε,n, we have that
gj(x) ∈ Wε,n. It follows that

π
( N⋃
j=1

Wε,nhj
)

= X.

Therefore, by choice of the normalization of λ,

1 ≤ λ
( N⋃
j=1

Wε,nhj
)
≤ Nλ(Wε,n) ≤ NC ′εdn−p,

where the inequality follows from Corollary 4.2. We conclude that
N > Cε−dnp for some constant C. �

4.2.2. Upper bound of the complexity. Recall that D is a Borel funda-
mental domain of the projection π : G → X. Let D1 be a compact
subset of G containing all points at a distance at most 1 from D. We
make use of the definition of complexity using ε-n separate sets (Sec-
tion 1.3) to show:
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Lemma 4.3. Assume that ε < 1. There exists a subset {h1, . . . , hN}
of D with

(27) N ≤ λ(D1)λ(Wε/2,n)−1

such that

(28) D ⊂
N⋃
j=1

Wε,nhj.

Proof. Let N be the maximal cardinality of a subset {h1, . . . , hN} of D
such that the sets Wε/2,nhj are disjoint.

Since every element g ∈ Wε/2,n satisfies dG(g, 1G) < ε/2 < 1, all the
subsets Wε,nhj are contained in D1. Therefore,

λ(D1) ≥
N∑
j=1

λ(Wε/2,nhj) = Nλ(Wε,n).

We claim that the set {h1, . . . , hN} satisfies (28). Assume instead that
this does not hold and that h ∈ D does not belong to this union. It
follows immediately from the definition that Wε/2,n is symmetric and
that Wε/2,n ·Wε/2,n ⊂ Wε,n. Therefore, for 1 ≤ j ≤ n, since h /∈ Wε,nhj,
we have that Wε/2,nhj ∩Wε/2,nh = ∅.

Setting hN+1 = h, we have that the set {h1, . . . , hN , hN+1} satisfies
the imposed condition, contradicting the maximality of N . �

We now show that the upper bound of Theorem 3.2 holds, thereby
completing the proof. Let ε > 0 be sufficiently small. Let N and
{h1, . . . , hN} be defined as in the conclusion of Lemma 4.3.

Let xj = π(hj) for 1 ≤ j ≤ N . We claim that {x1, . . . , xN} is an ε-n
spanning set for X.

Let x ∈ X and h ∈ D be such that π(h) = x. There exists j with
1 ≤ j ≤ N such that h ∈ Wε,nhj, meaning that there exists g ∈ Wε,n

with h = ghj. For 0 ≤ k < n, we have

dX(T kx, T kxj) = dX(π(τ kghj), π(τ khj)) ≤ dG(τ kghj, τ
khj)

= dG(τ kg, τ k) = dG(1G, τ
kgτ−k) < ε,

since g ∈ Wε,n. This proves the claim.
On the other hand, by (27) and Corollary 4.2 , we have that N ≤

Cε−dnp for some C > 0, concluding the proof of Theorem 3.2.

5. Some topological applications

As in the ergodic setting, we find classes of systems such that all
factors Ztop,s(X), s ≥ 1, of (X,T ) are equal to Ztop,1(X).
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It follows directly from Corollary 2.2 that transitive systems of fi-
nite topological rank satisfy this property; in particular, this is the
case for minimal substitution dynamical systems and minimal interval
exchange transformations. Namely, let (X,T ) be such a system with
nilfactor (Y, S). Since (Y, S) is transitive, it is uniquely ergodic (see [1]
and [30]), and its invariant measure is the Haar measure ν of Y . Let
µ be an invariant ergodic measure on (X,T ). Then (X,µ, T ) is a sys-
tem of measure theoretical finite rank, and the topological factor map
X → Y is also a measure-theoretic factor map. Thus by Corollary 2.2,
(Y, ν, S) is measure theoretically isomorphic to a rotation. By the rigid-
ity properties of nilsystems (see for example [23, Appendix A]), (Y, S)
is topologically isomorphic to this rotation.

Corollary 3.3 can also be used to find other such classes:

Proposition 5.1. Let (X,T ) be a transitive subshift and assume that

lim inf
n→+∞

1

n
CX(n) < +∞.

Then (X,T ) does not admit any topological nilfactor other than rota-
tions. Therefore, for every s ≥ 1, the topological factor Ztop,s(X) of X
is equal to its topological Kronecker factor Ztop,1(X).

