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Abstract. For a finite alphabet A and η : Z → A, the Morse-Hedlund The-

orem states that η is periodic if and only if there exists n ∈ N such that the
block complexity function Pη(n) satisfies Pη(n) ≤ n, and this statement is

naturally studied by analyzing the dynamics of a Z-action associated with η.

In dimension two, we analyze the subdynamics of a Z2-action associated with
η : Z2 → A and show that if there exist n, k ∈ N such that the n × k rect-

angular complexity Pη(n, k) satisfies Pη(n, k) ≤ nk, then the periodicity of

η is equivalent to a statement about the expansive subspaces of this action.
As a corollary, we show that if there exist n, k ∈ N such that Pη(n, k) ≤ nk

2
,

then η is periodic. This proves a weak form of a conjecture of Nivat in the
combinatorics of words.

1. Introduction

1.1. Periodicity and complexity. Given a finite alphabet A, if η ∈ AZ is an
infinite word, the block complexity function Pη(n) is defined to be the number of
distinct words of length n appearing in η. The word η = (ηn)n∈Z is said to be
periodic if there exists an integer m ∈ N such that ηn = ηn+m for all n ∈ Z. The
classical Morse-Hedlund Theorem gives the relationship between these two notions:

Theorem 1.1 (Morse-Hedlund [15]). The infinite word η ∈ AZ is periodic if and
only if there exists an integer n ≥ 1 such that Pη(n) ≤ n.

For η ∈ AZd

, the (n1 × . . .× nd)-block complexity function Pη(n1, . . . , nd) is the
number of distinct n1× . . .×nd blocks occurring in η. Periodicity also has a natural
higher dimensional generalization, and we say that the infinite word η = (η~n)~n∈Zd

is periodic if there exists a period vector, meaning a vector ~m ∈ Zd such that
η~n = η~n+~m for all ~n ∈ Zd.

Nivat conjectured that there is a simple analog of the Morse-Hedlund Theorem
in two dimensions:

Conjecture (Nivat [16]). For η ∈ AZ2

, if there exist integers n, k ≥ 1 such that
Pη(n, k) ≤ nk, then η is periodic.

In a first step toward the conjecture, Sander and Tijdeman [20] showed that if
there is some n such that Pη(n, 2) ≤ 2n (or such that Pη(2, n) ≤ 2n), then η is
periodic. Soon after, Epifanio, Koskas and Mignosi [10] proved a weak version of
the conjecture showing that if Pη(n, k) ≤ nk

144 for some n and k, then η is periodic;

Quas and Zamboni [17] improved the constant to 1
16 .
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Conversely, Sander and Tijdeman [18, Example 5] found counterexamples to the
analog of Nivat’s Conjecture in higher dimensions: if d ≥ 3 and n ∈ N, there

exists aperiodic η ∈ {0, 1}Zd

, depending on n and d, for which Pη(n, . . . , n) =
2nd−1+1. This even rules out the possibility that an analog of Quas and Zamboni’s
Theorem holds for d ≥ 3. The construction described by Sander and Tijdeman is
a discretization of two skew lines in Rd, and so does not provide a counterexample
to Nivat’s Conjecture in dimension two.

As with the Morse-Hedlund Theorem, Nivat’s conjectured relation between com-

plexity and periodicity is sharp: the aperiodic coloring δ ∈ {0, 1}Z2

with a 1 at (0, 0)
and 0 elsewhere satisfies Pδ(n, k) = nk + 1 for all integers n, k ≥ 1. In contrast
to the Morse-Hedlund Theorem, the relation is not an equivalence. Berthé and
Vuillon [1] and Cassaigne [8] gave examples of infinite 2-dimensional words η that
are periodic, but whose block complexity satisfies Pη(n, k) = 2n+k−1 for all integers
n, k ≥ 1.

Further partial results connected to Nivat’s Conjecture and its generalizations
are given in [1, 6, 9, 18, 19, 20], and we refer the reader to [5, 8, 12] for additional
discussion.

Our main result is an improvement on Quas and Zamboni’s Theorem:

Theorem 1.2. For η ∈ AZ2

, if there exist integers n, k ≥ 1 such that Pη(n, k) ≤ nk
2 ,

then η is periodic.

Our proof is dynamical in nature: we associate a Z2-dynamical system with η
and study its subdynamics to prove the periodicity of η.

1.2. Expansive subdynamics and the conjecture. Suppose A is a finite al-
phabet; throughout we assume that |A| > 1. In a classical way, we endow A with

the discrete topology, AZd

with the product topology, and define a Zd-action on

X = AZd

by (T ~uη)(~x) := η(~x + ~u) for ~u ∈ Zd. With respect to this topology,
the maps T ~u : X → X are continuous. In a slight abuse, we omit the transforma-
tions T ~u from our notation, and let O(η) := {T ~uη : ~u ∈ Zd} denote the Zd-orbit of

η ∈ AZd

and write Xη := O(η).
In this dynamical setup, we can rephrase periodicity. The statement that η is

periodic is equivalent to saying that Zd does not act faithfully on Xη. A word η is
doubly periodic if it has two non-commensurate period vectors, and for d = 2, the
statement η is doubly periodic becomes Xη is finite.

Expansiveness is a classical notion: a Zd-action by continuous maps (T ~n : ~n ∈ Zd)
on a compact metric space X is expansive if there exists δ > 0 such that for any
distinct points x, y ∈ X, there exists ~n ∈ Zd such that d(T ~nx, T ~ny) ≥ δ. In a
symbolic setting, every Zd action is expansive. In particular, the space Xη endowed

with the translations T ~u for ~u ∈ Zd is expansive. To study Zd-dynamical systems,
Boyle and Lind [4] introduced a finer notion, that of expansiveness for subspaces
of Rd.

The condition of expansiveness for a given Zd-action is open in each of the Grass-
mannian manifolds of Rd and important dynamical quantities, such as measure-
theoretic and topological directional entropy, vary in a controlled manner within
each connected component of this set [4]. Boyle and Lind define a subspace V ⊆ Rd
to be expansive if there exist an expansiveness radius r > 0 and an expansiveness
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constant δ > 0 such that whenever x, y ∈ X satisfy

d(T ~ux, T ~uy) < δ

for all ~u with d(~u, V ) < r, then x = y. If V = Rd, we recover the usual definition
of expansiveness. Any subspace that is not expansive is called a nonexpansive
subspace. They showed that Zd-dynamical systems with nonexpansive subspaces
are common:

Theorem 1.3 (Boyle and Lind [4]). Let X be an infinite compact metric space with
a continuous Zd-action. For each 0 ≤ k < d, there exists a k-dimensional subspace
of Rd that is nonexpansive.

When restricting to d = 2 and the context of X = Xη, a simple corollary is that
η is doubly periodic if and only if every subspace of R2 is expansive. (As throughout
the paper, we mean this with respect to the Z2-action on Xη by translation.) When
there exist n, k ∈ N such that Pη(n, k) ≤ nk, the connection between expansive
subspaces of R2 and periodicity of η goes deeper. We show:

Theorem 1.4. Suppose η ∈ AZ2

and Xη := O(η). If there exist n, k ∈ N such that
Pη(n, k) ≤ nk and there is a unique nonexpansive 1-dimensional subspace for the
Z2-action (by translation) on Xη. Then η is periodic but not doubly periodic, the
unique nonexpansive line L is a rational line through the origin, and every period
vector for η is contained in L.

Thus Nivat’s Conjecture reduces to:

Modified Nivat Conjecture. If η ∈ AZ2

, Xη := O(η), and there exist n, k ∈ N
such that Pη(n, k) ≤ nk, there is at most one nonexpansive 1-dimensional subspace
for the Z2-action (by translation) on Xη.

Under a stronger hypothesis, on the complexity, we show that this holds:

Theorem 1.5. If η ∈ AZ2

and there exist n, k ∈ N such that Pη(n, k) ≤ nk
2 , then

there is at most one nonexpansive 1-dimensional subspace for the Z2-action (by
translation) on Xη.

Theorem 1.2 follows immediately by combining Theorems 1.3, 1.4, and 1.5.

Summarizing, if η ∈ AZ2

and there exist n, k ∈ N for which Pη(n, k) ≤ nk, we
prove that there is a trichotomy for the Z2-action by translation on Xη:

(i) No nonexpansive 1-dimensional subspaces. In this case, Theorem 1.3
implies that η is doubly periodic.

(ii) A unique nonexpansive 1-dimensional subspace. In this case, The-
orem 1.4 implies that η is periodic, but not doubly periodic.

(iii) At least two nonexpansive 1-dimensional subspaces. If one could
show that this case can not hold, Nivat’s Conjecture follows. In Theo-
rem 1.5, we show that this case is impossible if we strengthen the hypoth-
esis on η to the existence of n, k ∈ N such that Pη(n, k) ≤ nk

2 .

To fully take advantage of the complexity assumption, we require a finer notion
than expansiveness studied by Boyle and Lind. Namely, we define a one-sided ver-
sion of expansiveness (see Section 3.1 for the precise definition) which corresponds
to a subspace determining a pattern in only one direction. Similar to the use of
expansiveness by Boyle and Lind, the more relevant notion is that of one-sided



4 VAN CYR AND BRYNA KRA

nonexpansiveness. While expansive implies one-sided expansive and one-sided non-
expansive implies nonexpansive, the converse statements do not necessarily hold.
A similar notion was studied in [2] and [3].

1.3. Another reformulation of the conjecture. The proofs of Theorems 1.4
and 1.5 ultimately rely on the fact that if there exist n, k ∈ N with Pη(n, k) ≤ nk,
then the value of η~n can be deduced from information about the value of η~m for ~m ∈
Z2 that are nearby in an appropriate sense. Following Sander and Tijdeman [18],
we make the following definition:

Definition 1.6. For S ⊆ Z2, let W(S, η) := {(T ~uη)�S : ~u ∈ Z2} be the set of
distinct η-colorings of S (or S-words) and define the η-complexity function to be

Pη(S) := |W(S, η)| .

Note that this generalizes the definition of the complexity function Pη(n, k) for
rectangles. It is immediate that if T ⊂ S, then Pη(T ) ≤ Pη(S). We also note that

if S ⊂ Z2 is a fixed, finite set and η ∈ AZ2

, then Pη(S) = PT ~uη(S) for any ~u ∈ Z2.

Moreover if α ∈ Xη = O(η), then Pα(S) ≤ Pη(S). This is particularly useful in
our constructions, since any complexity bound on η implies a (possibly stronger)
complexity bound on any element of Xη.

If T ⊂ S and α ∈ W(T , η), we say that β ∈ W(S, η) is an extension of α if
β�T = α. Moreover, we say that α extends uniquely to an η-coloring of S if there
exists a unique β ∈ W(S, η) that is an extension of α.

We define a discrepancy function that measures the difference between the com-
plexity of a set and its size:

Definition 1.7. For η : Z2 → A, the η-discrepancy function Dη(S), or just the
discrepancy function when η is clear from context, is defined on the set of all
nonempty, finite subsets of Z2 by

Dη(S) := Pη(S)− |S| .

The discrepancy function has the useful property (Lemma 2.3) that if S ⊂ Z2

contains at least two elements and x ∈ S, then either Dη(S \{x}) ≤ Dη(S) or every
η-coloring of S \ {x} extends uniquely to an η-coloring of S . The discrepancy of
any one element subset of Z2 is |A|−1 > 0 and the hypothesis of Nivat’s conjecture
is that there exists a rectangular subset of Z2 whose discrepancy is non-positive.
This implies (Corollary 2.6) the existence of a set S ⊂ Z2 with the property that
for many x ∈ S, every η-coloring of S \ {x} extends uniquely to an η-coloring of S.

In this terminology, the Modified Nivat Conjecture becomes:

Modified Nivat Conjecture (second version). If η ∈ AZ2

, Xη := O(η), and
there exists an n by k rectangular subset R of Z2 satisfying Dη(R) ≤ 0, then there is
at most one nonexpansive 1-dimensional subspace for the Z2-action (by translation)
on Xη.

Theorem 1.4 uses the set S to show that for all ~u ∈ Z2, the value of T ~uη along a
strip depends only on its restriction to a particular finite set. Theorem 1.5 is more
subtle. The stronger hypothesis on the complexity Pη(n, k) allows us to show that
one-sided nonexpansiveness gives rise to periodicity along strips (a more precise
statement is contained in Proposition 4.8). When there are multiple one-sided
nonexpansive subspaces, this forces η to be doubly periodic on large, finite subsets
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of Z2. We then complete the argument with an elaborate proof by contradiction
by analyzing η on the boundary of these subsets.

1.4. A guide to the paper. Sections 2 and 3 develop tools for analyzing the
nonexpansive subspaces ofXη. In Section 2, we define η-generating sets, which allow
us to extend colorings to large regions, and prove a number of elementary lemmas
establishing their existence and properties. In Section 3, we use this machinery to
prove Theorem 1.4. Along the way, we provide a new proof of Boyle and Lind’s
Theorem (Theorem 1.3) adapted to our setting. The remainder of the paper is
devoted to the proof of Theorem 1.5. In Section 4, we show how the stronger
complexity bound assumed in Theorem 1.5 can be used to obtain additional control
over the set of one-sided nonexpansive directions for Xη and in Section 5, we use
the machinery from Section 4 to complete the proof of Theorem 1.5.

Acknowledgment. We thank Mike Boyle, Alejandro Maass, and Anthony Quas
for helpful conversations and we particularly thank the referee for numerous helpful
suggestions and corrections.

2. Periodicity and generating sets

2.1. One dimension: the Morse-Hedlund Theorem. For studying periodicity,
we ultimately rely on the Morse-Hedlund Theorem. Although this result is classical,
for completeness we include the statement and proof for the various versions we use.
We start by defining the complexities for each of the possible settings: the integers,
the natural numbers and a finite interval.

Definition 2.1. If f : Z → A, define Tf : Z → A by (Tf)(n) := f(n + 1). Define
Pf (n) to be the number of distinct functions of the form (Tmf)�{0, 1, . . . , n− 1},
where m ranges over Z.

Similarly, if f : N → A, define Tf : N → A and Pf (n) to be the analogous
quantities, but with m ranging over N.

If a ∈ Z and f : {a, a+ 1, a+ 2, . . . , a+ i− 1} → A, define Tf : {a− 1, a, . . . , a+
i− 2} → A by (Tf)(n) := f(n+ 1) and define Pf (n) to be the number of distinct
functions of the form (Tmf)�{a, a+ 1, . . . , a+ n− 1}, where 0 ≤ m ≤ i − n and
0 ≤ n ≤ i.

Theorem 2.2 (Morse-Hedlund [15]). Suppose f : U → A, where U ⊆ Z is one of
Z, N, or an interval of the form {a, a+1, . . . , a+i−1} for some a ∈ Z, and suppose
there exists n0 ∈ N such that Pf (n0) ≤ n0.

(i) If U = {a, a + 1, . . . , a + i − 1} and i > 3n0, then the restriction of f to
the set {a+n0, a+n0 + 1, . . . , a+ i−n0} is periodic of period at most n0;

(ii) If U = N, then f�{x > n0} is periodic of period at most n0;

(iii) If U = Z, then f is periodic of period at most n0.

Proof. Let n0 ∈ N be such that Pf (n0) ≤ n0.
First suppose U is a finite interval. Let a ∈ Z, i ∈ N, U = {a, a+1, . . . , a+i−1},

and i > 3n0. For n ≤ n0, let Pf (n0, n) denote the number of distinct functions
of the form (Tmf)�{a, a+ 1, . . . , a+ n− 1}, where 0 ≤ m ≤ i − n0. Note that

Pf (n0, n0) = Pf (n0). For 0 ≤ i1 < i2 ≤ n0, we have that Pf (n0, i1) ≤ Pf (n0, i2).
If Pf (n0, 1) = 1, then the restriction of f to the set {a, a + 1, . . . , a + i − n0} is
constant, and hence periodic on the claimed interval, with period 1. Otherwise
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Pf (n0, 1) > 1 and so there exists minimal α ≤ n0 such that Pf (n0, α) ≤ α. It fol-
lows that Pf (n0, α− 1) = Pf (n0, α). Then for any 0 ≤ m ≤ i− n0, the restriction
of Tmf to the set {a, a + 1, . . . , a + α − 2} uniquely determines its restriction to
the set {a, a+ 1, . . . , a+ α− 1} (note that this relies on the definition of Pf (n0, n)
and the analogous statement for Pf (n) does not suffice). By the Pigeonhole Prin-
ciple, there exist 0 ≤ m1 < m2 ≤ α such that (Tm1f)�{a, a+ 1, . . . , a+ α− 2} =

(Tm2f)�{a, a+ 1, . . . , a+ α− 2}. It follows by induction that Tm1f and Tm2f

agree on the set {a, a + 1, . . . , a + i − n0 + α − i2}. Therefore, f is periodic with
period i2−i1 ≤ n0 on the set {a+i1, a+i1−1, . . . , a+i−n0+α} and, in particular,
on the claimed interval.