More generally, if for some s ≥ 1 we have

(29) lim inf
n→+∞

1

ns
CX(n) < +∞,

then (X,T ) does not admit any nilsystem as a topological factor that
is not an s-step nilsystem. Therefore, for every t ≥ s, the topological
factor Ztop,t(X) of X is equal to Ztop,s(X).

Proof. The last statement follows immediately from the fact that Ztop,s(X)
is the inverse limit of all s-step topological nilfactors of (X,T ).

Assuming (29), it suffices to show that there is no topological factor
map φ : (X,T ) → (Y, S), where (Y, S) is a minimal (s + 1)-step nil-
system that is not an s-step nilsystem. Indeed, any minimal nilsystem
that is not an s-step nilsystem admits an (s + 1)-step nilsystem as a
factor that is not an s-step nilsystem.

Assume instead that such a factor map φ : (X,T ) → (Y, S) exists
and let dY be a distance on Y defining its topology. Recall that (X,T )
is a transitive subshift on the finite alphabet A. We write x ∈ X as
x = (xn : n ∈ Z), and if I ⊂ Z is a finite interval, then we write xI for
the finite sequence (xn : n ∈ I).

Let ε > 0. Since φ is continuous, there exists an integer L = L(ε) >
0 such that dY (φ(x), φ(y)) < ε whenever x, y ∈ X satisfy x[−L,L] =
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y[−L,L]. Therefore, if x, y ∈ X satisfy x[−L,n+L] = y[−L,n+L] for some
n ≥ 1, then dY (T kφ(x), T kφ(y)) < ε for every k ∈ {0, . . . , n}.

Fix n ≥ 1 and set m = CX(n+ 2L+ 1).
By definition, there exist m elements x(1), . . . , x(m) of X such that

for every x ∈ X, there exists j ∈ {1, . . . ,m} with x[−L,n+L] = x
(j)
[−L,n+L].

By definition of L and since φ is onto, the set {φ(x(j)) : 1 ≤ j ≤ m} is
an ε-n spanning set of (Y, S). Thus

SY,S,dY (ε, n) ≤ CX(n+ 2L+ 1).

Since this holds for every n ≥ 1, it follows from the hypothesis that

lim inf
n→+∞

1

ns
SY,S,dY (ε, n) ≤ lim inf

n→+∞

1

ns
CX(n) < +∞.

But this contradicts the statement of Corollary 3.3. �

Remark. Under the hypothesis of “linear complexity,” that is, that there
exists a constant c > 0 such that CX(n) ≤ cn for every n ∈ N, the first
statement of Proposition 5.1 can also be deduced from Corollary 2.2,
by the method discussed at the beginning of this section; in this case,
the system (X,T ) has topological finite rank [12].

6. Some ergodic applications

6.1. First application: lower bounds for multiple recurrence.

Theorem 6.1. Assume that (X,µ, T ) is an ergodic system satisfying
Zs(X) = Z1(X) for all s > 1, for example a system satisfying one
of the properties listed after Corollary 2.2. Let p1, . . . , pk be integer
polynomials satisfying pi(0) = 0 for 1 ≤ i ≤ k. Then for every A ⊂ X
and every ε > 0, the set
(30){
n ∈ N : µ(A ∩ T−p1(n)A ∩ T−p2(n)A ∩ . . . ∩ T−pk(n)A) > µ(A)k+1 − ε

}
is syndetic.

Remark. Here and in Theorems 6.2 and 6.3, the hypothesis can be
replaced by Z2(X) = Z1(X); it is known that this condition implies
that Zs(X) = Z1(X) for all s > 1 (this follows, for example, from the
inclusions (3) in Section 2.2).

In [3] it is showed that the conclusion of Theorem 6.1 does not hold
for non-ergodic systems, even in the simple case of k = 2, p1(n) = n
and p2(n) = 2n. The conclusion also fails for general ergodic systems,
for example for k ≥ 4 and pj(n) = jn for 1 ≤ j ≤ k. In both of these
cases, the set of integers defined by (30) may be empty.
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On the other hand, the conclusion of Theorem 6.1 holds for weakly
mixing systems [2]. Similar lower bounds for some particular choices
of polynomials are found in [3, 16, 14].