For U = N, by taking i = ∞, the result follows using the same argument. For
U = Z, for any a,m ∈ Z, the restriction of Tmf to the set {a, a+ 1, . . . , a+ α− 2}
extends uniquely to the sets {a−1, a, a+1, . . . , a+α−2} and {a, a+1, . . . , a+α−1}.
Hence there are at most Pf (n0, α) ≤ Pf (n0) ≤ n0 many functions of the form Tmf
and the result follows as before. �

2.2. Geometric notation and terminology. If R ⊂ R2, we denote the convex
hull of R by conv(R). A subset S ⊆ Z2 is called convex if conv(S) is closed and
S = conv(S) ∩ Z2. We view the boundary of a convex subset of Z2 as a (possibly
infinite) convex polygon. The elements of S are the integer points contained in and
enclosed by this polygon. 1

We let ∂S denote the boundary of conv(S). An extreme point of a convex set
S ⊆ Z2 is a point in ∂S ∩ Z2 which is a vertex of the convex polygon ∂S, and a
boundary edge of S an edge of ∂S. We use V (S) to denote the set of extreme points
of S and E(S) to denote the set of boundary edges of S.

If S ⊂ Z2 is convex and conv(S) has positive area, our standard convention is
that the boundary of S is positively oriented. When |S| < ∞, this orientation
endows each w ∈ E(S) with a well-defined successor edge, denoted succ(w) ∈ E(S)
and a predecessor edge, denoted pred(w) ∈ E(S). In the case that |S| = ∞, the
definitions of successor and predecessor extend in the natural way, noting that there
may be two edges without predecessors and two without successors (for example, for
a strip). We extend the functions succ(·) and pred(·) to infinite convex sets in the
natural way (leaving pred(wα) and succ(wω) undefined). With these conventions,
each w ∈ E(S) inherits an orientation from the boundary of S, and so we make a
slight abuse of the notation by viewing w ∈ E(S) as both a set and an oriented line
segment. Thus we can refer to an oriented line in R2 as being parallel or antiparallel
(or neither) to a given element of E(S).

We make use of two notions of size:

(i) If S ⊆ Z2, then |S| denotes the cardinality of S.
(ii) If w ⊂ R2 is a line segment, then ‖w‖ denotes the length of w.

In particular, if S ⊂ Z2 is a finite convex set and w ∈ E(S), then ‖w‖ is the length
of w, while |w ∩ S| is the number of integer points on it.

We denote the n by k rectangle based at the origin by

Rn,k :=
{

(x, y) ∈ Z2 : 0 ≤ x < n, 0 ≤ y < k
}
.

1 The assumption that the convex sets are closed avoids pathological behavior on the boundary,

as for example the convex hull of {(x, y) ∈ Z2 : x < 0} ∪ {(0, 0)} is the set {(x, y) ∈ R2 : x <
0} ∪ {(0, 0)}. Such behavior is avoided when we assume that the convex hull of a convex set is

closed.
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2.3. The discrepancy function and η-generating sets. We use the discrepancy

function to derive a number of useful properties of functions η ∈ AZ2

satisfying
Pη(Rn,k) ≤ nk for some n, k ∈ N.

Lemma 2.3. Suppose S ⊂ Z2 is finite and |S| ≥ 2. If x ∈ S, then either every
η-coloring of S\{x} extends uniquely to an η-coloring of S or Dη(S\{x}) ≤ Dη(S).

Proof. If there is some η-coloring of S \ {x} that extends non-uniquely to an η-
coloring of S, then Pη(S \ {x}) < Pη(S). Thus

Dη(S \ {x}) = Pη(S \ {x})− |S \ {x}| ≤ (Pη(S)− 1)− (|S| − 1) = Dη(S). �

Motivated by Lemma 2.3, we make the following definition:

Definition 2.4. If S ⊂ Z2 is a finite set and x ∈ S, we say that x is η-generated
by S if every η-coloring of S \ {x} extends uniquely to an η-coloring of S. A finite,
nonempty, convex subset of Z2 for which every extreme point is generated is called
a weak η-generating set.

Lemma 2.5. Suppose S ⊂ Z2 is a finite, convex set and Dη(S) ≤ 0. Let T be
a minimal set (with respect to partial ordering by inclusion) among all nonempty
convex subsets of S with discrepancy at most Dη(S). Then T is a weak η-generating
set, and if y ∈ V (T ), Dη(T \ {y}) = Dη(T ) + 1.

Proof. We proceed by contradiction. Let x ∈ T be a extreme point that is not
generated. Since any one element set has discrepancy |A| − 1 > 0, T must contain
at least two elements; in particular T \ {x} is nonempty. Furthermore, T \ {x} is
convex and by Lemma 2.3, Dη(T \{x}) ≤ Dη(T ), a contradiction of the minimality
of T .

For the change in discrepancy, note that any extreme point y ∈ V (T ) is generated
and so Pη(T ) = Pη(T \ {x}). The statement follows since |T | = |T \ {x}|+ 1. �

Corollary 2.6. If S ⊂ Z2 is a finite, convex set with η-discrepancy d ≤ 0, then S
contains a (strictly decreasing) nested family of weak η-generating subsets

S1 ⊃ . . . ⊃ S|d|+1.

Proof. Let S1 be a nonempty, convex subset of S which is minimal (with respect to
inclusion) among all convex subsets having discrepancy at most d; such a set must
exist because a one element subset of S has positive discrepancy. By Lemma 2.5, S1
is weak η-generating and contains at least two elements (because it has nonpositive
η-discrepancy).

Suppose that for some i < |d| + 1, we have constructed weak η-generating sets
S1 ⊃ S2 ⊃ . . . ⊃ Si such that Dη(Sj) = Dη(S) + j − 1 for all 1 ≤ j ≤ i. Let

xi ∈ V (Si) and set S̃i := Si \ {xi}. Then by Lemma 2.5, Dη(S̃i) = Dη(Si) + 1 =

Dη(S) + i ≤ 0. We can then pass to a subset Si+1 of S̃i which is minimal among

all convex subsets of S̃i that have discrepancy at most Dη(S̃i), and note that by
Lemma 2.5, Si+1 is weak η-generating. This process continues for at least |d| + 1
steps. �

Corollary 2.7. Suppose that S ⊂ Z2 is a finite, convex set with η-discrepancy
d ≤ 0. For any i ∈ N and any x1, . . . , xi ∈ S such that S \ {x1, . . . , xi} is convex
and nonempty, we have that Dη(S \ {x1, . . . , xi}) ≤ Dη(S) + i.
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Proof. Since Pη(S \ {x1, . . . , xi}) ≤ Pη(S), we have that

Dη(S \ {x1, . . . , xi}) = Pη(S \ {x1, . . . , xi})− |S \ {x1, . . . , xi}|
≤ Pη(S)− |S|+ i = Dη(S) + i. �

We remark that the inequality in the corollary is strict unless every η-coloring
of S \ {x1, . . . , xi} extends uniquely to an η-coloring of S.

This corollary becomes relevant in our constructions: if we know that Dη(S) < 0,
we are free to remove any |Dη(S)| elements from S and are guaranteed that the
resulting set contains a weak η-generating subset (provided it is convex).

A key fact about the discrepancy function which is crucial in Sections 4 and 5 is
the following:

Lemma 2.8. Suppose that S ⊂ Z2 is a convex weak η-generating set for which every
nonempty proper convex subset has strictly larger η-discrepancy and let w ∈ E(S).
If S \ w 6= ∅, then there are at most |w ∩ S| − 1 η-colorings of S \ w that extend
non-uniquely to η-colorings of S.

Proof. We have Dη(S \ w) > Dη(S) (by assumption) and |S \ w| = |S| − |w ∩ S|.
So, Pη(S \ w) > Pη(S) − |w ∩ S|. On the other hand, there are no more than
Pη(S) − Pη(S \ w) distinct η-colorings of S \ w that extend non-uniquely to an
η-coloring of S. �

This lemma leads to the key definition:

Definition 2.9. A weak η-generating set S ⊂ Z2 is an η-generating set if every
nonempty proper convex subset has strictly large η-discrepancy.

If S ⊂ Z2 is weak η-generating with Dη(S) ≤ 0, then if T is minimal among
convex subsets of S with Dη(T ) ≤ Dη(S), we have that T is η-generating. In
particular, if Dη(S) ≤ 0, then S contains an η-generating set.

Remark 2.10. Many of our constructions assume that we have fixed a function
η : Z2 → A, an η-generating set S, and an edge w ∈ E(S). It is often convenient
to assume that the oriented line segment w points vertically downward. Such an
assumption is not restrictive: if A ∈ SL2(Z), then A−1(S) is convex and

Dη◦A(A−1(S)) = Dη(S).

Therefore S is an η-generating set if and only if A−1(S) is an (η ◦ A)-generating
set, and we have no change in the discrepancy. Since SL2(Z) takes positively
oriented polygons to positively oriented polygons and acts transitively on directed
rational lines through the origin in R2, in constructions that only rely on S being
η-generating, we can always make a change of coordinates such that a given edge w
is vertical with downward orientation. This is useful to simplify the notation and
the pictures used to explain various definitions and arguments.

Lemma 2.11. Suppose that S ⊂ Z2 is a finite convex set and there are two edges
w1, w2 ∈ E(S) that are antiparallel. Then any line parallel to w1 that has nonempty
intersection with S contains at least mini=1,2{|wi ∩ S| − 1} integer points.

Proof. Without loss of generality, suppose that |w1 ∩ S| ≤ |w2 ∩ S|. If ` is a
line parallel to w1 that has nonempty intersection with S, then by convexity
‖` ∩ conv(S)‖ ≥ ‖w1‖ (recall that ‖ · ‖ denotes the length of a line segment in
R2). The distance between any two consecutive integer points on ` is the same as
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the distance between two consecutive integer points on the line determined by w1,
since the two sets differ only by a translation taking the integer points on one to
the integer points on the other. Since the distance between |w1 ∩ S| integer points
on a line parallel to ` is exactly ‖w1‖, any interval in ` of length at least ‖w1‖ must
contain at least |w1 ∩ S| − 1 integer points. In particular, ` ∩ conv(S) does. �

We finish this subsection with two quick applications of generating sets. The
first is a relation that we use in the sequel to eliminate irrational nonexpansive
directions. We define:

Definition 2.12. A convex set H ⊂ Z2 is called a half plane if conv(H) has positive
area and E(H) contains only a single edge. In this case, the unique boundary edge

is a line in R2. Given ~v ∈ R2 \ {~0}, a ~v-half plane is a half plane whose (positively
oriented) boundary edge is parallel to ~v.

If S ⊂ Z2 is convex and ~v ∈ R2 \ {~0}, then the intersection of all ~v-half planes
containing S is a ~v-half plane whose boundary `(~v,S) has nonempty intersection
with ∂S. We call `(~v,S) the support line of S determined by ~v.

By definition, a half plane is closed and contains the integer points on its bound-
ary edge. Note that `(~v,S)∩conv(S) is either a boundary edge or an extreme point
of S. When the intersection is an extreme point of S, `(~v,S)∩ S 6= ∅. If S is finite
and `(~v,S) ∩ conv(S) is a boundary edge of S, then `(~v,S) ∩ S 6= ∅.

Lemma 2.13. If η : Z2 → A and there exist n, k ∈ N such that Pη(n, k) ≤ nk and
L ⊂ R2 is an irrational line through the origin, then L is expansive on Xη.

Proof. Let S be an η-generating set. Choose an expansiveness radius r > 0 such
that S is contained in the set

U := {~u : d(~u, L) < r}.
Choose an orientation on L and set ` := `(L,S), and ~w = S ∩ ` ∈ V (S). Define

c := inf
~y∈S\{~w}

d(~y, `).

Since S is finite, c > 0.
We claim that η�U determines all of η. If not, set

d := inf{d(~y, L) : η�U does not determine η(~y)}.
Then d is finite (or we are already finished) and d ≥ r. Defining UR = {~u : d(~u, L) <
R}, then η�U determines η�Ud′ , where d′ is either d− c/2, when this is positive, or

d/2, otherwise. Choose ~y ∈ Z2 such that d(~y, L) ≤ d + c/4 and such that η(~y) is
not determined by η�U . Translating S, we can assume that ~w = ~y. Then there are
two possibilities. The first is that S \ {~y} ⊂ Ud′ , and then since S is η-generating
we have a contradiction. Otherwise, S \ {~w}∩Ud′ = ∅, and then replacing L in the
proof by its opposite orientation, the same argument leads to a contradiction. �

The second application relates to entropy:

Definition 2.14. Suppose η : Z2 → A and S ⊂ Z2 is finite. Define

XS(η) :=
{
f : Z2 → A such that W(S, f) ⊆ W(S, η)

}
to be the Z2-subshift of finite type generated by the S-words of η.

An (S, η)-coloring of a set T ⊆ Z2 is any function of the form {f�T : f ∈ XS(η)}.
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(In more common terminology, if FS := AS \W(S, η) is the set of all S words not
occurring in η, then XS(η) is the Z2-subshift of finite type whose set of forbidden
words is FS .)

Lemma 2.15. If η : Z2 → A and there is an η-generating set S ⊆ Z2, then for any
finite S ′ ⊇ S the Z2-dynamical system (XS′(η), {T ~u}~u∈Z2) has topological entropy
zero.

Proof. Choose n, k ∈ N such that S ′ ⊆ Rn,k. We claim that for any n′ > 2n and
k′ > 2k, the function η�Rn′,k′ is determined by is restriction to the (square annular)
set

[0, n′ − 1]× [0, k′ − 1] \ [n, n′ − n]× [k, k′ − k].

Since any translation of an η-generating set is η-generating, we can assume without
loss that S ⊆ Rn,k and S ∩ ({n− 1} × [0, k − 1]) 6= ∅. Then S + (1, 0) lies entirely
inside the square annular region. It follows that there exists j ∈ N and a vertex
v ∈ V (S) such that V \{v}+(1, j) lies inside the square annular region, and v+(1, j)
is the point (n, k). Since S + (1, j) is η-generating, it follows that any η-coloring
of the square annular region extends uniquely to the point (n, k). By induction it
follows that, for all 0 ≤ j ≤ k′ − k, any η-coloring of the square annular region
extends uniquely to an η-coloring of {n}× [k, k+j]. A similar induction shows that
it extends uniquely to an η-coloring of [n, n+ i]× [k, k + j] for any 0 ≤ j ≤ k′ − k
and any 0 ≤ i ≤ n′ − n. The claim follows.

The claim gives Pη(Rn′,k′) ≤ |A|2nk
′+2kn′−4nk

, and so

lim
n′→∞

1

(n′)2
logPη(Rn′,n′) = 0. �

Remark 2.16. In dimension one, the analog of Lemma 2.15 holds and leads to
a proof of the Morse-Hedlund Theorem: a one-dimensional subshift of finite type
either has positive entropy or every element is periodic. In dimension two, there are
zero entropy Z2-subshifts of finite type that do not contain any periodic elements.
Thus Lemma 2.15 serves as an indication that generating sets are dynamically
interesting, but does not seem to provide an approach to Nivat’s conjecture.

2.4. Ambiguous half planes and periodicity. In this section, we develop a re-
lationship between the notions of nonexpansivity and periodicity. The main results
are Lemma 2.24 and Corollary 2.25. Unfortunately, to state and prove them we
need a significant amount of terminology. This is introduced in the following four
definitions (with Figures 1 and 2 accompanying Definitions 2.19 and 2.21). Their
complicated nature is necessitated by the need to bound the periods appearing in
Lemma 2.24.

Definition 2.17. If S ⊂ Z2, T1 ⊂ T2 ⊆ Z2, then a coloring f ∈ XS(η) is
(S, T1, T2, η)-ambiguous if there exist g1, g2 ∈ XS(η) such that g1�T1 = g2�T1 = f
but g1�T2 6= g2�T2.

Note that g1, g2 do not necessarily lie in Xη, but only in XS(η), the set of
Z2-colorings whose S-words coincide with the S-words of η. Ambiguity becomes
especially interesting when T2 ⊃ T1 is produced in some way by T1, and this is
captured in Definition 2.19.

Definition 2.18 (Enveloping set). If ~v1, . . . , ~vn ∈ Z2 \{~0} is a collection of vectors,
we say that a convex set T ⊆ Z2 is {~v1, . . . , ~vn}-enveloped if for every w ∈ E(T ),
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there exists i ∈ {1, . . . , n} such that w is parallel to ~vi. An enveloping set for T is
a set of vectors that envelops it. A minimal enveloping set for T is a collection of
vectors that envelops T and such that no proper subset suffices.

Given a convex region, we define an extension over an edge of the region (it may
help to refer to Figure 1 while reading this definition). The definition splits into
several cases depending on the type of edge (recall that a rational line in R2 is a
line of rational slope that contains a rational point):

Definition 2.19 (See Figure 1). Suppose T ⊆ Z2 is convex, conv(T ) has positive
area, and each w ∈ E(T ) determines a rational line in R2.

(i) Suppose w points vertically downward. Without loss of generality, assume
it is a subset of the y-axis.
(a) If w has both a successor edge and a predecessor edge in E(T ), choose

a, b, c, d ∈ Q such that pred(w) ⊆ {(x, y) ∈ R2 : y = ax + b} and
succ(w) ⊆ {(x, y) ∈ R2 : y = cx + d}. If there is an integer ∆ < 0
such that c∆ + d ≤ a∆ + b and c∆ + d, a∆ + b ∈ Z, then for maximal
such ∆ (i.e., with minimal absolute value), we define the w-extension
Extw(T ) of T to be the set

Extw(T ) := T ∪
{

(x, y) ∈ Z2 : cx+ d ≤ y ≤ ax+ b, ∆ ≤ x < 0
}
.

If no such ∆ exists, we define Extw(T ) := T .
(b) If w has a successor edge but does not have a predecessor edge, choose

c, d ∈ Q such that succ(w) ⊆ {(x, y) ∈ R2 : y = cx + d}. Choose
maximal ∆ < 0 such that c∆+d ∈ Z. Then we define the w-extension
Extw(T ) of T to be

Extw(T ) := T ∪
{

(x, y) ∈ Z2 : cx+ d ≤ y, ∆ ≤ x < 0
}
.

(c) If w has a predecessor edge but does not have a successor edge, choose
a, b ∈ Q such that pred(w) ⊆ {(x, y) ∈ R2 : y = ax + b}. Choose
maximal ∆ < 0 such that a∆+b ∈ Z. Then we define the w-extension
Extw(T ) of T to be the set

Extw(T ) := T ∪
{

(x, y) ∈ Z2 : y ≤ ax+ b, ∆ ≤ x < 0
}
.

(d) If w has neither a predecessor edge nor a successor edge (i.e. if T
is a half-plane whose boundary has rational slope), then Extw(T ) is
the smallest half plane in Z2 that strictly contains T . It is immediate
that the boundary of Extw(T ) is parallel to w.

(ii) If w does not point vertically downward, let A ∈ SL2(Z) be such that
Aw points vertically downward. We define the w-extension of T to be
A−1(ExtAw(AT )). (Note that this set does not depend on the choice of
A.)

It follows that Extw(T ) is a convex, E(T )-enveloped set containing T , and may
be T itself. If Extw(T ) strictly contains T , then there is a finite collection of lines
`1, . . . , `m such that

• `i is parallel to w for all i;
• `i ∩ (Extw(T ) \ T ) is nonempty and convex for all i;
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Tw

Extw(T )

Figure 1. T is the set of integer points enclosed by the solid lines.
If w points vertically downward, then Extw(T ) is enclosed by the
dashed lines and the nonvertical solid lines. The set Extw(T ) \ T
decomposes into five vertically aligned sets which determine the
subextensions. The depth of the extension is five.

• we can decompose Extw(T ) \ T into the disjoint union:

Extw(T ) \ T =

m⊔
i=1

(`i ∩ Extw(T )) .

In this case, m is called the depth of the extension. For 1 ≤ j ≤ m,

T ∪
j⋃
i=1

(`i ∩ Extw(T ))

is the (w, j)-subextension of T (note that the (w, j)-subextension may not be E(T )-
enveloped). The (w, 0)-subextension of T is defined to be T itself.

Remark 2.20. The assumption in Definition 2.19 that the edges of T determine
rational lines may seem restrictive. However, observe that whenever T is finite its
convex hull only has edges of this type. When T is infinite, the convex sets that
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arise in our constructions also turn out to be bounded by edges that determine
rational lines.

Definition 2.21. Suppose S, T ⊂ Z2 are convex and w ∈ E(T ). If Extw(T ) 6= T
and if f ∈ XS(η), we say that f�T is (S, w, η)-ambiguous if it is (S, T ,Extw(T ), η)-
ambiguous.

Suppose H is a half plane and w ∈ E(H) is its unique boundary edge. If w
is a rational line and f ∈ XS(η), we say that f�H is (S, η)-ambiguous if it is
(S, w, η)-ambiguous.

Remark 2.22. We remark that ambiguity is a property of a specific coloring of
Z2, rather than a dynamical property of XS(η) like expansivity, nonexpansivity
or the one-sided versions that are introduced in Section 3.1. An (S, η)-ambiguous
coloring of a half plane can be thought of as a “witness” to the nonexpansiveness
of the direction that borders the half plane. An (S, T1, T2, η)-ambiguous coloring of
a finite set T1 similarly witnesses a finite analog of nonexpansiveness.

Definition 2.23 (See Figure 2). If T is a convex set, S ⊂ T is convex, and
w ∈ E(S) is parallel to an edge w∗ ∈ E(T ), let VS,T ,w be the (possibly empty) set
of translations that take S to a subset of T such that the translated edge of S is
contained in the edge of T parallel2 to w:

VS,T ,w =
{
~v ∈ Z2 : (S + ~v) ⊆ T , (w + ~v) ⊆ w∗

}
.

When VS,T ,w 6= ∅, there exist vectors ~aS,T ,w,~bS,T ,w ∈ Z2 such that

VS,T ,w = {~aS,T ,w + λ~bS,T ,w : λ ∈ I},

where

I =


{0, 1, . . . , |VS,T ,w| − 1} if ‖w∗‖ <∞;

N ∪ {0} if w∗ is a semi-infinite line;

Z if w∗ is a line.

Let Imin, Imax be the minimum and maximum elements of I, respectively (allowing
Imin = −∞ and Imax = +∞ if necessary). Then the (S, w)-border of T is the set⋃

~v∈VS,T ,w

(S + ~v).

For integers 0 ≤ g < 1
2 (Imax − Imin), the g-interior of the (S, w)-border is the

set
Imax−g−1⋃
λ=Imin+g

(S + ~aS,T ,w + λ~bS,T ,w).

We now show that ambiguity is a source of periodicity:

Lemma 2.24. Suppose η : Z2 → A, S ⊂ Z2 is an η-generating set and there exist
antiparallel w1, w2 ∈ E(S). Suppose |w1| ≤ |w2|, H is a w1-half plane, and the
restriction of f ∈ XS(η) to H is (S, η)-ambiguous. Then the (S \w1, w1)-border of
H is periodic with period vector parallel to w1. Its period is at most |w1 ∩ S| − 1.

2We note that since the boundaries of S and T are endowed with orientations, the edge of T
parallel to w uniquely identifies a single edge.



14 VAN CYR AND BRYNA KRA

S

T

ŵ →

w →

Figure 2. Suppose T is the set of integer points contained in the
largest convex region, S is the set of integer points in the dark grey
region, w ∈ E(S) is the downward oriented vertical line segment on
the left side of S, and ŵ ∈ E(T ) is the downward oriented vertical
line segment on the left side of T . Then the (S, w)-border of T is
the set of integer points in the union of the light grey regions and
the dark grey region. The 2-interior of the (S,w)-border of T is
the set of integer points in the region enclosed between the dashed
lines and the vertical line segments connecting them.

Proof. Without loss of generality (see Remark 2.10), we assume that w1 and w2

are vertical, and w1 points downward. Let h := |w1 ∩ S| − 1 and for each vertical
line ` with nonempty intersection with S, let ~x` denote the bottom-most element
of ` ∩ S. By Lemma 2.11,

R :=

h−1⋃
i=0

{
~x` + (0, i) ∈ Z2 : ` vertical, ` ∩ S 6= ∅

}
⊆ S.

Define S̃ := S \ w1, R̃ := R \ w1, and fix a vector ~u ∈ Z2 such that R̃ + ~u is

contained in the (S̃, w1)-border of H.
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We claim that for any λ ∈ Z, the η-coloring of S̃ given by f�S̃ + ~u+ (0, λ) has

at least two extensions to an η-coloring of S. Instead, suppose not. Then the
coloring f�H uniquely determines the η-coloring of H ∪ {S + ~u + (0, λ)}, which
in particular determines the η-coloring of all but one of the elements of the set
S + ~u+ (0, λ+ 1). Since S is η-generating, this uniquely determines the η-coloring
of H ∪ (S + ~u+ (0, λ+ 1)). Now for i ≥ 0, suppose the η-coloring of

H ∪ {S + ~u+ (0, λ+ j) : 0 ≤ j ≤ i}

has been determined. Then the η-coloring of all but one of the elements of the set
S + ~u + (0, λ + i + 1) is determined. Since S is η-generating, this determines the
η-coloring of H ∪ {S + ~u + (0, λ + i + 1)}. By induction, this holds for all i ≥ 0.
Similarly for all i ≤ 0. But this contradicts the ambiguity of the η-coloring of H.

Recall that since S is η-generating, Dη(S̃) > Dη(S) and so Pη(S̃) > Pη(S) −
|w1 ∩ S|. Therefore, the number of η-colorings of S̃ that do not uniquely extend
to η-colorings of S is at most h = |w1 ∩ S| − 1. In particular, there are at most h

η-colorings of R̃ that arise as the restriction of f to a set of the form R̃+~u+ (0, i),
where i ∈ Z.

Define a color set Ã whose colors are η-colorings of {~x` : ` is vertical, `∩ S̃ 6= ∅}
occurring as the restriction of f to a set of the form

Bi := {~x` : ` is vertical, ` ∩ S̃ 6= ∅}+ ~u+ (0, i),

where i ∈ Z. Define g : Z → Ã by g(i) = f�Bi. Then the (one-dimensional) block

complexity Pg(h) is the number of η-colorings of R̃ occurring as the restriction of

f to a set of the form R̃+ ~u+ (0, i). But we have shown that this is at most h, so
in particular Pg(h) ≤ h. By the Morse-Hedlund Theorem, g is periodic with period
at most h. The result now follows from the definition of g. �

The proof of Lemma 2.24 holds in a slightly more general setting, and we make
use of this in Section 4.

Corollary 2.25. Suppose η : Z2 → A and there exists a finite, convex set S ⊂ Z2

such that

(i) There exists w ∈ E(S) such that for any line ` parallel to w that has
nonempty intersection with S, we have |` ∩ S| ≥ |w ∩ S| − 1;

(ii) The two endpoints of w are η-generated by S;
(iii) Dη(S \ w) > Dη(S).

Suppose further that T ⊂ Z2 is a convex set and there is an edge w∗ ∈ E(T ) parallel
to w and such that Extw∗(T ) 6= T . Finally suppose that the (S \ w,w)-border of
Extw∗(T ) has nonempty (|w ∩ S| − 1)-interior.

If f ∈ XS(η) and f�T is (T , w∗, η)-ambiguous, then there is some j between
0 and the depth of the w∗-extension of T such that the restriction of f to the
(|w ∩ S| − 1)-interior of the (S \ w,w)-border of the (w, j)-subextension of T is
periodic with period vector parallel to w. Moreover, the period is at most |w ∩ S|−1.

Proof. Choose j to be the largest integer such that f�T extends uniquely to the
(w, j)-subextension of T . Thereafter, the proof is identical to that of Lemma 2.24,
except that the application of the Morse-Hedlund Theorem is for a finite (or semi-
infinite) interval in Z, rather than to Z. �
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3. One-sided expansiveness and periodicity

3.1. Nonexpansive directions. Suppose that η : Z2 → A satisfies Dη(Rn,k) ≤ 0
for some n, k ∈ N. By Corollary 2.6, there is an η-generating subset S ⊆ Rn,k. A
half plane cannot have an (S, η)-ambiguous coloring unless the unique boundary
edge is parallel to an edge of S, as otherwise we can use S to extend the coloring
uniquely to a larger half-plane. However the generating set S may not be uniquely
determined (and by Corollary 2.6 it is not unique if the discrepancy is strictly
negative) and so a ~v-half plane cannot have an (S, η)-ambiguous coloring unless
every η-generating subset of Rn,k has an edge parallel to ~v. This motivates the
following definition:

Definition 3.1. Suppose that η : Z2 → A, ` ⊂ R2 is an oriented rational line
through the origin and A ∈ SL2(Z) maps the (downward oriented) y-axis to `.
For a, b ∈ N, we say that ` is one-sided η-expansive with parameters (a, b, A) if
every (η ◦ A)-coloring of [0, a] × [−b, b] extends uniquely to an (η ◦ A)-coloring of
[0, a]× [−b, b]∪{(−1, 0)}. An oriented rational line is one-sided η-expansive if there
exist a, b ∈ N and A ∈ SL2(Z) such that it is one-sided η-expansive with parameters
(a, b, A), or just one-sided expansive when η is clear from the context.

An oriented rational line through the origin which is not one-sided expansive
is called one-sided η-nonexpansive, or just one-sided nonexpansive when η is clear
from the context.

We can also refer to a vector ~v ∈ Z2 \ {~0} as being one-sided expansive or one-
sided nonexpansive, meaning that the span of ~v (with the orientation inherited from
~v) is one-sided expansive or one-sided nonexpansive, respectively.

Although the y-axis seems to play a distinguished role in the definitions of one-
sided expansiveness and one-sided nonexpansiveness, the choice of this direction
is arbitrary (see Remark 2.10). The insistence on dealing with directed rational
lines instead of just rational lines is to allow the possibility that a line can be one-
sided expansive with one orientation and one-sided nonexpansive with the other.
These definitions are one-sided generalizations of the definitions of expansive and
nonexpansive subspaces used in Boyle and Lind [4].

In a similar vein, the parameters (a, b, A) used in the definition of one-sided
expansiveness are merely the choice of a convenient coordinate system. With re-
spect to a different choice of A, the line would still be one-sided expansive but with
different choice of a and b.

Lemma 3.2. Suppose η : Z2 → A and Dη(Rn,k) ≤ 0 for some n, k ∈ N. If S ⊆ Rn,k
is an η-generating set, then a directed rational line ` through the origin is one-sided
η-nonexpansive if and only if there exists an (S, η)-ambiguous `-half plane P .

Moreover, given a one-sided η-nonexpansive line `, there exist f, g ∈ Xη such
that the restrictions of f and g to the half plane P coincide, but they differ on its
`-extension.

Proof. If there is an (S, η)-ambiguous `-half plane, then ` must be one-sided non-
expansive; otherwise one-sided `-expansiveness contradicts ambiguity of the half
plane. Conversely, if ` is one-sided nonexpansive and A ∈ SL2(Z) maps the (down-
ward oriented) y-axis to `, then for every a, b ∈ N there is an (η ◦ A)-coloring of
[0, a] × [−b, b] that has two extensions to an (η ◦ A)-coloring of [0, a] × [−b, b] ∪
{(−1, 0)}. Let fa, ga ∈ O(η ◦A) be two such extensions of [0, a] × [−a, a]. By
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compactness, there exist accumulation points f, g ∈ O(η ◦A) for the sequences
(fa)a∈N and (ga)a∈N, respectively. Then f�H0

= g�H0
, but f�H−1 6= g�H−1, where

Hi := {(x, y) ∈ Z2 : x ≥ i}. Applying A−1 to this half plane gives the result. �

The following simple lemma is used to limit possible directions of periodicity:

Lemma 3.3. Suppose η : Z2 → A and there exist n, k ∈ N such that Pη(Rn,k) ≤ nk.
If S is an η-generating set, then for any one-sided η-nonexpansive direction `, there
is a boundary edge w` ∈ E(S) parallel to `.

In particular, ` can be translated such that it intersects Rn,k in at least two
places.

Proof. Suppose S ⊆ Rn,k is an η-generating set but any translation of ` intersects
S in at most one place. Choose a translation of ` which intersects S at a vertex, and
without loss of generality assume this translation of ` intersects S at the origin. Let
A ∈ SL2(Z) be a map taking the y-axis to `. Choose an (A−1(S), η ◦A)-ambiguous
coloring of H0 := {(x, y) ∈ Z2 : x ≥ 0}. Notice that

A−1(S) ∩ {(0, y) : y ∈ Z} = (0, 0).

Since (0, 0) ∈ A−1(S) is η ◦ A-generated, there is a unique extension of any η-
coloring of H0 to an η-coloring of {(x, y) ∈ Z2 : x ≥ −1}. This contradicts the
(A−1(S), η ◦A)-ambiguity of the coloring of H0. �

Combining this lemma with Lemma 2.13, we have:

Corollary 3.4. Suppose η : Z2 → A and there exist n, k ∈ N such that Pη(Rn,k) ≤
nk. If ` is a nonexpansive line for Xη, then there exists a translation of ` that
intersects Rn,k ∩ Z2 in at least two points.

3.2. A characterization of double periodicity.

Lemma 3.5. Suppose ~v1, . . . , ~vm ∈ Z2 \ {~0}. Given n ∈ N, there exists A =
A(n,~v1, . . . , ~vm) ∈ N such that any finite, convex S ⊂ Z2 containing at least A
integer points and such that ∂S is (~v1, . . . , ~vm)-enveloped, has a boundary edge that
contains at least n integer points.

Proof. For each i = 1, 2, . . . ,m choose a length Li ∈ R such that any rational line
parallel to ~vi of length at least Li contains at least n integer points. Define

A :=

⌈
(L1 + · · ·+ Lm)2

4π

⌉
+mn.

By Pick’s Theorem, the area of conv(S) is given by

(# of integer points inside conv(S)) +
(# of integer points on ∂S)

2
− 1.

Since S contains at least A integer points, either the number of integer points on
∂S is at least mn or the area of conv(S) ≥ 1

4π (L1 + · · ·+Lm)2. In the former case,
at least one of the edges of ∂S contains n integer points. In the latter case, the
isoperimetric inequality implies that the length of ∂S is at least L1 + · · ·+Lm, and
so at least one of the edges contains n integer points. �

We strengthen the notion of an enveloping set, further assuming that the bound-
ary consists of of a finite collection of sufficiently long edges taken in order from
the enveloping set:
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Definition 3.6. Suppose S ⊆ Z2 is finite, convex set whose boundary edges are
enumerated as w1, . . . , wn where wi+1 = succ(wi) and indices are taken modulo
n. Let T ⊆ Z2 be a convex superset of S that is E(S)-enveloped. Enumerate the
edges of T as v1, . . . , vk, where vi+1 = succ(vi) and indices are taken modulo k only
when vk has a successor edge. We say that T is strongly E(S)-enveloped if there
exists j ∈ {1, . . . , n− k} such that for all j′ ∈ {0, 1, . . . , k − 1}, vj+j′ is parallel to
wj′ and ‖vj+j′‖ ≥ ‖wj′‖.