For convenience, we begin the proof with the case of linear exponents
and then explain how the method extends to the polynomial case. We
first show:

Theorem 6.2. Assume that (X,µ, T ) is an ergodic system with Zs(X) =
Z1(X) for all s > 1, for example a system satisfying one of the prop-
erties listed after Corollary 2.2. Then for any integer k ≥ 1, any set
A ⊂ X, and any ε > 0, the set

(31) {n ∈ N : µ(A ∩ T−nA ∩ · . . . · ∩T−knA) > µ(A)k+1 − ε}
is syndetic.

Proof. Fix A ⊂ X, an integer k ≥ 1, and ε > 0.
Set g = E(1A | Z1(X)) and notice that 0 ≤ g ≤ 1. Recall that

the Kronecker factor (Z1(X), ν, T ) of (X,µ, T ) is a compact abelian
group, endowed with its Haar measure ν, Borel σ-algebra Z1, and the
transformation T is translation by some element α ∈ Z1. For simplicity,
in this proof we write Z1 instead of Z1(X). For each t ∈ Z1, let gt be the
function given by gt(x) = g(x+t). Then there exists a neighborhood U
of 0 in Z1 such that ‖gt−g‖L1(ν) < ε/k2 for every t ∈ U . Therefore, for
t ∈ U , we have that ‖gjt − g‖L1(ν) < jε/k2 for every integer 1 ≤ j ≤ k
and ∫

g · gt · . . . · gkt dν >
∫
gk+1 dν −

k∑
j=1

jε

k2
≥ µ(A)k+1 − ε.

Let Λ := {n ∈ N : nα ∈ U}. Then for every n ∈ Λ,∫
g · T ng · . . . · T kng dν > µ(A)k+1 − ε.

Furthermore, Λ is a syndetic set, and thus there exists an integer L > 0
such that every interval of length L in N contains at least one element
of Λ.

On the other hand, by hypothesis, g = E(1A | Zs(X)) since Zs(X) =
Z1 for all s ≥ 1. Thus by [3, Corollary 4.6], the difference

an := µ(A ∩ T−nA ∩ · . . . · ∩T−knA)−
∫
g · T ng · · · · · T kng dν

converges to 0 in uniform density, meaning that

lim
N→+∞

sup
M∈N

1

N

M+N−1∑
n=M

|an| = 0.
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In particular, the set

Λ′ :=
{
n ∈ N : µ(A∩T−nA∩. . .∩T−knA) >

∫
g ·T ng ·. . .·T kng dν − ε

}
has lower Banach density one, meaning that

lim
N→∞

inf
M∈N

1

N

∣∣Λ′ ∩ [M,M +N)
∣∣ = 1.

Thus there exists an integer N > 0 such that every interval of length
N in N contains L consecutive elements of Λ′. By definition of L, any
interval of length N in N contains some n ∈ Λ′ ∩ Λ and this integer n
satisfies (31). �

Now we prove Theorem 6.1, that is, the extension of Theorem 6.2
for polynomial iterates. As the proof is similar but notationally more
cumbersome, we only include an outline of the steps.

Proof of Theorem 6.1. Assume that (X,µ, T ) is an ergodic system with
Zs(X) = Z1(X) for all s > 1 and that p1, . . . , pk are integer polynomials
satisfying pi(0) = 0 for 1 ≤ i ≤ k. In this proof, we write Z1, Zs, . . . ,
instead of Z1(X), Zs(X), . . . .

By [21] and [26], there exists an integer s ≥ 1 such that for all
functions f0, f1, . . . , fk ∈ L∞(µ), the averages over [Mi, Ni) of∫

f0 · T p1(n)f1 · . . . · T pk(n)fk dµ

−
∫

E(f0 | Zs) · T p1(n)E(f1 | Zs) · · . . . · T pk(n)E(fk | Zs) dµ

converge to zero for all sequences (Mi) and (Ni) of integers such that
Ni−Mi → +∞. Proceeding as in the proof of the deduction of Corol-
lary 4.5 from Theorem 4.4 of [3], we deduce that∫

f0 · T p1(n)f1 · . . . · T pk(n)fk dµ

−
∫

E(f0 | Zs+1) · T p1(n)E(f1 | Zs+1) · . . . · T pk(n)E(fk | Zs+1) dµ

converges to zero in uniform density. By hypothesis and Corollary 2.2,
we have that Zs+1 = Z1. Applying this with f0 = f1 = · · · = fk = 1A,
and writing g = E(1A | Z1), we conclude that

µ(A ∩ T−p1(n)A ∩ · · · ∩ T−pk(n)A)−
∫
g · T p1(n)g · · . . . · T pk(n)g dµ

converges to zero in uniform density.



24 BERNARD HOST, BRYNA KRA, AND ALEJANDRO MAASS

We continue as in the proof of Theorem 6.2. Let ν denote the Haar
measure of Z1 and let α be the element of Z1 defining its transformation.
For t and z ∈ Z1, write gt(z) = g(z+t); choose an open neighborhood U
of 0 in Z1 such that ‖gt−g‖L1(ν) < ε/k2 for every t ∈ U . We now use a
standard equidistribution method. Let H be the closed subgroup of Tk
spanned by

(
p1(n)t, . . . , pk(n)t

)
for n ∈ Z and t ∈ T. We have that H

is equal to the set of (t1, . . . , tk) ∈ Tk such that a1t1 + . . .+aktk = 0 for
every choice of (a1, . . . , ak) ∈ Zk such that a1p1+. . .+akpk is identically
zero. By Weyl’s Theorem [36], the sequence

(
p1(n)α, . . . , pk(n)α

)
is

well distributed in H, meaning that for every continuous function φ on
Tk,

1

N

N+M−1∑
n=M

φ
(
(p1(n)α, . . . , pk(n)α)

)
−→

∫
φ dmH , uniformly in M,

where mH denotes the Haar measure on H. We deduce that for the
open set U ,

(p1(n)α, . . . , pk(n)α) ∈ U × . . .× U
for a syndetic set of n. We conclude as in the proof of Theorem 6.2. �

6.2. Second application: weighted multiple averages. The sec-
ond application is a strengthening of results in [22] and [7] on the
convergence of weighted polynomial multiple averages. Recall that the
Kronecker factor of an ergodic system is naturally endowed with a
topology, making it a compact abelian group.
Theorem 6.3. Let (X,T ) be a uniquely ergodic topological dynami-
cal system with invariant measure µ. Assume that (X,µ, T ) satisfies
Zs(X) = Z1(X) for all s > 1, for example a system satisfying one
of the properties listed after Corollary 2.2, and that the projection π1

of X onto its Kronecker factor is continuous. Then for any Riemann
integrable function φ on X, any x ∈ X, any system (Y, ν, S), any
k ≥ 1, any functions f1, . . . , fk ∈ L∞(ν), and any integer polynomials
p1, . . . , pk, the averages

1

N

N−1∑
n=0

φ(T nx) · Sp1(n)f1 · Sp2(n)f2 · . . . · Spk(n)fk

converge in L2(ν) as N → +∞.
In particular, this result applies for substitution dynamical systems [31],

and more generally for many linearly recurrent systems and systems of
finite topological rank [6]. In [22], it was proved in the case of lin-
ear polynomials for particular sequences, including, for example the
Thue-Morse sequence.
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Proof. Assume that (X,T ) is a uniquely ergodic system satisfying the
hypotheses of Theorem 6.3. Since for every s ≥ 1 we have that
Zs(X) = Z1(X), by hypothesis the projection πs : X → Zs(X) is con-
tinuous. Theorem 6.3 follows immediately by combining two results in
the literature. The first is a weighted ergodic average for nilsequences:

Theorem ([22], Theorem 2.19 and Proposition 7.1). Let (X,T ) be a
uniquely ergodic system with invariant measure µ and let m ≥ 1 be an
integer. Assume that the factor map πs : X → Zs(X) is continuous.
Then for any Riemann integrable function φ on X, x ∈ X, and s-step
nilsequence b = (bn : n ∈ Z), the limit

lim
N→+∞

1

N

N−1∑
n=0

φ(T nx)bn

exists.