Lemma 3.7. Let η : Z2 → A and suppose there exist n, k ∈ N such that Pη(Rn,k) ≤
nk. Let S ⊆ Rn,k be an η-generating set and let M ∈ N.

There exists C = C(S,M) ∈ N such that for any strongly E(S)-enveloped set T
that contains at least C integer points, there exists v ∈ E(T ) such that Extv(T ) 6=
T . Furthermore, Extv(T ) is strongly E(S)-enveloped and the edge of Extv(T )
parallel to v contains at least M integer points.

Moreover, for fixed S and w ∈ E(S), there exists C ′ = C ′(S,M,w) ∈ N such that
for any strongly E(S)-enveloped set T that has nonempty intersection with at least
C ′ distinct lines parallel to w, there exist v′, v′′ ∈ E(T ) which are neither parallel
nor antiparallel to w such that Extv′(T ) 6= T , Extv′′(T ) 6= T , Extv′′(Extv′(T )) is
also strongly E(S)-enveloped, and the edges of Extv′′(Extv′(T )) parallel to v′ and
v′′ both contain at least M integer points. Furthermore, with respect to the local
ordering on directed lines induced by the positive orientation on the unit circle, v′

and v′′ can be chosen such that v′ is between w and the direction antiparallel to w
and v′′ is between the direction antiparallel to w and w.

Proof. Recall that the depth of an extension (see Definition 2.19) of a convex set
depends only on three slopes: that of the edge over which the extension occurs and
of its successor and predecessor edges. Consider an edge w ∈ E(S). If the edge of
T that is parallel to w is sufficiently long such that Extw(T ) 6= T , then the depth
of the w-extension is some positive integer (otherwise it is 0). Then the length of
the edge of Extw(T ) that is parallel to w is greater than the length of the edge of
T that is parallel to w. Thus there exists N(w,M) ∈ N such that if T is strongly
E(S)-enveloped and the edge of T parallel to w is at least N(w,M), then Extw(T )
is also strongly E(S)-enveloped and the edge of Extw(T ) parallel to w contains at
least M integer points.

The remainder of the proof is similar to that of Lemma 3.5. For the first claim
in the lemma, we find C ∈ N such that any strongly E(S)-enveloped set T that
contains at least C integer points has a boundary edge whose length is at least
N(w1,M) +N(w2,M) + · · ·+N(w|E(S)|,M). This boundary edge has the desired
property. The proof of the second claim follows similarly. We fix w ∈ E(S) and
find C ′ ∈ N such that any strongly E(S)-enveloped set T for which there are at
least C ′ distinct lines parallel to w that have nonempty intersection with T has a
boundary edge that is neither parallel nor antiparallel to w and contains at least
N(w1,M) + · · ·+N(w|E(S)|,M) integer points. �

Lemma 3.8. Suppose η : Z2 → A and S ⊂ Z2 is a finite, convex set whose boundary
edges are labeled w1, . . . , wn where wi+1 = succ(wi) for all i = 1, . . . , n (indices are
taken modulo n). Assume that there exist a, b, c, d ∈ Q such that b ≥ d and

• w1 points vertically downward and −a+ b+ c− d ≥ |w1 ∩ S| − 1;
• wn is parallel to the line y = ax+ b;
• w2 is parallel to the line y = cx+ d;
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• there exists ~v ∈ Z2 such that

(S \ w1) + ~v ⊆ {(x, y) ∈ Z2 : cx+ d ≤ y ≤ ax+ b, 0 ≤ x ≤ L− 1},
where L ∈ N is the number of distinct vertical lines that have nonempty
intersection with S \ w1.

If the two endpoints of w1 are η-generated by S, then any (S, η)-coloring of the
region

R := {(x, y) ∈ Z2 : cx+ d ≤ y ≤ ax+ b, 0 ≤ x ≤ L− 1}
and of any |w1 ∩ S| − 1 consecutive integer points of the line segment {(−1, y) ∈
Z2 : d− c ≤ y ≤ b− a} extends uniquely to an (S, η)-coloring of

{(x, y) ∈ Z2 : cx+ d ≤ y ≤ ax+ b, − 1 ≤ x ≤ L− 1}.

It is important to note we make no assumption that the lines y = ax + b or
y = cx+ d intersect the line x = −1 at an integer point.

Proof. Let h := |w1 ∩ S|−1. Suppose we know the η-coloring of the points (−1, y−
h+2), . . . , (−1, y) for some d−c+h−2 ≤ y ≤ b−a−1. Let ~v ∈ Z2 be the translation
that takes the topmost element of w1 to the point (−1, y+ 1). Since y+ 1 ≤ b− a,
the line through (−1, y+1) parallel to wn is in the region {(α, β) ∈ R2 : β ≤ aα+b}.
Since S is convex and wn is parallel to y = ax + b, we have that S + ~v lies in the
region R∪ {(−1, y − h+ 2), . . . , (−1, y + 1)} (see Figure 3).

Since the endpoints of w1 are η-generated by S, the color at η(−1, y+ 1) can be
determined by the restriction of η to the rest of the elements of S + ~v. Continuing
inductively, the (S, η)-coloring of the region R∪ {(−1, y − h+ 2), . . . , (−1, y + 1)}
extends uniquely to an (S, η)-coloring of R∪ {(−1, y − h+ 2), . . . , (−1, bb− ac)}.

A similar argument shows we can uniquely extend the (S, η)-coloring of the
region R ∪ {(−1, y − h + 2), . . . , (−1, bb − ac)} to an (S, η)-coloring of the region
R∪ {(−1, dd− ce), . . . , (−1, bb− ac)}. �

Corollary 3.9. Assume that η : Z2 → A and S ⊂ Z2 is a finite, convex set whose
boundary edges are labeled w1, . . . , wn where wi+1 = succ(wi) for i = 1, . . . , n (in-
dices are taken modulo n) and suppose the two endpoints of w1 are η-generated
by S. Let T be a convex, strongly E(S)-enveloped set that has an edge paral-
lel to w1 which is sufficiently long so that its w1-extension is also strongly E(S)-
enveloped. Then any (η,S)-coloring of T and of any |w1 ∩ S|−1 consecutive integer
points in Extw1

(T ) on each line parallel to w1 that has non-empty intersection with
Extw1

(T ) \ T extends uniquely to an η-coloring of Extw1
(T ).

Proof. After a linear change of coordinates mapping w1 to the vertical direction,
this follows by repeated applications of Lemma 3.8. �

This leads us to necessary and sufficient conditions for double periodicity, a result
that can be derived from Boyle and Lind’s Theorem (Theorem 1.3). We include
a complete proof, as we need further information that can be derived from the
finer notion of one-sided expansiveness, as opposed to expansiveness. In particular,
techniques of the proof are also used to understand the case of a unique direction
of expansivity (Theorem 1.4).

Theorem 3.10. The coloring η : Z2 → A is doubly-periodic if and only if there
exist n, k ∈ N such that Pη(Rn,k) ≤ nk and η has no nonexpansive one-dimensional
subspaces.



20 VAN CYR AND BRYNA KRA

S + ~vw1 + ~v →

Figure 3. The dotted points in Z2 denote the region on which
the coloring is known. The color of the topmost element of w1 +~v
(denoted by the open circle) can be deduced from the coloring of
the rest of S + ~v.

Remark 3.11. We begin by observing that if there are no nonexpansive subspaces
for Xη, then every subspace (and any orientation on it) is one-sided expansive.

Proof. Assume that η is doubly periodic and assume that it has vertical period
n and horizontal period k. Then for every a, b ∈ N, Pη(Ra,b) ≤ nk. In partic-
ular, Dη(R1,nk) ≤ 0 and Dη(Rnk,1) ≤ 0. By Corollary 2.6, R1,nk contains an
η-generating set S and Rnk,1 contains an η-generating set T . If ` is any rational
line, then at least one of S and T is not parallel to `. Since S and T are generating,
` is one-sided expansive.

Conversely, we show:

Claim 3.12. If Dη(Rn,k) ≤ 0 and η has no one-sided nonexpansive directions, then
there exists a finite set F ⊆ Z2 such that every η-coloring of F extends uniquely to
an η-coloring of Z2.

Given the claim, it follows that η is doubly periodic: since there are only finitely

many η-colorings of F , there exist vectors ~a,~b,~c ∈ Z2 such that ~c−~a and ~c−~b are

not collinear and such that (T~aη)�F = (T
~bη)�F = (T~cη)�F . Since each coloring

of F extends uniquely to an η-coloring of Z2, it follows that T~aη = T
~bη = T~cη.
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Thus ~c−~a and ~c−~b are two linearly independent period vectors for η, proving the
statement. The remainder of the proof is devoted to establishing the claim.

Fix an η-generating set S ⊆ Rn,k and enumerate the edges of ∂S as w1, . . . , wm
where wi+1 = succ(wi) for all i (indices are taken modulo m). None of the lines de-
termined by w1, . . . , wm are one-sided nonexpansive by Remark 3.11. Thus we can
choose parameters a1, . . . , am, b1, . . . , bm ∈ N and A1, . . . , Am ∈ SL2(Z) such that
the line determined by wi is one-sided (S, η)-expansive with parameters (ai, bi, Ai).
By definition of one-sided expansiveness, for fixed r ∈ N, any (η ◦ Ai)-coloring of
the rectangular set [0, ai]× [−bi, bi + r] extends uniquely to an (η ◦Ai)-coloring of

([0, ai]× [−bi, bi + r]) ∪ {(−1, 0), (−1, 1), (−1, 2), . . . , (−1, r − 1)}.

Equivalently, any η-coloring of the set

Bri := Ai([0, ai]× [−bi, bi + r])

extends uniquely to an η-coloring of the set

(1) B̃ri := Ai (([0, ai]× [−bi, bi + r]) ∪ {(−1, 0), (−1, 1), . . . , (−1, r − 1)}) .

For i, j such that wi and wj are neither parallel nor antiparallel, let θi,j ∈
(−π, π) \ {0} be the angle between wi and wj and let ci be the length of the
orthogonal projection of Ai(1, 0) onto the direction determined by wi. Let

N =

m∑
i=1

(2bi + aici) + max
i,j

{
a1 + · · ·+ am +m

|tan θi,j |

}
+

m∑
i=1

|wi ∩ S| .

Let C ′(S, N + 1, wi) be the parameter appearing in Lemma 3.7 and let

c := max
w∈E(S)

C ′(S, N + 1, w).

If T ⊆ Z2 is a strongly E(S)-enveloped set satisfying

(i) T has edges parallel to each of the edge of S;
(ii) for each w ∈ E(T ) there are at least c distinct lines parallel to w that have

nonempty intersection with T ,

then there exist integers 1 ≤ i1 < i2 ≤ m such that the edges of T parallel to wi1
and wi2 both contain at least N+1 integer points, where wi1 is between w1 and the
direction antiparallel to w1 and wi2 is between the direction antiparallel to w1 and
w1 (with respect to the local ordering by the positive orientation). It also follows

that there exist vectors ~u1, ~u2 ∈ Z2 such that (B
|wi1
∩S|−1

i1
+~u) ⊆ T , but B̃i1

|wi1
∩S|−1

is not. The analogous statement holds for i2. Moreover, by Corollary 3.9, the edge
of Extwi1

(T ) parallel to wi1 contains at least N + 1 integer points and the edge

of Extwi2
(Extwi1

(T )) parallel to wi2 contains at least N + 1 integer points. Recall
that there exists an integer d > 0, the depth of the extension, and lines l1, . . . , ld
parallel to wi, such that

Extwi1
(T ) \ T =

d⊔
j=1

(lj ∩ Extwi1
(T )).

Also recall that for r = 1, . . . , d, the set

T ∪
r⋃
j=1

(lj ∩ Extwi1
(T ))
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is the (wi1 , r)-subextension of Extwi1
(T ). By convexity, since the edges of T and

Extwi1
(T ) parallel to wi1 both contain at least N+1 integer points, each of the sets

lj∩Extwi1
(T ) contains at leastN integer points. Although the (wi1 , r)-subextension

of T may not be strongly E(S)-enveloped (recall that d is the smallest integer for
which the extension is enveloped by the same set as T ), we still have that for each

r = 1, . . . , d there exists ~ur ∈ Z2 such that B
|wi1∩S|−1
i1

+ ~ur is contained in the

(wi1 , r)-subextension of Extwi1
(T ), but B̃i1

|wi1
∩S|−1

is not. By (1) it follows that

any η-coloring of the (wi1 , r)-subextension of T uniquely determines the color of at
least |wi1∩S|−1 consecutive integer points on lr+1∩Extwi1

(T ). By Corollary 3.9 it

follows that any η-coloring of the (wi1 , r)-subextension of T extends uniquely to an
η-coloring of the (wi1 , r+1)-subextension. Inductively it follows that any η-coloring
of T extends uniquely to an η-coloring of Extwi1

(T ). Similarly any η-coloring of

Extwi1
(T ) extends uniquely to an η-coloring of Extwi2

(Extwi1
(T )).

We construct a nested sequence of finite sets

(2) T0 ⊂ T1 ⊂ T2 ⊂ · · · ⊂ Z2

such that, for each i, any η-coloring of Ti extends uniquely to an η-coloring of Ti+1.
We show that these sets have the property that any η-coloring of

⋃
i Ti extends

uniquely to an η-coloring of Z2. Hence any η-coloring of T0 extends uniquely to an
η-coloring of Z2. Taking F := T0 establishes Claim 3.12.

Let T0 be a strongly E(S)-enveloped set that satisfies conditions (i) and (ii).
Let B ⊂ R2 be the thinnest strip with edges parallel and antiparallel to w1 that
contains T0. By the above argument, find wi1 , wi2 ∈ E(T0) that are neither parallel
nor antiparallel to w1 and such that any η-coloring of T0 extends uniquely to an
η-coloring of Extwi2

(Extwi1
(T0)) and such that this extension satisfies conditions (i)

and (ii). Moreover wi1 and wi2 can be chosen such that wi1 is between w1 and the
direction antiparallel to w1 and wi2 is between the direction antiparallel to w1 and
w1. Let T1 := Extw(T0). Inductively, suppose we have constructed a sequence of
strongly E(S)-enveloped finite sets T0 ⊂ T1 ⊂ · · · ⊂ Ti which all have edges parallel
to each of the edges of S and are such that for any 0 ≤ j ≤ i and any w ∈ E(Tj)
there are at least c lines parallel to w that have nonempty intersection with Tj .
Furthermore suppose that any η-coloring of T0 extends uniquely to an η-coloring
of Ti. By the previous argument, there exist wi1 , wi2 ∈ E(Ti) which are neither
parallel nor antiparallel to w1 and such that Extwi2

(Extwi1
(Ti)) satisfies the same

conditions as Ti and every η-coloring of Ti extends uniquely to an η-coloring of
it. Define Ti+1 := Extwi2

(Extwi1
(Ti)). By induction, any η-coloring of T0 extends

uniquely to an η-coloring of
⋃
i Ti.

Since Ti+1 is an extension of Ti over edges that are neither parallel nor antiparallel
to w1 ∈ E(S), it follows that

⋃
i Ti is an infinite, E(S)-enveloped subset of B ∩Z2.

Since Ti+1 is obtained by first extending Ti over an edge whose direction is between
w1 and the direction antiparallel to w1 and then extending the extension over an
edge that is between the direction antiparallel to w1 and w1,

⋃
i Ti = B ∩ Z2.

Since w1 does not determine an expansive direction for η and T0 contains the set
A1([0, a1] × [−b1, b1]), there is a unique extension of any η-coloring of

⋃
i Ti to an

η-coloring of Z2. In this case, set F := T0, completing the proof of Claim 3.12 and
the theorem. �
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3.3. Single periodicity. We have now developed the tools to prove Theorem 1.4.
We recall the statement for convenience:

Theorem (Theorem 1.4). Suppose η ∈ AZ2

and Xη := O(η). If there exist n, k ∈ N
such that Pη(n, k) ≤ nk and there is a unique nonexpansive 1-dimensional subspace
for the Z2-action (by translation) on Xη. Then η is periodic, but not doubly periodic,
the unique nonexpansive line L is a rational line through the origin, and every period
vector for η is contained in L.

We make the following definition.

Definition 3.13. If S ⊂ Z2 and (a, b) ∈ Z2, the (a, b)-diameter of S is the number
of distinct rational lines parallel to (a, b) that have nonempty intersection with S.
We denote this by diam(a,b)(S).

Proof of Theorem 1.4. We adopt the same notation for S, w1, . . . , wn ∈ E(S), and
a,N ∈ N used in the proof of Theorem 3.10.

By Theorem 3.10, η is not doubly periodic and by Corollary 3.4, the unique
nonexpansive line ` is a rational line through the origin. Without loss of generality,
we can assume that ` is vertical.