The second is a weighted ergodic theorem for multiple convergence
along integer polynomials proved by Chu that generalized the linear
case in [22]:

Theorem ([7], Theorem 1.3). For any k, d ∈ N, there exists an in-
teger s ≥ 1 with the following property: for any bounded sequence
a = (an : n ∈ Z), if the averages

1

N

N−1∑
n=0

anbn

converge as N → +∞ for every s-step nilsequence b = (bn : n ∈ Z),
then for every system (Y, ν, S), all f1, . . . , fk ∈ L∞(ν), and all integer
polynomials p1, . . . , pk of degree ≤ d, the averages

1

N

N−1∑
n=0

an S
p1(n)f1 · Sp2(n)f2 · . . . · Spk(n)fk

converge in L2(ν).

�

Appendix A. Proof of Proposition 2.1

For convenience, we repeat the statement of Proposition 2.1:

Proposition. Let (X = G/Γ, µ, T ) be an ergodic 2-step nilsystem that
is not a rotation. Then L2(µ) can be written as the orthogonal sum
L2(µ) = H ⊕ H′ of two closed T -invariant subspaces such that the
restriction of T to H has discrete spectrum and its restriction to H′
has Lebesgue spectrum of infinite multiplicity.
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A.1. Reductions and notation. Before proving the proposition, we
make some usual reductions that present the nilmanifold in a stan-
dard way. Note that these reductions are not the same as those of
Section 2.2.

Let (X = G/Γ, µ, T ) be an ergodic 2-step nilsystem that is not a
rotation. As in Section 2.2, we write τ ∈ G for the element defining the
transformation T and G0 for the connected component of the identity.
By minimality we can assume that the subgroup spanned by G0 and τ
is dense in G. This implies that G2 is connected and thus included in
G0.

Let Γ′ be the largest normal subgroup of G contained in Γ. By
substituting G/Γ′ for G and Γ/Γ′ for Γ, we reduce to the case that Γ
does not contain any normal subgroup of G. Thus the action of G on
X is faithful and it follows that Γ is abelian and that G2 is compact.
Since this Lie group is abelian and connected, it is a finite dimensional
torus. Furthermore, it follows that each of subgroups spanned by [τ,Γ],
by [τ,G] and by [τ,G0] is dense in G2.

Let q : G → G/G2 and π : G → X denote the quotient maps. We
recall (see [30] and [26]) that the Kronecker factor of X is the compact
abelian Lie Group Z1 = G/G2Γ, endowed with its Lebesgue measure
mZ1 and translation by α = p ◦ π(τ), where p : X → Z1 denotes the
factor map.

We remark that for every a ∈ G, the map g 7→ [a, g] is a group
homomorphism from G to G2 (see Section 2.2) and that the kernel of
this homomorphism contains G2.

A.2. Lebesgue spectrum. For χ ∈ Ĝ2, set

Hχ =
{
f ∈ L2(µ) : f(u·x) = χ(u)f(x) for every u ∈ G2 and µ-a.e. x

}
.

Each space Hχ is invariant under T and L2(µ) is the orthogonal sum of
these spaces. We have that H1 is the space of functions that factorize
through Z1, and each space Hχ is invariant under multiplication by
functions belonging to L∞(µ) ∩H1.

We show:

Lemma A.1. Let χ be a nontrivial character of G2. Then the spectral
measure associated to any function in Hχ is absolutely continuous with
respect to the Lebesgue measure mT of T.

Proof. Let χ be a nontrivial character of G2.
The group homomorphism g 7→ χ[g, τ ] factorizes through G/G2 and

so there exists a character χ̃ of G/G2 satisfying

(32) χ[g, τ ] = χ̃ ◦ q(g) for every g ∈ G.
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Let γ ∈ Γ. Since γ commutes with Γ and with G2, the map g 7→ [γ, g]
factorizes through the Kronecker factor Z1. Thus there exists a group
homomorphism γ̂ : Z1 → G2 such that

(33) γ̂ ◦ p ◦ π(g) = [γ, g] for every g ∈ G.

Let K be a compact subset of G such that the restriction to K of
the projection π : G → X is onto. For every n ∈ Z, we choose γn and
gn with

(34) γn ∈ Γ, gn ∈ K and τn = gnγn.

The family L of characters χ̃m,n of G/G2 defined by χ̃m,n ◦ q(g) =

χ[g, gng
−1
m ] is a bounded subset of Ĝ/G2. But the closed subgroup of

Ĝ/G2 spanned by χ̃ is not compact; if not, the restriction of χ̃ to some
open subgroup H of G/G2 would be trivial and so the restriction of
χ̃ ◦ q to G0 would also be trivial, implying that χ([g, τ ]) = 1 for every
g ∈ G0 and χ would be trivial (again, the subgroup spanned by [τ,G0]
is dense in G2), a contradiction. Thus this group is discrete and in
particular the set

Λ := {k ∈ Z : χ̃k ∈ L}
is finite.