We claim that any η-coloring of [1, a] × [1, a] extends uniquely to an η-coloring
of [1, a] × Z. Without loss assume that w1 is the nonexpansive direction and let
ŵ1 ∈ E(S) be edge of S antiparallel to w1. By Lemma 3.7, as in the proof of
Claim 3.12, we can construct a sequence of finite sets

T0 ⊂ T1 ⊂ T2 ⊂ · · · ⊂ Z2

such that, for each i, any η-coloring of Ti extends uniquely to an η-coloring of
Ti+1 and

⋃
i Ti is a strip with edges parallel and antiparallel to w1. Choosing T0

sufficiently large to contain [1, a]× [1, a] gives the result.
By the claim, the restriction of η to any vertical strip of width a is vertically

periodic of period at most Pη(T ), where T is the smallest {w1, . . . , wn}-enveloped
set containing [1, a]× [1, a], thereby completing the proof. �

Remark 3.14. We contrast this with a recent result of Hochman [13], which shows
that there are Z2-systems that have a unique nonexpansive 1-dimensional subspace
but are not periodic. Theorem 1.4 only applies to the special case of those Z2-
subshifts that arise as the orbit closure of a function satisfying the hypothesis of
Nivat’s Conjecture.

Remark 3.15. With the assumptions of Theorem 1.4, if follows that if there is a
unique nonexpansive 1-dimensional subspace of R2 for the translation action on
Xη, then both orientations of the subspace are one-sided nonexpansive (since η is
singly periodic with period vectors contained in this subspace, if either orientation
were one-sided expansive it would follow that η was doubly periodic). In general
this is not the case (e.g. only one of the two orientations on the vertical direction
is one-sided nonexpansive in Ledrappier’s example [14]).

4. A stronger bound on complexity

In light of Theorems 3.10 and 1.4, one strategy for proving Nivat’s Conjecture is
to show that if η : Z2 → A satisfies Pη(Rn,k) ≤ nk for some n, k ∈ N, then η does
not have two linearly independent one-sided nonexpansive directions. Under the
strengthened hypothesis that Pη(Rn,k) ≤ nk

2 , this is the content of Theorem 1.2.
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The additional control over η obtained from the assumption Pη(Rn,k) ≤ nk
2 comes in

three guises: we obtain a special sort of η-generating set (Lemma 4.1), we prove the
existence of sets that contain many points in a given rational direction (Lemma 4.7
and Proposition 4.8), and we obtain control on the periods in Section 5.3.2.

4.1. Strong generating sets.

Lemma 4.1. Suppose η : Z2 → A is aperiodic and there exist n, k ∈ N such that
Pη(Rn,k) ≤ nk

2 . Then there exists an η-generating set S ⊂ Rn,k such that

(i) Dη(S) ≤ − |S|2 ;
(ii) For any w ∈ E(S), the discrepancy function satisfies

Dη(S \ w) ≥ Dη(S) +

⌈
|w ∩ S|

2

⌉
.

(iii) If T ⊂ S is convex and nonempty, then

Dη(T ) > Dη(S).

We give a name to a set satisfying the conclusion of this lemma:

Definition 4.2. If η : Z2 → A is aperiodic and satisfies Pη(Rn,k) ≤ nk
2 for some

n, k ∈ N, then an η-generating set S ⊆ Rn,k is a strong η-generating set if it satisfies
conditions (i), (ii), and (iii) of Lemma 4.1.

We note that the existence of such an η-generating is the first use of the stronger
hypothesis on the complexity.

Proof of Lemma 4.1. We construct the set S by an iterative process. By assump-

tion we have Dη(Rn,k) ≤ − |Rn,k|
2 = −nk2 . Let S1 ⊆ Rn,k be a convex set which

is minimal (with respect to inclusion) among all convex subsets of Rn,k that have
discrepancy at most Dη(Rn,k). Minimality of S1 implies that S1 is η-generating.

By construction, S1 satisfies Dη(S1) ≤ Dη(Rn,k) ≤ − |Rn,k|
2 ≤ − |S1|2 . If for every

w ∈ E(S1), the discrepancy satisfies Dη(S1 \w) ≥ Dη(S1) +
⌈
|w∩S1|

2

⌉
, then the set

S := S1 satisfies the conclusions and we are finished.
Otherwise, suppose that we have inductively constructed a nested sequence of

sets

Rn,k ⊇ S1 ⊃ · · · ⊃ Sm
such that for i = 1, . . . ,m:

(i) Si is convex and nonempty;
(ii) Si is η-generating;

(iii) Si satisfies Dη(Si) ≤ − |Si|2 ;

(iv) Si is not the intersection of a line segment with Z2;

(v) There exists wi ∈ E(Si) such that Dη(Si \ wi) < Dη(Si) +
⌈
|wi∩Si|

2

⌉
.

Choose wm ∈ E(Sm) such that Dη(Sm \ wm) < Dη(Sm) +
⌈
|wm∩Sm|

2

⌉
. Since the

left hand side of the inequality is an integer,

Dη(Sm \ wm) < Dη(Sm) +
|wm ∩ Sm|

2
.
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Let Sm+1 ⊂ Sm \ wm be a convex set which is minimal (with respect to inclusion)
among all convex subsets of Sm \ wm of discrepancy at most Dη(Sm \ wm). Then
|Sm+1| ≤ |Sm| − |wm ∩ Sm|, and so

Dη(Sm+1) ≤ Dη(Sm \ wm) < Dη(Sm) +
|wm ∩ Sm|

2

≤ −|Sm|
2

+
|wm ∩ Sm|

2
≤ −|Sm+1|

2
.

By minimality, Sm+1 is η-generating, and contains at least two elements (since its
η-discrepancy is negative). Thus we have satisfied conditions (i), (ii), and (iii).
If Sm+1 is the intersection of a line segment with Z2, then the Morse-Hedlund
Theorem implies that the restriction of η to any line parallel to Sm+1 is periodic with
period at most |Sm+1|. But then η is periodic, a contradiction, and so condition (iv)
is satisfied. If for every w ∈ E(Sm+1),

Dη(Sm+1 \ w) ≥ Dη(Sm+1) +

⌈
|w ∩ S|

2

⌉
,

then the set S := Sm+1 satisfies the conclusions of the lemma. Otherwise Sm+1

satisfies all of the induction hypotheses and the construction continues. In both
cases, condition (v) is satisfied.

Each Si is contained in Rn,k, so the construction terminates after finitely many
steps. �

Lemma 4.3. Suppose η : Z2 → A is aperiodic and there exist n, k ∈ N such that
Pη(Rn,k) ≤ nk

2 . Let S be a strong η-generating set. If w ∈ E(S), then there are at

most
⌊
|w∩S|

2

⌋
distinct η-colorings of S \ w that extend non-uniquely to η-colorings

of S.

Proof. The proof is identical to that of Lemma 2.8 with the stronger bound on
Pη(S)− Pη(S \ w) implied by assumption that S is strong generating. �

Lemma 4.4. Suppose η : Z2 → A, S ⊂ Z2 is a strong η-generating set and there
are antiparallel w1, w2 ∈ E(S). Suppose |w1| ≤ |w2|, H is a w1-half plane, and the
restriction of f ∈ XS(η) to H is (S, η)-ambiguous. Then the (S \w1, w1)-border of

H is periodic with period vector parallel to w1. Its period is at most
⌊
|w1∩S|

2

⌋
.

Proof. Again, the proof is identical to that of Lemma 2.24 with the stronger bound
on Pη(S)−Pη(S\w1) implied by the assumption on S and its use in Lemma 4.3. �

4.2. Balanced sets. We now give a definition motivated by the technical condi-
tions appearing in Corollary 2.25. Intuitively, an `-balanced set is useful for the
same reason as a generating set (i.e. if a coloring is known on some region, a bal-
anced set often allows us to deduce the coloring on larger regions) except that any
line parallel to ` that has nonempty intersection with it, intersects it in “many” of
places. This intersection property comes at the expense that not all of the vertices
of the set are η-generated by the set.

Definition 4.5. Suppose that η : Z2 → A and S ⊂ Z2 is finite and convex. Suppose
` is an oriented rational line and let `(S) ⊆ E(S) ∪ V (S) be the intersection of
conv(S) with the support line to S parallel to `. We say that S is `-balanced for η
(or simply `-balanced) if all of the following conditions hold:
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(i) Every rational line parallel to ` that has nonempty intersection with S
contains at least |`(S) ∩ S| − 1 integer points;

(ii) The endpoints of `(S) ∩ S are η-generated by S;
(iii) Dη(S \ `(S)) > Dη(S).

Definition 4.6. For ~v ∈ Z2\{~0}, a ~v-strip is a convex subset of Z2 whose boundary
contains precisely two edges, one of which is parallel to ~v and the other is antiparallel
to ~v (we also include the degenerate case, calling the intersection of Z2 with a line
parallel to ~v, a ~v-strip). The ~v-width of a ~v-strip is the number of distinct lines
parallel to ~v that have nonempty intersection with it (in the degenerate case, the
width is 1).

Showing the existence of an `-balanced set for η is the second use of the stronger
hypothesis on complexity. It is used in the proof of Theorem 1.5 in Section 5.2.4.

Lemma 4.7. If η : Z2 → A and Pη(Rn,k) ≤ nk
2 for some n, k ∈ N, then for any

rational line `, there exists an `-balanced set for η.

Proof. If ` is a horizontal line (without loss of generality, assume it points west),

choose the minimal k′ ≤ k such that Pη(Rn,k′) ≤ nk′

2 . Let w ∈ E(Rn,k′) be the
edge parallel to `. By minimality, Dη(Rn,k′ \ `) > Dη(Rn,k′). Choose a minimal
convex S satisfying

Rn,k′ \ ` ⊂ S ⊆ Rn,k′
for which Dη(S) = Dη(Rn,k′). By minimality of S, the endpoints of the support
line of S parallel to ` are generated. Therefore S satisfies the definition of an
`-balanced set. The case that ` is vertical is similar.

If ` is neither vertical nor horizontal, assume that n ≥ k (the other case is
similar). Let ~v = (v1, v2) ∈ Z2 be the shortest integer vector parallel to `. We
assume that v1, v2 < 0 (the other cases are similar). If every translation of `
intersects Rn,k in at most one integer point, then any η-generating set contained
in Rn,k is automatically `-balanced (here the first condition in the definition of an
`-balanced set is trivial). Thus we assume that (v1, v2) connects two integer points
in Rn,k. Choose ~u ∈ Z2 such that `+ ~u passes through the

• northeast corner of Rn,k if v2/v1 > k/n;
• southwest corner of Rn,k if v2/v1 ≤ k/n.

Assume that v2/v1 > k/n (the other case is similar). By choice of ~u, (` + ~u)
intersects both the top and bottom of the rectangle Rn,k, so

‖conv(Rn,k) ∩ (`+ ~u)‖ = max
~v∈Z2

‖conv(Rn,k) ∩ (`+ ~v)‖.

Moreover, one of the endpoints of the line segment conv(Rn,k)∩(`+~u) is an integer
point and so

(3) |Rn,k ∩ (`+ ~u)| = max
~v∈Z2

|Rn,k ∩ (`+ ~v)| .

There is some i ∈ R such that ` + ~u − (i, 0) passes through the southwest corner
of Rn,k and, by symmetry, the number of integer points in Rn,k to the left of
`+~u− (i, 0) is the same as the number of integer points in Rn,k to the right of `+~u
(see Figure 4).

Let S1 ⊆ Rn,k be the (convex) set of all ~x ∈ Rn,k that are either on ` + ~u or
to the left of it. Then |Rn,k \ S1| ≤ 1

2 |Rn,k| and so by Corollary 2.7, Dη(S1) ≤ 0.

Let a, b ∈ Z2 be the two extremal elements of S1 ∩ (` + ~u) (the dotted points in
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`+ ~u`+ ~u− (i, 0)

Figure 4. Rn,k with `+~u (solid line) and `+~u−(i, 0) (dashed line)
shown. The integer points in Rn,k are preserved under the rotation
by π about the center of Rn,k. The two points marked on ` + ~u
are the topmost and bottom most integer points of (`+ ~u)∩Rn,k.

Figure 4). Let S2 ⊆ S1 be minimal (with respect to inclusion) among all convex
subsets of S1 that contain a and b and have η-discrepancy no larger than Dη(S1).
Then either S2 = S1 ∩ (`+ ~u) or S2 contains S1 ∩ (`+ ~u) and conv(S2) has positive
area. The case that conv(S2) has positive area is illustrated in Figure 5.

If the area of conv(S2) is zero, let S3 ⊆ S2 be minimal among all convex subsets
of S2 with η-discrepancy at most Dη(S2). Then S3 is an η-generating set contained
entirely in `+ ~u and so S3 is `-balanced.

In the second case, by minimality of S2 and Lemma 2.3, any extremal point
of S2 other than a and b must be η-generated by S2. If `(S2) ⊆ V (S2), then
`(S2) is η-generated by S2 and so S2 is `-balanced. Otherwise `(S2) ∈ E(S2) and
both of the extremal elements of `(S2) are η-generated by S2. Then E(S2) has
edges parallel and antiparallel to ` (the edge antiparallel to ` is the line segment
(`+ ~u) ∩ conv(Rn,k)). By (3), the number of integer points on the edge parallel to
` is no larger than the number of integer points on the edge antiparallel to `. By
Lemma 2.11, S2 is `-balanced. �

We now use balanced sets to show that ambiguity gives rise to periodicity.

Proposition 4.8. Let η : Z2 → A and suppose there exist n, k ∈ N such that
Pη(Rn,k) ≤ nk

2 . Let ` be a one-sided nonexpansive direction for η and and let H be
an `-half plane. Then there exists an `-balanced set S such that:

(i) Any f ∈ XS(η) whose restriction to H is (S, η)-ambiguous is periodic with
period vector parallel to `.
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`+ ~u

`(S2)

Figure 5. All extremal points in S2 except the endpoints of (`+
~u) ∩ Rn,k are η-generated, where ` points southwest and S2 is `-
balanced. In this case, `(S2) is the edge on the left side of S2,
parallel to `.

(ii) If w ∈ E(S) is parallel to ` and S̃ = S \ w, then the restriction of any

(S, η)-ambiguous f to the (S̃, w)-border of H has period at most |w ∩ S|−1

and the restriction of f to any `-strip of width diamw(S̃) has period at most
2 |w ∩ S| − 2.

Proof. By Lemma 4.7, there exists an `-balanced set S and an ˆ̀-balanced set S1,

where ˆ̀ is the direction antiparallel to `. Without loss of generality, we can assume
(see Remark 2.10) that w points vertically downward and H = {(x, y) ∈ Z2 : x ≥ 0}.
Define S̃ := S \ w and for all K ∈ Z, set

BK :=
{

(x, y) ∈ Z2 : K ≤ x < K + diamw(S̃)
}
.

By translating if necessary, we can assume that S̃ ⊂ B0. Let h := |w ∩ S| − 1.
We claim that f�BK is periodic of period at most 2h for all K ∈ Z, which

establishes the proposition. We prove this using induction in several steps. We
start by setting up the base case of the induction via two cases, depending on
f�BK extending uniquely or not.

4.2.1. Assuming f�BK does not extend uniquely. If f�BK does not extend uniquely
to an (S, η)-coloring of BK ∪BK−1, we claim that f�BK is periodic with period at
most h and f�BK−1 is periodic of period at most 2h.

To prove this, suppose K ∈ Z and the coloring of BK given by f�BK does not
extend uniquely to an (S, η)-coloring of BK ∪ BK−1. By Corollary 2.25, f�BK is
vertically periodic of period at most h. For the set S, write S(i, j) for the translation

S + (i, j), and we use the analogous notation for S̃. The two endpoints of w are
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η-generated by S (since S is `-balanced), so the coloring of S̃ given by f�S̃(K, i)
does not extend uniquely to an (S, η)-coloring of S for any i ∈ Z (otherwise we
could use this information to deduce the coloring of BK−1). This means that

#
{
f�S̃(K, j) : j ∈ Z

}
≤ #

{
η-colorings of S̃ that do not extend
uniquely to η-colorings of S

}
≤ Pη(S)− Pη(S̃)

≤ h (by Definition 4.5(iii) and S being `-balanced)

Furthermore, we claim the number of η-colorings of S whose restriction to S̃ is
(S̃,S, η)-ambiguous is at most 2h. The number of such colorings is Pη(S) minus

the number of η-colorings of S whose restriction is not (S̃,S, η)-ambiguous. This

is the same as Pη(S) minus the number of η-colorings of S̃ that are not (S̃,S, η)-

ambiguous. The number of η-colorings of S̃ that are not (S̃,S, η)-ambiguous is

Pη(S̃) minus the number of of η-colorings of S̃ that are (S̃,S, η)-ambiguous. The

number of η-colorings of S̃ that are (S̃,S, η)-ambiguous is at most h (from above).
Putting everything together we get

#

{
η-colorings of S whose restriction

to S̃ is (S̃,S, η)-ambiguous

}
≤ Pη(S)−

(
Pη(S̃)− h

)
≤ 2h.

By the Pigeonhole Principle, there exist 0 ≤ i < j ≤ 2h such that the η-colorings
of S given by f�S(K, i) and f�S(K, j) coincide. Recall that, since S is `-balanced,

any vertical line ˜̀ that has nonempty intersection with S satisfies
∣∣∣˜̀∩ S∣∣∣ ≥ h

(Definition 4.5). Moreover

BK = Z2 ∩
K+diamw(S̃)⋃

x=K

{(x, y) : y ∈ R}

is the intersection of Z2 with the union of diamw(S̃) many vertical lines, so in

particular each of them intersects both S̃(K, i) and S̃(K, j) in at least h places. But
the minimal vertical period of f�BK is at most h, so the only way that f�S̃(K, j)
could coincide with f�S̃(K, i) is if j − i is a period for f�BK . Since the endpoints

of w are η-generated by S, an easy induction argument shows that f�S(K, i+ k)
and f�S(K, j + k) coincide for all k. Thus j − i ≤ 2h is a period for f�BK ∪BK−1
and the claim is proven.

4.2.2. Assuming f�BK extends uniquely. If f�BK is periodic and extends uniquely
to an (S, η)-coloring of BK ∪BK−1, we claim that f�BK−1 is periodic with period
dividing that of f�BK .

To see this, suppose K ∈ Z. We already know that

(i) f�BK is vertically periodic with period p;
(ii) The coloring of BK given by f�BK extends uniquely to an η-coloring of

BK ∪ {(K − 1, y) : y ∈ Z}.
We claim that f�BK−1 is vertically periodic of period dividing p. If not, define

g : Z2 → A by

g(x, y) =

{
f(x, y) if x ≥ K;
f(x, y + p) if x < K.
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Since f ∈ XS(η), f�BK is periodic, and diamw(BK) = diamw(S̃), we are guaran-
teed that g ∈ XS(η). Since the restriction of f to {(K−1, y) : y ∈ Z} is not periodic
of period dividing p, f�BK = g�BK but their restrictions to BK∪{(K−1, y) : y ∈ Z}
do not agree, contradicting the fact that f�BK had only one extension to an (S, η)-
coloring of BK−1. This completes the proof of the claim.

4.2.3. Periodicity of f�BK for K < 0. We now start the main induction, carried out
in three steps. Starting with the ambiguity of f�H, we show that the proposition
holds for the restriction of f to Z2 \H. We claim that f�BK is vertically periodic
of period at most 2h for all K ≤ 0. Using induction to prove this claim, by
Lemma 2.24, f�B0

is vertically periodic of period at most h. Suppose that K < 0
and for i = 0,−1, . . . ,K, f�Bi is vertically periodic of period at most 2h. One of
the hypotheses of the two claims (in 4.2.1 or 4.2.2) applies to f�BK , and so f�BK−1
is periodic of period at most 2h. By induction, this holds for all K < 0.

4.2.4. Periodicity of f�BK for K > 0. To extend the result for K > 0, recall that
S1 is a set balanced in the direction antiparallel to `. Suppose that ŵ ∈ E(S1) is

antiparallel to ` and let S̃1 := S1 \ {ŵ ∩ S1}. Define

B̂K :=
{

(x, y) ∈ Z2 : K − diamŵ(S1) + 1 ≤ x ≤ K
}

and assume, without loss of generality, that ŵ ⊂ {(0, y) : y ∈ Z}. Then, by the
result of 4.2.3, f�Z2 \H is periodic and so f�B̂0

is vertically periodic. By an

induction argument analogous to that given in Sections 4.2.1 and 4.2.2 (except
now using S1 in place of S), f�B̂K is periodic for all K > 0, and its period is at
most the maximum of (2 |w ∩ S|−2)! (an upper bound for the period of f�B̂0

) and
2 |ŵ ∩ S1| − 2. This implies that there is some constant C > 0 such that for all
K ∈ Z, f�BK is vertically periodic of period at most C. This establishes the first
conclusion of the proposition.

4.2.5. Bounds on the period. To establish the second part of the proposition, we
need an improvement on the bound of the vertical period of f�BK when K > 0.
For any K0 ∈ Z such that f�BK0

is vertically periodic of period at most 2h, the

induction argument from 4.2.3, but with the base case changed from B0 to BK0
),

shows that f�BK is vertically periodic of period at most 2h, for all K ≤ K0.
Therefore, it suffices to find a sequence 0 < i1 < i2 < · · · such that f�Bij is

vertically periodic with period at most 2h for all j ∈ N.
Assume instead that no such sequence exists. Then there exists I ∈ N such that

for all i > I, the coloring of B0 given by (T (i,0)f)�B0
is either vertically aperiodic

or periodic of period larger than 2h. Since f�B0
is periodic of period at most

2h, we have I ≥ 0 and (T (i,0)f)�B0
is vertically periodic of period at most 2h.

We can further assume that I is minimal with this property. For i > I, the fact
that f�Bi does not satisfy the conclusion of Corollary 2.25 (specifically the bounds

on its period) implies that (T (i,0)f)�B0
extends uniquely to an (S, η)-coloring of

B0 ∪ B−1. Since f is vertically periodic, there are only finitely many colorings of
B0 that occur as (T (K,0)f)�B0

, for K ∈ Z. Thus there exists a smallest integer

J such that J ≥ I and there is j > J satisfying (T (J,0)f)�B0
= (T (j,0)f)�B0

.

Since (T (J,0)f)�B0
extends uniquely to an η-coloring of B0 ∪ B−1, and since the

functions (T (J,0)f)�B0 ∪B−1 and (T (j,0)f)�B0 ∪B−1 are two such colorings, they

must coincide. Then (T (J−1,0)f)�B0
coincides with (T (j−1,0)f)�B0

and so J = I
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(by minimality of J). Then f�BI = f�BJ = f�Bj is periodic of period at most 2h.

But f�Bj is either aperiodic or periodic of period greater than 2h, contradicting

the definition of I. �

Corollary 4.9. Suppose η : Z2 → A and there exist n, k ∈ N such that Pη(Rn,k) ≤
nk
2 . Suppose ` is a rational line, S is an `-balanced set, w ∈ E(S) is parallel to `,

and B is an `-strip of width diamw(S)− 1. If f ∈ XS(η) and f�B is periodic (with
period vector parallel to `), then f is periodic with period vector parallel to `.

Proof. We proceed as in the proof of the first part of Proposition 4.8. The assump-
tion of the corollary replaces the base case (4.2.1 and 4.2.2) and the induction steps
of 4.2.3 and 4.2.4 are identical. �

Lemma 4.10. Suppose η : Z2 → A and there exist n, k ∈ N such that Pη(Rn,k) ≤
nk
2 . If the oriented rational line ` is a one-sided nonexpansive direction for η, then

the direction antiparallel to ` is also one-sided nonexpansive. In particular, any
η-generating set has boundary edges parallel and antiparallel to `.

Proof. Let S be an η-generating set, w ∈ E(S) be parallel to `, and without loss of

generality, we can assume that ` points vertically downward. Let ˆ̀ be the direction

antiparallel to ` and suppose for contradiction that ˆ̀is not a one-sided nonexpansive
direction for η.

Set H := {(x, y) ∈ Z2 : x ≥ 0} (a half-plane whose boundary is parallel to `).
Since ` is a one-sided nonexpansive direction, we can choose f1, f2 ∈ XS(η) such
that f1�H = f2�H but f1 6= f2. By Proposition 4.8, f1 and f2 are both vertically
periodic. Since f1�H = f2�H, at most one of f1 and f2 is doubly periodic. Without
loss of generality, assume that f1 is not doubly periodic.

Since ˆ̀is not one-sided nonexpansive, by definition there exist a1, a2 ∈ N and A ∈
SL2(Z) such that ˆ̀is one-sided η-expansive with parameters (a1, a2, A). Then every
η-coloring of a vertical strip of width at least ‖a2 ·A−1(1, 0)‖ extends uniquely to an

η-coloring of its ˆ̀-extension. In particular, the restriction of f1 to any vertical strip

of this width extends uniquely to its ˆ̀-extension (to the “right” in the coordinate
system we have chosen). The vertical periodicity of f1 implies that there are only
finitely many distinct patterns that arise from restricting f1 to different vertical

strips of this width, each of which extends uniquely to its ˆ̀-extension. In this way,
the restriction of f1 to one such vertical strip uniquely determines the restriction
of f1 to the vertical strip to its right. Since this holds for all such vertical strips
(even those that do not occur in H), it follows that f1 is also horizontally periodic,
a contradiction. �

Proposition 4.11. Suppose η : Z2 → A is aperiodic and there exist n, k ∈ N such
that Pη(Rn,k) ≤ nk

2 . There exists a strong η-generating set S such that if w ∈ E(S)

points in a one-sided nonexpansive direction, then
⌊
|w∩S|

2

⌋
≤ |w1 ∩ S| − 2.

Proof. By Lemma 4.1 there exists a strong η-generating set. Let S be minimal
(with respect to inclusion) among strong η-generating subsets of Rn,k. If for all
w ∈ E(S) that point in a one-sided nonexpansive direction, we have |w ∩ S| > 2,
then S satisfies the conclusion of the proposition and we are done. Otherwise there
exists w ∈ E(S) which points a one-sided nonexpansive direction and is such that
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|w ∩ S| = 2. Suppose w ∩ S = {(x1, y1), (x2, y2)}. Then by Lemma 2.5, since
(x1, y1) is η-generated by S, we have that

Dη(S \ {(x1, y1)}) = Dη(S) + 1.

The convex hull of S \ (x1, y1) does not have an edge parallel to w and so by one-
sided nonexpansiveness, the vertex (x2, y2) is not η-generated by S \ {(x1, y1)}.
Thus Dη(S \ w) ≤ Dη(S) + 1. On the other hand, |S \ w| = |S| − 2, and so

Dη(S \ w) ≤ Dη(S) + 1 ≤ − |S|2 + 1 = − |S\w|2 . But then, as in the proof of
Lemma 4.1, S \ w contains a strong η-generating subset. This contradicts the
minimality of S. �

4.3. Constructions with balanced sets. We make precise what it means for a
coloring to be periodic on a region:

Definition 4.12. Suppose that T ⊂ Z2 is a convex set and there exists ~v ∈ Z2\{~0}
such that (T + ~v) ⊆ T . If f : T → A is an η-coloring of T , then f is periodic on T
of period ~p ∈ Z2 \ {~0} if (T + ~p) ⊆ T and f(~x) = f(~x+ ~p) for all ~x ∈ T .

If w ∈ E(T ), ~u ∈ Z2 \ {~0} is the shortest integer vector parallel to w, and
(T + ~u) ⊆ T , then f�T is w-eventually periodic with period p ∈ N and gap g ∈ N if
f�T + g~u is periodic with period p~u.

Definition 4.13. If S ⊂ Z2 is a finite convex set and w ∈ E(S), then a semi-infinite
(S, w)-strip is a set of the form

~u+ {S + λ~v : λ ∈ N ∪ {0}} or ~u+ {S − λ~v : λ ∈ N ∪ {0}} ,
where ~u ∈ Z2 and ~v is the shortest integer vector parallel to w.

Pictorially, a semi-infinite (S, w)-strip is a half-strip whose boundary edges are
parallel to edges of S (and not the other natural interpretation in which the bound-
ary has two semi-infinite edges and one more edge connecting them).

Proposition 4.14. Suppose η : Z2 → A and there exist n, k ∈ N such that Pη(Rn,k) ≤
nk
2 . Suppose ` is a rational line, S is an `-balanced set, and w ∈ E(S) is parallel to
`. If T is a semi-infinite (S \w,w)-strip and f ∈ XS(η) is such that f�T does not
extend uniquely to an η-coloring of the w-extension of T , then f�T is w-eventually
periodic with gap at most |w ∩ S| − 1 and period at most |w ∩ S| − 1.

Moreover, if f̃ ∈ XS(η) and f̃�T is eventually periodic of period at most 2 |w ∩ S|−
2, then any extension of f̃�T to an η-coloring of the w-extension of T is also w-
eventually periodic with the same gap and period at most 2 |w ∩ S| − 2.

Proof. The first statement follows immediately from Corollary 2.25.
For the second, let S̃ := S \w. Without loss of generality, we can assume that w

points vertically downward, the topmost element of w is (0, 0), and f̃�T is (0,−1)-
eventually periodic with period p and gap g. Suppose further that the boundary
edge of T parallel to w is {(0, y) ∈ Z2 : y ≤ 0}. (The case that the boundary edge
of T parallel to w is unbounded from above, rather than below, is analogous.)

Then f̃�T − (0, g) is periodic with period (0,−p). Let B be the (S̃, w)-border of

T − (0, g). There exist a ∈ Q and b ∈ N such that the w-extension of T is given by

T ∪ {(x, y) ∈ Z2 : − b ≤ x, y ≤ ax}.
We proceed by induction. Let

Bi := {(x, y) ∈ Z2 : i ≤ x < i+ diamw(S̃), y ≤ ax}.
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By assumption f̃�B0 − (0, g) is vertically periodic with period at most 2 |w ∩ S|−2.

We claim that for all i < 0, if f̃�Bi − (0, g) is vertically periodic of period at most

2 |w ∩ S| − 2, then f̃�Bi−1 − (0, g) is also. To prove the claim, we consider two
cases.

4.3.1. Unique extensions. First we show that if f̃�Bi − (0, g) is periodic of period

p ≤ 2 |w ∩ S| − 2 and there exists j < −g such that the η-coloring of S̃ given by

(T (i,j)f̃)�S̃ extends uniquely to an η-coloring of S, then f̃�Bi−1 is periodic of period
dividing p.

To see this, recall that the vertical period of f�Bi − (0, g) is p. Then f̃�S − (i, j + p) =

f̃�S − (i, j) and f̃�S̃ − (i, j + l + p) = f̃�S̃ − (i, j + l) for all l ∈ N such that

l ≤ ai − j. Since S is `-balanced, the top most and bottom most elements of
w are η-generated by S. Thus f̃�S − (i, j + l) = f̃�S − (i, j + l) for all such l. In

particular, f̃�(Bi ∪Bi−1)− (i, g) is vertically periodic with period dividing p.

4.3.2. No unique extensions. Next we show that if there is no j < −g for which
the η-coloring of S̃ given by (T (i,j)f̃)�S̃ extends uniquely to an η-coloring of S,

then f̃�Bi − (0, g) is periodic of period at most |w ∩ S| − 1 and f̃�Bi−1 − (0, g) is

periodic of period at most 2 |w ∩ S| − 2.

To prove this, if f̃�Bi − (0, g) does not extend uniquely to an η-coloring of the

w-extension of Bi−1 − (0, g), then by Corollary 2.25, f̃�Bi − (0, g) is eventually

periodic, and by our assumptions, we have that it is periodic with period at most
|w ∩ S|−1. As in the proof of Proposition 4.8, there are at most 2 |w ∩ S|−2 distinct

η-colorings of S occurring as f̃�S − (i, y) for y ≥ g. By the Pigeonhole Principle,

there exist j, k ∈ N with g ≤ j < k < g + 2 |w ∩ S| − 2 such that f̃�S − (i, j) =

f̃�S − (i, k). Since S is `-balanced, every vertical line that has nonempty intersec-

tion with S intersects in at least |w ∩ S| − 1 places. Since f̃�Bi − (0, g) is periodic

of period at most |w ∩ S| − 1, then f̃�S̃ − (i, y) = f̃�S̃ − (i, y + j − k) for every

y ≥ g. Arguing as in the previous case, f̃�Bi ∪Bi−1 − (0, g) is periodic of period

at most k − j ≤ 2 |w ∩ S| − 2.
This proves the claim, and the result follows by induction. �

Corollary 4.15. Under the conditions of Proposition 4.14, if S is an `-balanced
strong η-generating set, then f�T is w-eventually periodic with gap at most |w ∩ S|−
1 and period at most

⌊
|w∩S|

2

⌋
.

Proof. This is identical to the proof of Proposition 4.14, with the stronger bound
on Pη(S)− Pη(S \ w) implied by the fact that S is a strong η-generating set. �

Corollary 4.16. Suppose η : Z2 → A and there exist n, k ∈ N such that Pη(Rn,k) ≤
nk
2 . Let ` be a rational line, S an η-generating set, and ~u ∈ Z2 be the shortest

integer vector parallel to `. Fix a finite set F ⊂ Z2 and an `-strip B of width at
least diam~u(S)− 1 that contains F . If there is some f ∈ Xη such that for all λ ∈ Z
the coloring (Tλ~uf)�F extends uniquely to an η-coloring of B, then η is periodic.

Proof. The condition on f guarantees that f�B is periodic with period vector par-
allel to ~u. Since f ∈ Xη, there is a translation ~v ∈ Z2 such that (T~vη)�F = f�F
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and by uniqueness (T~vη)�B = f�B. By Corollary 4.9, T~vη is periodic with period
vector parallel to ~u. Therefore η is also. �

5. Proof of Theorem 1.5

5.1. Starting the proof of Theorem 1.5. The proof of Theorem 1.5 is completed
in this section via multiple steps; we include a short summary of what is covered at
the beginning of each section. We proceed by contradiction, and the rough overall
structure of the proof is as follows: assuming the existence of a counterexample, we
produce other counterexamples with more structure (specifically with large regions
on which they are periodic). With a sufficiently well structured counterexample,
we fix a generating set and count colorings of it that occur on the boundary of
the region of periodicity. We reach a contradiction by showing that a larger than
possible number of distinct colorings occur. The difficulty arises in controlling
the periods sufficiently well that we can count enough η-colorings to reach this
contradiction.