For every n ∈ Z, write

(35) θn = χ ◦ γ̂n.

We claim that for every θ ∈ Ẑ1,

(36)
∣∣{n ∈ Z : θn = θ}

∣∣ ≤ |Λ|.
To check this, letm and n be integers with θm = θn. By definitions (35)
and (33), for every g ∈ G we have χ([γm, g]) = χ([γn, g]) and, by
the choice (34) of γn and gn, we have χ(τm−n, g]) = χ([gng

−1
m , g]) =

χ̃m,n ◦ q(g). By (32), we conclude that χ̃m−n = χ̃m,n ∈ Λ and the claim
follows.

Let f ∈ Hχ be a function belonging to the space Ck(X) of k-times
differentiable functions on X, for some k to be defined later. Note that
for every n ∈ Z, the function x 7→ f(gn · x) · f(x) belongs to the space
H1 and can be written as hn ◦ p for some function hn on Z1. Since all
the elements gn belong to the compact subset K of G and the action
of G by translation on Ck(X) is continuous (with respect to the usual
topology of Ck(X)), all functions x 7→ f(gn · x) · f(x) belong to some
compact subset of Ck(X). It follows that all the functions hn belong to
some compact subset of Ck(Z1). Taking k to be sufficiently large, this
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implies that

(37)
∑
θ∈Ẑ1

sup
n∈Z

∣∣ĥn(θ)
∣∣ < +∞.

The Fourier-Stieljes transform of the spectral measure σf of f is
given by:

σ̂f (n) :=

∫
f(T nx) · f(x) dµ(x) =

∫
f(gnγn · x) · f(x) dµ(x) by (34)

=

∫
f(gnγ̂n ◦ p(x) · x) · f(x) dµ(x) by (33)

=

∫
χ ◦ γ̂n ◦ p(x) · f(gn · x) · f(x) dµ(x) by the definition of Hχ

=

∫
Z1

θn(z)hn(z) dmZ1(z) by (35) and the definition of hn.

We deduce:∑
n∈Z

∣∣σ̂f (n)
∣∣ =

∑
n∈Z

∣∣ĥn(θ−1
n )|

≤
∑
θ∈Ẑ1

∣∣{n ∈ Z : θn = θ}
∣∣ sup
n∈Z

∣∣ĥn(θ)
∣∣

≤ |Λ|
∑
θ∈Ẑ1

sup
n∈Z

∣∣ĥn(θ)
∣∣ < +∞ by (36) and (37).

Therefore, the spectral measure of f is absolutely continuous with
respect to the Lebesgue measure mT of T. By density, this property
extends to every function in Hχ. �

We use this to complete the proof of Proposition 2.1.

A.3. End of the proof of Proposition 2.1. For χ = 1, note that a
function belonging to H1 has discrete spectral measure.

By ergodicity, {αn : n ∈ Z} is dense in Z1. The group of eigenvalues
of (X,T ) is E := {θ(α) : θ ∈ Ẑ}. Since Z1 admits a (nontrivial) torus
as an open subgroup, E is dense in T.

Let χ be a nontrivial character of G2. For every θ ∈ Ẑ1, the spaceHχ

is invariant under multiplication by the function θ ◦ p, as this function
belongs to L∞(µ) ∩ H1. For f ∈ Hχ, the spectral measure of f · θ ◦ p
is equal to the image of σf under translation by θ(α). Therefore, the
maximal spectral type σχ of the restriction of T toHχ is quasi-invariant
under translation by λ for every λ ∈ E, meaning that if A ⊂ T satisfies
σχ(A) = 0, then σχ(A + λ) = 0. But σχ is absolutely continuous
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with respect to Lebesgue measure and so σχ is equivalent to Lebesgue
measure. It follows that there exists a function fχ ∈ Hχ such that
σfχ = mT.