Throughout this section, we assume that η is a counterexample to Theorem 1.5,
meaning that η : Z2 → A has at least two linearly independent one-sided nonex-
pansive directions and there exist n, k ∈ N such that Pη(Rn,k) ≤ nk

2 . We remark
that if η were periodic, it could have at most one one-sided nonexpansive direction.
Therefore we can assume that η is aperiodic.

5.2. An aperiodic counterexample with doubly periodic regions. We use
the existence of η to construct α ∈ Xη which is aperiodic, but the restriction of
α to a large convex subset of Z2 is doubly periodic. This is carried out in three
steps, first showing the existence of f ∈ Xη which is singly, but not doubly, periodic
(Section 5.2.1) and then using f to show that there exists an aperiodic α ∈ Xη that
is doubly periodic on a large convex region (Sections 5.2.2 and 5.2.3).

5.2.1. A periodic half plane. By Lemma 4.1, there exists a strong η-generating set
S. Let `1 be a one-sided nonexpansive direction for η. By Lemma 3.3, there is
some w1 ∈ E(S) parallel to `1. By Lemma 4.10, the direction antiparallel to `1 is
also one-sided nonexpansive and there is some w2 ∈ E(S) antiparallel to `1. By
convexity, S is either w1-balanced or w2-balanced. Without loss of generality,

(4) we assume that S is w1-balanced

and that (see Remark 2.10) w1 points vertically downward.

Set S̃ := S \ w1 and set

Hi := {(x, y) ∈ Z2 : x ≥ i};
Ai := {(x, y) ∈ Z2 : i ≤ x < i+ diamw1

(S̃)}.
By Lemma 3.2, there exist f, g ∈ Xη such that f�H1

= g�H1
but f�H0

6= g�H0
.

At most one of f�H0
and g�H0

has a horizontal period vector (in the sense of
Definition 4.12). Thus we can assume that f�H0

is not horizontally periodic. By
Proposition 4.8, f is vertically periodic, and for every i ∈ Z, f�Ai has period at
most 2 |w1 ∩ S| − 2. Moreover, by Lemma 4.4, the vertical period of f�A1

is at

most
⌊
|w1∩S|

2

⌋
. By Proposition 4.11, we can assume that

⌊
|w1∩S|

2

⌋
≤ |w1 ∩ S| − 2.

We also remark that, by the bound on the vertical period of f�Ai for i ≥ 0, if
G ⊂ H0 is a convex set such that

(H-I) (G+ (1, 0)) ⊂ G;



NONEXPANSIVE Z2-SUBDYNAMICS AND NIVAT’S CONJECTURE 35

(H-II) G contains at least 2 |w1 ∩ S| − 2 points on the y-axis,

then f�G does not have a horizontal period vector in the sense of Definition 4.12.
We summarize the main features of this construction:

(i) f ∈ Xη;
(ii) f is vertically periodic;
(iii) f�A1

is vertically periodic of period at most |w1 ∩ S| − 2;
(iv) The restriction of f to an infinite convex set G ⊂ H0 that satisfies con-

ditions (H-I) and (H-II) cannot be extended to a horizontally periodic
η-coloring of Z2.

5.2.2. Construction of aperiodic α ∈ Xη which agrees with f on a large region.
Translating S if necessary, we may assume that (0, 0) ∈ w1 ⊂ {(0, y) : y ∈ Z}.
Using an inductive procedure, we define a function α ∈ Xη which is aperiodic
but agrees with f on an infinite, convex subset of Z2 (and is, therefore, vertically
periodic on this subset).

Base case. Let F1 := S and G0 = (0, 0). By Corollary 4.16 and aperiodicity of
η, there exists y1 ∈ Z such that (T (0,y1)f)�F1

does not extend uniquely to an
η-coloring of the region

B1 := {(x, y) ∈ Z2 : 0 ≤ x < diamw1(S)}.

Let α1 ∈ Xη be such that α1�F1
= (T (0,y1)f)�F1

, but α1�B1
6= (T (0,y1)f)�B1

. Let
G1 be a maximal, strongly E(S)-enveloped subset of B1 that contains F1 and is
such that α1�G1

= (T (0,y1)f)�G1
.

Inductive step. Suppose that we have constructed sequences of convex, strongly
E(S)-enveloped, finite sets

G0 ⊆ F1 ⊆ G1 ⊆ F2 ⊆ G2 ⊆ · · · ⊆ Fi ⊆ Gi,

configurations α1, . . . , αi ∈ Xη, and integers y1, . . . , yi such that for 1 ≤ j ≤ i:
(i) (Fj hypothesis) Fj contains both Gj−1 and [0, j − 1]× [−j + 1, j − 1];

(ii) (αj hypothesis) Defining the strip Bj by

Bj := {(x, y) ∈ Z2 : 0 ≤ x < diamw1(Fj)},

then
(a) αj�Fj = (T (0,yj)f)�Fj ;

(b) αj�Bj 6= (T (0,yj)f)�Bj ;
(iii) (Gj hypothesis) Gj ⊂ Bj is a maximal set among all convex, strongly

E(S)-enveloped subsets of Bj such that
(a) Fj ⊆ Gj ;
(b) αj�Gj = (T (0,yj)f)�Gj .

Let Fj+1 ⊂ H0 be a finite, convex, strongly E(S)-enveloped set containing both
Gj and [0, j]× [−j, j]. By Corollary 4.16 and aperiodicity of η, there exists yj+1 ∈ Z
such that (T (0,yj+1)f)�Fj+1

does not extend uniquely to an η-coloring of the strip

Bj+1 := {(x, y) ∈ Z2 : 0 ≤ x < diamw1(Fj+1)}.

Choose αj+1 ∈ Xη such that αj+1�Fj+1
= (T (0,yj+1))�Fj+1

, but αj+1�Bj+1
6=

(T (0,yj+1)f)�Bj+1
. Let Gj+1 ⊂ Bj+1 be a maximal strongly E(S)-enveloped set
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F1

G1

F2

G2
F3

G3

B1

B2

B3

Figure 6. The sets F1 ⊆ G1 ⊆ F2 ⊆ G2 ⊆ · · · .

containing Fj+1 such that αj+1�Gj+1
= (T (0,yj+1)f)�Gj+1

. By induction these

functions, sets, and integers are defined for all j.
By vertical periodicity of f , we can assume that yj ∈ [0, (2 |w1 ∩ S| − 2)!) for all

j ∈ Z. By passing to a subsequence, we can assume that the sequence {yj}j∈N is

constant and, by replacing f with T (0,y1)f if necessary, we can assume that this
constant is zero.

By construction, for each j ∈ N, E(Gj) has a downward oriented edge contained
in the y-axis. Let (0, zj) ∈ Z2 be the topmost element of this edge and let

G̃j := {(x, y − zj) : (x, y) ∈ Gj}.

Then (T (0,zj)αj)�G̃j = (T (0,zj)f)�G̃j and there is no strongly E(S)-enveloped con-

vex subset of Bj that strictly contains G̃j for which this is true (by maximality

of Gj). By vertical periodicity of f ,
{
T (0,zj)f : j ∈ N

}
⊆ {T (0,m)f : 0 ≤ m <

(2 |w1 ∩ S| − 2)!}. Let z ∈ [0, (2 |w1 ∩ S| − 2)!) be such that T (0,zj)f = T (0,z)f for
infinitely many j. By passing to a subsequence, we can assume this holds for all j.
Define α̃j := T (0,zj)αj and f̃ := T (0,z)f . Then with this notation, α̃j�G̃j = f̃�G̃j
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and there is no strongly E(S)-enveloped subset of Bj that strictly contains G̃j for
which this holds.

Enumerate the vectors in E(S) as u1, u2, . . . , um where u1 = w1 and uk+1 =
pred(uk) for k = 1, . . . ,m − 1 (recall that ∂S is positively oriented and pred(·) is
the predecessor edge with this orientation). Let K ∈ N be the index for which

uK = w2 (the edge of ∂S antiparallel to w1). Since G̃j is E(S)-enveloped for all j,
define

h(j, k) =

{
‖aj,k‖ if there is some aj,k ∈ E(G̃j) parallel to uk;

0 otherwise.

Passing to a subsequence if necessary, we can assume that for each fixed k =
1, 2, . . . ,m, the function h(·, k) is either constant or strictly increasing as a function
of j. By construction, [0, j] × [−j, j] ⊆ Gj+1 ⊂ H0 for all j. So

⋃
j Gj = H0 and

there is at least one index 1 < k < K for which h(·, k) is unbounded.

(5) Let 1 < kmin < K be the least integer for which this holds.

Define integers 1 < k1 < · · · < ks < kmin to be the indices in this interval for which
h(·, k) is eventually positive. Let v1, . . . , vs ∈ E(G1) be the edges for which vi is
parallel to uki . We emphasize that by construction, v1, . . . , vs ∈ E(Gi) for all i ≥ 1,
meaning that not only does Gi have an edge parallel to v1, v2, . . ., but these fixed
line segments are edges of Gi. Set

Gω :=

∞⋃
j=1

G̃j .

Then Gω is convex and E(S)-enveloped (see Figure 7 – also observe that it is not
strongly E(S)-enveloped since it doesn’t have edges parallel to each of the edges of
S). Moreover E(Gω) is comprised of v1, . . . , vs, as well as {(0, y) ∈ Z2 : y ≤ 0}, and
a semi-infinite edge parallel to ukmin

.
By compactness, the sequence {α̃j}j∈N has an accumulation point. Let α ∈ Xη

be such a point. By passing to a subsequence, we can assume that for all 1 ≤ j1 < j2
we have α̃j2�G̃j1 = α̃j1�G̃j1 . By construction, α�Gω = f̃�Gω. In particular, α�Gω
is vertically periodic (in the sense of Definition 4.12) and the restriction of α to

any semi-infinite (S̃, w1)-strip in Gω has period at most 2 |w1 ∩ S| − 2. Moreover,

the restriction of α to the (S̃, w1)-border of Gω has period at most |w1 ∩ S| − 2

(because f̃ = T (0,z)f , the (S̃, w1)-border of Gω is a subset of A1, and this bound
on the period was shown for f�A1

in Section 5.2.1).

5.2.3. Another one-sided nonexpansive direction for α. Next, we show that both
semi-infinite edges in E(Gω) are one-sided η-nonexpansive.

Let Extukmin
(Gω) denote the ukmin -extension of Gω (recall Definition 2.19). Since

the boundary edge of Extukmin
(Gω) parallel to ukmin is semi-infinite, we have that

Extukmin
(Gω)\Gω is equal to the intersection of Z2 with the disjoint union of finitely

many semi-infinite lines l1, . . . , lr1 parallel to ukmin
. We denote the subextensions

by

G(i)
ω := Gω ∪ (l1 ∩ Z2) ∪ · · · ∪ (li ∩ Z2)

for i = 1, . . . , r1.

We now inductively define an increasing sequence of sets {G(i)
ω }i∈N. Suppose

we have constructed integers r1, . . . , rm ∈ N and an increasing sequence of convex
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S
G̃1

G̃2

G̃3

G̃4

G̃5

Figure 7. The sets S ⊆ G̃1 ⊆ G̃2 ⊆ · · · ⊂ Gω.

sets {G(i)
ω }r1+···+rmi=1 such that for all j = 1, . . . ,m, the sets G

(r1+···+rj)
ω are E(S)-

enveloped and each has a semi-infinite edge parallel to ukmin
(the edge is not required

to be the same for all of the sets). Then Extukmin
(G

(r1+···+rm)
ω ) \ G(r1+···+rm)

ω is

nonempty and can be written as the intersection of Z2 with the disjoint union
of rm+1 semi-infinite lines lr1+···+rm+1, . . . , lr1+···+rm+1 (for some rm+1 ∈ N). For
r1 + · · ·+ rm < i ≤ r1 + · · ·+ rm+1 define

G(i)
ω := Gω ∪ (l1 ∩ Z2) ∪ · · · ∪ (li ∩ Z2).

This defines a sequence of integers {rm}m∈N and sets {G(i)
ω }i∈N.

Recall that for all j, G̃j is strongly E(S)-enveloped and the length of the bound-
ary edge parallel to ukmin

increases monotonically in j, by (5). Thus for j sufficiently

large, Extukmin
(G̃j) 6= G̃j . Moreover the depth of the extension Extukmin

(G̃j) de-

pends only on the slopes of the lines determined by the boundary edges of G̃j (recall

Definition 2.19). Therefore if dj is the depth of the extension Extukmin
(G̃j), then

dj is bounded (in j) and there is some d ∈ N such that dj = d for infinitely many
j. We pass to a subsequence such that this holds for all j.
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Let l̃(j, k) be the intersection of Extukmin
(G̃j) and lk. Then Extukmin

(Gj) can be
written as the disjoint union

G̃j t
d⊔
k=1

l̃(j, k).

By construction (recall the inductive hypotheses for Gj at the beginning of this
subsection) f�Extukmin

(G̃j) 6= α�Extukmin
(G̃j). Let 1 ≤ a ≤ d be the smallest inte-

ger for which α̃j�l̃(j, a) 6= f̃�l̃(j, a) for infinitely many j. Passing to a subsequence,

we can assume that for all j ∈ N, α̃j�l̃(j, k) = f̃�l̃(j, k) for all 1 ≤ k < a, but

α̃j�l̃(j, a) 6= f̃�l̃(j, a).

Let w3 ∈ E(S) denote the edge parallel to ukmin . By Corollary 3.9, there are

never |w3 ∩ S| − 1 consecutive integer points on l̃(j, a) where α̃j and f̃ coincide

(otherwise they would coincide everywhere on l̃(j, a) since S is η-generating). In
particular, there are never |w3 ∩ S| − 1 consecutive integer points on la where α

and f̃ coincide. As a result, the restriction of α�G(a−1)
ω does not extend uniquely

to an η-coloring of G
(a)
ω .

Moreover, since f , and hence f̃ , is vertically periodic and α�G(a−1)
ω = f̃�G(a−1)

ω

but α�G(a)
ω 6= f̃�G(a)

ω , α is not vertically periodic. Moreover, because the bound-

ary edge of G
(a−1)
ω parallel to w3 is semi-infinite there is an ambiguous coloring

of a w3-half plane, obtained by passing to appropriate accumulation points of
{T−m·w3α}∞m=1 and {T−m·w3 f̃}∞m=1 (viewing w3 as a vector). Thus by Lemma 3.2,
w3 is a one-sided nonexpansive direction for η and by Lemma 4.10, there is an edge
w4 ∈ E(S) antiparallel to w3.

5.2.4. Construction of K. We show that there is an infinite, convex subset K of
Gω such that α�K is doubly periodic. The construction has four steps which are
illustrated in Figure 8.

Step 1. By Lemma 4.7, there exists a w3-balanced set S1. Let ŵ3 ∈ E(S1) be the

edge parallel to w3 and let S̃1 := S1 \ ŵ3. Recall the integer a ∈ N defined in Sec-

tion 5.2.3 is such that f̃�G(a−1)
ω = α�G(a−1)

ω but f̃�G(a)
ω 6= α�G(a)

ω . By Lemma 4.14,

the (S̃1, ŵ3)-border of G
(a−1)
ω is w3-eventually periodic. This is illustrated in Fig-

ure 8A.

Step 2. Let B denote the (S̃1, ŵ3)-border of G
(a−1)
ω . Since f̃ is vertically periodic

and f̃�G(a−1)
ω = α�G(a−1)

ω , α�G(a−1)
ω is vertically periodic (in the sense of Def-

inition 4.12). Let p ∈ N be the minimal vertical period of α�G(a−1)
ω such that

(T (0,p)α)�(T (0,−p)G
(a−1)
ω ) = α�(T (0,−p)G

(a−1)
ω ). Then the restriction of α to any

set of the form T (0,−mp)B is eventually w3-periodic, with the same eventual period
and the same gap. This is illustrated in Figure 8B.

Step 3. The set T (0,−p)B is a semi-infinite (S̃1, ŵ3)-strip (recall Definition 4.13).
Let B1 := Extw3

(T (0,−p)B) be the w3-extension of B. Now inductively let Bi+1 :=
Extw3

(Bi) for i ∈ N. Then there is some j ∈ N such that Bj contains all but

finitely many elements of G
(a−1)
ω \T (0,−p)G

(a−1)
ω . Since α�T (0,−p)B is eventually w3-

periodic, Proposition 4.14 guarantees that α�Bj is also eventually w3-periodic with

the same gap but possibly larger eventual period. This is illustrated in Figure 8C.
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Step 4. Since α�G(a−1)
ω is vertically periodic with period p, the restriction of α

to
⋃∞
m=1 T

(0,−mp)(Bj+1 ∩ G(a−1)
ω ) is eventually w3-periodic. Hence there is some

q ∈ N such that the restriction of α to T (q,0)
⋃∞
m=1 T

(0,−mp)(Bj+1 ∩G(a−1)
ω ) is w3-

periodic. Since Bj+1 is a semi-infinite w3-strip and Bj+1 ∩ T (0,−p)Bj+1 6= ∅, there

is an E(S)-enveloped, convex set K̃ ⊆ T (q,0)
⋃∞
m=1 T

(0,−mp)(Bj+1 ∩G(a−1)
ω ) whose

boundary has semi-infinite edges parallel to w3 and w1. The restriction of α to
K̃ is doubly periodic. Let K be the largest (with respect to inclusion) convex set

containing K̃ for which α�K is doubly periodic. By construction α�G(a)
ω is not

doubly periodic since it differs from the vertically periodic coloring f̃ . Therefore K
has a semi-infinite edge parallel to w3. Since α�G(a−1)

ω = f̃�G(a−1)
ω was constructed

such that it is not horizontally periodic (in the sense of Definition 4.12), the set K
has a semi-infinite edge parallel to w1. This is illustrated in Figure 8D.