On the other hand, the invariant spaces Hχ, for χ 6= 1 ∈ Ĝ2, are
mutually orthogonal, completing the proof. �

Appendix B. Proof of Proposition 3.5

For convenience, we repeat the statement of Proposition 3.5:

Proposition. Let Rd be endowed with the Euclidean norm ‖·‖ and let
the Lebesgue measure of a Borel subset K of Rd be written |K|. Let
A be a d × d matrix and assume that it is unipotent, meaning that
(id−A)d = 0. For every integer n ≥ 2, let

Wn =
{
ξ ∈ Rd : ‖Akξ‖ ≤ 1 for 1 ≤ k < n

}
.

If

p =
d−1∑
k=1

dim(range(id−A)k),

there exist positive constants C and C ′ (depending on d and on A) such
that

Cn−p ≤ |Wn| ≤ C ′n−p

for every n.

Notation. Let Jr denote the r×r upper triangular elementary Jordan
matrix whose entries are given by

Jr,i,j =


1 for 1 ≤ i ≤ r and j = i;

1 for 1 ≤ i ≤ r − 1 and j = i+ 1;

0 otherwise.

In other words, the matrix Jr has 1’s on the diagonal and on the su-
perdiagonal, and 0’s elsewhere.

We begin with a lemma:

Lemma B.1. There exists a constant C = C(r) such that

(38) if |xj| ≤
1

nj−1
for some n ≥ 2 and 1 ≤ j ≤ r,

then
∣∣∣ r∑
j=1

(Jkr )i,jxj

∣∣∣ ≤ C for 1 ≤ i ≤ r and 0 ≤ k < n.
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On the other hand, there exists a constant C ′ = C ′(r) > 0 such that

(39)

if
∣∣∣ r∑
j=1

(Jkr )i,jxj

∣∣∣ ≤ 1 for 1 ≤ i ≤ r and 0 ≤ k < n for some n ≥ 2,

then |xj| ≤
C ′

nj−1
for 1 ≤ j ≤ r.

Proof. For k ≥ 1,

(40) (Jkr )i,j =

(
k

j − i

)
,

where we make use of the convention that
(
k
p

)
= 0 if p < 0 or p > k.

To prove the first statement, assume that x1, . . . , xr satisfy the hy-
pothesis of (38). Then for 1 ≤ i ≤ r,∣∣∣ r∑

j=1

(Jkr )i,jxj

∣∣∣ ≤ r∑
j=i

(
k

j − i

)
k−j+1 ≤ C1(r)

r∑
j=i

kj−ik−j+1 ≤ C2(r),

completing the proof of (38).
The proof of (39) requires more work. Assume that x1, . . . , xr satisfy

the hypothesis of (39).
Taking k = 0, we have that

(41) |xj| ≤ 1 for 1 ≤ j ≤ r.

Thus, without loss of generality, we can restrict ourselves to the case
that n is sufficiently large, and assume that n ≥ 2r + 1. Define the
integer q ≥ 1 by

(42) 2rq ≤ n− 1 < 2r(q + 1).

In the sequel, we only make use of hypothesis (39) with i = 1 and
k = 2mq with 0 ≤ m ≤ r. Formula (40) for the coefficients of the
matrix Jkr gives ∣∣∣ r∑

j=1

(
2mq

j − 1

)
xj

∣∣∣ ≤ 1 for 0 ≤ m ≤ r.

Since
(

2mq
0

)
= 1 and |x1| ≤ 1, by (41) we have that

(43)
∣∣∣ r∑
j=2

(
2mq

j − 1

)
xj

∣∣∣ ≤ 2 for 0 ≤ m ≤ r.
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Define

(44) p2,j(k) =
1

k

(
k

j − 1

)
for 2 ≤ j ≤ r.

Then p2,j is a polynomial of degree exactly j − 2 in the variable k.
Formula (43) implies that

(45)
∣∣ r∑
j=2

p2,j(2
mq)xj

∣∣∣ ≤ 2

2mq
for 0 ≤ m ≤ r.

We continue by induction and assume that for some ` with 2 ≤ ` < r,
we have

(46)
∣∣∣ r∑
j=`

p`,j(2
mq)xj

∣∣∣ ≤ C

(2mq)`−1
for `− 2 ≤ m ≤ r,

where p`,j(k) is a polynomial of degree exactly j − ` for ` ≤ j ≤ r.
The same formula applied with m− 1 substituted for m leads to

(47)
∣∣∣ r∑
j=`

p`,j(2
m−1q)xj

∣∣∣ ≤ 2`−1C

(2mq)`−1
for `− 1 ≤ m ≤ r.

For `+ 1 ≤ j ≤ r, define

p`+1,j(k) =
1

k

(
p`,j(k)− p`,j(k/2)

)
.

Then p`+1,j(k) is a polynomial of degree ≤ j − `− 1 in the variable k.
In fact, this polynomial has degree exactly j− `− 1, as the coefficients
of maximal degree of p`,j(k) and p`,j(k/2) are not the same.

Taking the difference between the formulas (46) and (47), the con-
stant term p`,`(2

mq)− p`,`(2m−1q) vanishes and we have that

(48)
∣∣ r∑
j=`+1

p`+1,j(2
mq)xj

∣∣∣ ≤ C

(2mq)`
for `− 1 ≤ m ≤ r.

By induction, Inequality (47) is proven for 2 ≤ ` < r. The polyno-
mial p`,` is a nonzero constant and we have that

(49) |xr| ≤
C

(2rq)r−1
.

By backwards induction, we now show that

(50) |x`| ≤
C

(2rq)`−1
for 1 ≤ ` ≤ r.
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For ` = r, this is exactly (49). Assume that 1 ≤ ` < r and that this
bound holds for `+ 1, `+ 2, . . . , r. By (46) applied with m = r,

|x`| ≤
C

(2rq)`−1
+

r∑
j=`+1

|p`,j(2rq)|
C

(2rq)j−1
.

Since p`,j is a polynomial of degree j − `, we have |p`,j(k)| ≤ Ckj−` for
some C > 0 and (50) follows.

We conclude the proof by using (42) to conclude that 2rq > (n −
1)q/(q + 1) ≥ n/4. �

Corollary B.2. Let Rr be endowed with the supremum norm ‖·‖∞ and
|K| denote the Lebesgue measure of a Borel subset K of Rr. Then for
every n ≥ 2, we have

Cn−r(r−1)/2 ≤
∣∣∣{x ∈ Rr : ‖Jkr x‖∞ ≤ 1 for 0 ≤ k < n

}∣∣∣ ≤ C ′n−r(r−1)/2.

Using this, we complete the proof of Proposition 3.5. Since the
matrix A is unipotent, there exists a d × d invertible matrix Φ such
that the matrix B := ΦAΦ−1 is in Jordan form. Thus all the entries of
B are all equal to 0 other than m ≥ 1 diagonal square blocks, each of
which is an elementary Jordan rj × rj matrix Jrj for 1 ≤ j ≤ m.

We have
|Wn| = | det(Φ)|−1 |Φ(Wn)|

for every n. Moreover,

Φ(Wn) =
{
η ∈ Rd : ‖ΦBkη‖ ≤ 1 for 0 ≤ k < n

}
and thus there exist positive constants c and c′ with

c
{
η ∈ Rd : ‖Bkη‖∞ ≤ 1 for 0 ≤ k < n

}
⊆ Φ(Wn)

⊆ c′
{
η ∈ Rd : ‖Bkη‖∞ ≤ 1 for 0 ≤ k < n

}
.

Therefore

cd
∣∣∣{η ∈ Rd : ‖Bkη‖∞ ≤ 1 for 0 ≤ k < n

}∣∣∣ ≤ ∣∣Φ(Wn)
∣∣

≤ c′d
∣∣∣{η ∈ Rd : ‖Bkη‖∞ ≤ 1 for 0 ≤ k < n

}∣∣∣.
On the other hand,{

η ∈ Rd : ‖Bkη‖∞ ≤ 1 for 0 ≤ k < n
}

=
m∏
j=1

{
η ∈ Rrj : ‖Jkrjη‖∞ ≤ 1 for 0 ≤ k < n

}
.
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Combining these remarks with Corollary B.2, we have that

Cn−p ≤ |Wn| ≤ C ′n−p,

where

p =
m∑
j=1

rj(rj − 1)

2
=

m∑
j=1

rj−1∑
k=1

k

=
m∑
j=1

d−1∑
k=1

k
(
dim(ker(id−Jrj)k+1)− dim(ker(id−Jrj)k)

)
=

d−1∑
k=1

k
(
dim(ker(id−A)k+1)− dim(ker(id−A)k)

)
=

d−1∑
k=1

dim(range(id−Ak)). �
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