5.3. Bounds on the period of α. In this section, we show that we have strong
bounds on the w1- and w3-periods of α�K, first extending the region K to a larger
region where α is singly (but not doubly) periodic (Section 5.3.1) and then produc-
ing a generating set with particular properties that imply the bounds (Sections 5.3.2
and 5.3.3). The existence of this type of generating set strongly relies on the bound
of Pη(n, k) ≤ nk

2 .

5.3.1. Periodic extensions. We show that the region K on which α is doubly pe-
riodic can be extended to a larger region on which α is singly, but not doubly,
periodic.

Let K0 := K. Since K has a semi-infinite edge parallel to w3, Extw3(K) 6= K
and there exist semi-infinite lines `1, . . . , `f1 parallel to w3 such that

Extw3
(K) \K =

f1⊔
i=1

(Z2 ∩ `i).

For 1 ≤ i ≤ f1, set Ki := K ∪ `1 ∪ · · · ∪ `i. We continue inductively: having defined
integers f1, . . . , fj and sets K1, . . . ,Kf1+···+fj such that Kf1+···+fj contains a semi-
infinite boundary edge parallel to w3, there exist an integer fj+1 and semi-infinite
lines `f1+···+fj+1, . . . , `f1+···+fj+1

such that

Extw3
(Kf1+···+fj ) \Kf1+···+fj =

fj+1⊔
i=1

(Z2 ∩ `f1+···+fj+i)

By the second claim of Proposition 4.14, the restriction of α to
⋃∞
i=1Ki is w3-

periodic with period at most 2 |w3 ∩ S| − 2.

5.3.2. A thin generating set. We use the assumption on complexity Pη(n, k) ≤ nk
2

to show that we have a generating set with a small diameter (recall Definition 3.13).
Let xmin and xmax denote the minimal and maximal x-coordinates of elements

of S. Let d :=
⌊
xmax−xmin+1

2

⌋
and let the left subset of S be defined by

SL := {(x, y) ∈ S : xmin ≤ x ≤ xmin + d}.

If |SL| ≥ 1
2 |S|, then by Lemma 2.7, Dη(SL) ≤ 0. Let S2 ⊂ SL be an η-generating

set. Otherwise Dη(S\SL) ≤ 0. In this case, let S2 ⊂ (S\SL) be an η-generating set.
In both cases, let u ∈ E(S2) be the edge parallel to w3 (which exists by one-sided
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S1

G
(a−1)
w

(A) The shaded set S1 and the set

G
(a−1)
ω with its (S̃1, w3)-border. The

arrow indicates the region that is even-
tually w3-periodic.

S1

(B) α�G(a−1)
ω is vertically periodic.

Translations of B are shown and α is
eventually periodic on each translated
set.

S1

(C) The semi-infinite (S̃1, w3)-strip is
eventually w3-periodic and so any η-
coloring of its w3-extension is also w3-
periodic (possibly of larger period), by
Proposition 4.14. The arrows indicate
the direction of eventual periodicity
and the possibly different periods.

S1

(D) α�G(a−1)
ω is vertically periodic

and so there is an infinite convex re-
gion where α is doubly periodic. K is
the largest convex set for which this
holds.

Figure 8. Construction of K

nonexpansiveness of w3 and Lemma 3.3) and let v ∈ E(S2) be the edge parallel to
w1. By construction

(6) diamv(S2) ≤
⌈

diamv(S)

2

⌉
.

We call the set S2 a thin generating set for η.



42 VAN CYR AND BRYNA KRA

5.3.3. Bounding the periods of α�K. Using the generating set S2 and the construc-
tion of α, we obtain strong bounds on periods of α�K. A key tool we use is the
classic Fine-Wilf Theorem:

Theorem (Fine-Wilf Theorem [11]). Suppose {fn}∞n=0 and {gn}∞n=0 are two pe-
riodic sequences of periods p and q, respectively. If fn = gn for p + q − gcd(p, q)
consecutive entries, then fn = gn for all n. Moreover, p + q − gcd(p, q) is the
minimum number of consecutive entries that make this property hold.

Corollary 5.1. If {fn}∞n=0 is a periodic sequence of period at most p, then the
sequence can be reconstructed uniquely from any 2p− 2 consecutive entries. More-
over, if the exact value of the period is unknown (other that it is no greater than
p), then 2p− 2 is the smallest number of consecutive entries that suffices.

Proof. If for some n0 ∈ N we are given the value of fn0
, fn0+1, . . . , fn0+2p−3, we call

a number q ≤ p a possible period for f if fk = fk+q for all n ≤ k ≤ n0 + 2p− q− 3.
Let Φ ⊆ {1, 2, . . . , p} be the set of all possible periods for the sequence {fn}∞n=0. For
each q ∈ Φ, let {fqn}∞n=0 be the unique q-periodic sequence such that fqn0+i

= fn0+i

for all i = 0, 1, . . . , 2p− 3. By the Fine-Wilf Theorem, if q1, q2 ∈ Φ, then fq1k = fq2k
for all k (since q1 +q2−gcd(q1, q2) ≤ 2p−2) so there is a unique sequence of period
at most p that agrees with the information given about {fn}∞n=0.

This bound is optimal: given n ∈ N let wn be the word

wn := 00 · · · 0︸ ︷︷ ︸
n

1 00 · · · 0︸ ︷︷ ︸
n

and let p = n+ 2. Then 2p− 2 > 2n+ 1 = |wn| and wn can indeed be extended in
two different ways to a periodic sequence of period at most p (one of period n+ 1
and one of period n + 2). So if we were told that {fn}∞n=0 is a periodic sequence
of period at most p and that the first 2n + 1 entries were the word wn, then the
sequence could not be uniquely reconstructed. �

Definition 5.2. If w = (w0, w1, . . . , wm−1) ∈ Am is a word of length m and
p ∈ {1, . . . ,m − 1}, we say that w is periodic of period p if wi = wi+p for all
0 ≤ i < m − p. We also make the convention that every word of length m is
periodic of period m.

Notation 5.3. There are two distinguished semi-infinite strips in K and we label
them:

• Let T1 denote the (S \ w3, w3)-border of K.
• Let T2 denote the (S \ w1, w1)-border of K.

In the remainder of this section, we show:

Claim 5.4. Maintaining notation as above,

(i) The w1-period of α�K is at most
⌊
|w1∩S|

2

⌋
;

(ii) The w3-period of α�K is at most |w3 ∩ S| − 1.

By convexity, S is either w3- or w4-balanced. We prove the claim by considering
three cases separately.
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Case 1. Suppose S is w3-balanced. It is immediate that
∣∣w3 ∩ Z2

∣∣ ≤ ∣∣w4 ∩ Z2
∣∣. By

assumption (4), S is also w1-balanced. In this case we show the claimed bound on
the w1-period of α�K but prove (the stronger bound) that the w3-period of α�K is

at most
⌊
|w3∩S|

2

⌋
.

By maximality of K, α�K is (S, w3, η)-ambiguous. Since α�K is doubly periodic,
α�T1 is periodic. Thus by Corollary 4.15,

(7) α�T1 is periodic with period vector parallel to w3

and period at most
⌊
|w3∩S|

2

⌋
. By vertical periodicity of α�K, there is some p ∈ N

such that the colorings (T (0,mp)α)�T1 coincide for all m = 0, 1, 2 . . .
Again by maximality of K, α�K is (S, w1, η)-ambiguous and so α�T2 is vertically

periodic with period at most
⌊
|w1∩S|

2

⌋
. Then there is some q ∈ N such that the

colorings (T−mq·w3α)�T1 coincide for all m = 0, 1, 2 . . . (here w3 is understood as a
vector rather than a line segment).

Since T1 is a semi-infinite (S \w3, w3)-strip and T2 is a semi-infinite (S \w1, w1)-
strip, there exist m1,m2 ∈ N such that

P := (T1 − (0,m1p)) ∩ (T2 −m2q · w3) ∩ Z2

is the intersection of Z2 with a parallelogram, with sides parallel to w1 and w3 and
integer vertices. This is illustrated in Figure 9.

Since S is w3-balanced, if L is any line parallel to w3 that has nonempty inter-
section with P , then

(8) |L ∩ P | ≥ |w3 ∩ S| − 1.

Therefore, we claim that if L is any line parallel to w3 that has nonempty intersec-
tion with P , there is a unique A-coloring of L ∩ Z2 such that

(i) the coloring coincides with α on L ∩ P ;

(ii) the coloring is periodic of period at most
⌊
|w3∩S|

2

⌋
.

To see this, by (7) and the definition of p, we have that α�(T1 −m1p) is w3-periodic

of period at most
⌊
|w3∩S|

2

⌋
, and by (8), the coloring of L agrees with α on at

least |w3 ∩ S| − 1 consecutive integer points: therefore we can apply Corollary 5.1,
showing that the coloring agrees with α on L∩ (T1 −m1p) (which is semi-infinite).
There is only one way to extend a semi-infinite periodic coloring to a doubly infinite
periodic coloring of L.

Since S is also w1-balanced, a similar result holds for lines parallel to w1: if L is
any line parallel to w1 that has nonempty intersection with P then

|L ∩ P | ≥ |w1 ∩ S| − 1.

Therefore, since α�(T2 −m2q · w3) is w1-periodic of period at most
⌊
|w1∩S|

2

⌋
, for

such an L there is a unique A-coloring of L∩Z2 that coincides with α on L∩P and

has period at most
⌊
|w1∩S|

2

⌋
. Let C1 be the union of all lines parallel to w3 that

have nonempty intersection with P and let C2 be the union of all lines parallel to
w1 that have nonempty intersection with P . Let β̃ : C1 ∪ C2 → A be the coloring
just described. We claim that β̃ extends uniquely to an A-coloring of Z2 that is w1-

periodic of period at most
⌊
|w1∩S|

2

⌋
and w3-periodic of period at most

⌊
|w3∩S|

2

⌋
.
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S1

K

T1− (0,m1p)

T 2
−
m
w
· w

3

Figure 9. The restriction of α to each of the strips is periodic
in the direction determined by the strip and the period is at most
half of the side length of the parallelogram.

Indeed, if L is any line parallel to w1 that has nonempty intersection with Z2,
then |L ∩ (C1 ∪ C2)| ≥ |w1 ∩ S| − 1 (since this is true for P and C1 is produced by

translating P along the vector w3). The coloring β̃�L ∩ C1 is w1-periodic of period

at most
⌊
|w1∩S|

2

⌋
. As above, the coloring extends uniquely. We set β : Z2 → A to

be the coloring obtained from β̃ by this procedure, and the w3-bound follows from
w3-periodicity of β�T1 − (0,m1p) and vertical periodicity.

We claim that

(9) α�K = β�K,

which establishes the claim for the first case. Let T3 denote the (S2 \v, v)-border of
(T2 +m2q · w3), where S2 is the thin generating set of Section 5.3.2 and v ∈ E(S)
is the edge parallel to w1.

The bounds established (by ambiguity) on the periods of α�(T1 − (0,m1p)) and

α�(T2 −m2q · w3) imply that the restrictions α�C1 ∪ C2 = β�C1 ∪ C2 (since β�C1
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is the unique A-coloring that coincides with α on P and has w3 period at most⌊
|w3∩S|

2

⌋
, and similarly with β�C2). Let ~s ∈ Z2 be the shortest w3-period of β. Then

(T~sβ)�T3 = β�T3. Since diamv(S2) ≤
⌈
diamv(S)

2

⌉
by (6), diamv(T3) ≤

⌊
diamv(S)

2

⌋
.

Therefore (T3+~s) ⊆ (T2+m2q·w3), and it follows that (T~sα)�T3 = α�T3. Recall that
by construction, S3 ⊆ SL ⊆ S. Since we know that α�C2 = β�C2; diamw3

(S2) ≤
diamw3(C2); α�(T2 −m2q · w3) is w3-periodic (in the sense of Definition 5.2); β�C2
is w3-periodic with period ~s; and S2 is an η-generating set, we can conclude that the
coloring α�K can be determined from α�((T1 − (0,m1p)) ∩ (T2 −m2q · w3)) and it

follows by induction that α�K = β�K.

Case 2. Suppose S is w4-balanced and for infinitely many m1, α�T1 − (0,m1p)
extends non-uniquely to its w4-extension. For any such m1, by Corollary 4.15
α�T1 − (0,m1p) is periodic with period vector parallel to w4 and period at most⌊
|w4∩S|

2

⌋
. The proof now proceeds as in Case 1, with w4 taking the role of w3.

Case 3. Suppose S is w4-balanced and for all but finitely many m1, α�T1 − (0,m1p)
extends uniquely to its w4-extension. We have that α�⋃∞

i=1Ki
is periodic with

period vector parallel to w3 and period at most 2 |w3 ∩ S| − 2, but is not vertically
periodic. Thus there is some semi-infinite (S, w4)-strip in

⋃∞
i=1Ki to which the

restriction of α is (S, w4, η)-ambiguous, as otherwise each of the finitely many η-
colorings arising as the restriction of α to such strips extend uniquely to their
w4-extension, forcing vertical periodicity. Let T4 be a semi-infinite (S \ w4)-strip
in
⋃∞
i=1Ki to which the restriction of α is (S, w4, η)-ambiguous. Without loss

of generality, we can assume that for any p > 0, α�T4 − (0, p) extends uniquely

to its w4-extension. By Corollary 4.15, α�T4 is eventually periodic with period

vector parallel to w4 and period at most
⌊
|w4∩S|

2

⌋
and gap at most |w4 ∩ S| − 1.

Again by Corollary 4.15, the restriction of α to the w4-extension of T4 is eventually

periodic with the same gap and period at most 2
⌊
|w4∩S|

2

⌋
≤ |w4 ∩ S| ≤ |w3 ∩ S|−1.

Inductively, we produce a sequence of sets

T4 = T 1
4 ⊂ T 2

4 ⊂ · · ·

where T i+1
4 is the w4-extension of T i4 . Since α�T i4 extends uniquely to its w4-

extension and since α�T4 is periodic with period at most |w3 ∩ S|−1, the restriction

of T i4 is also w3-periodic with period dividing that of α�T4, for all i = 1, 2, . . . Since
α�K is doubly periodic and

K ∩
∞⋃
i=1

T i4

is an infinite, convex set whose two semi-infinite edges are non-parallel, the restric-
tion of α to any (S \w4, w4)-strip is periodic with period vector parallel to w4 and
period dividing the period of α�T4. Since α�T2 +m2 · qw3

is vertically periodic with

period at most
⌊
|w1∩S|

2

⌋
, has w3-diameter at least diamw3

(P ), and the w3-period

of α�K is at most |w3 ∩ S| − 1, α�K is also vertically periodic of period at most⌊
|w1∩S|

2

⌋
.

This completes the proof of Claim 5.4.



46 VAN CYR AND BRYNA KRA

5.4. Completing the proof of Theorem 1.5. We make use of the properties of
α to obtain a contradiction. Specifically, we show that for a given η-generating set
S, there exists a convex subset S∗ ⊂ S for which there are more than

Pη(S)− Pη(S∗)

η-colorings of S∗ that extend non-uniquely to η-colorings of S. This leads to a
contradiction, as if

P := {(T ~uη)�S : ~u ∈ Z2};
Q := {(T ~uη)�S∗ : ~u ∈ Z2},

then there is a natural surjective map R : P → Q by restriction. The number
of elements of Q that have more than one preimage (equivalently, the number of
colorings of S∗ that extend nonuniquely to colorings of S) is at most |P | − |Q| =
Pη(S)− Pη(S∗).

5.4.1. Construction of the set S∗. Given x ∈ Z, let `x = {(x, y) ∈ Z2 : y ∈ Z}
denote the vertical line passing through x. For x ∈ Z such that `x ∩ S 6= ∅, let Ax
denote the bottom-most |w1 ∩ S|−2 elements of `x∩S (recall that S is w1-balanced
and so each such intersection contains at least |w1 ∩ S| − 1 integer points). Given
d ≥ 1, define

(10) B(d) :=

d−1⋃
i=0

A(xmax−i),

where, as in Section 5.3.2, xmax denotes that maximal x-coordinate of any element
of S. Let T (K) := {~u ∈ Z2 : S + ~u ⊂ K} be the set of translations taking S to a
subset of K. Choose minimal d ≥ 1 such that

(11) for any ~u,~v ∈ T (K), whenever α�B(d) + ~u = α�B(d) + ~v,

we have that α�S + ~u = α�S + ~v. Since α�K = β�K and β is doubly periodic, we
can rephrase this condition as saying that d is the minimal integer such that

(12) every β-coloring of B(d) extends uniquely to a β-coloring of S.

(Note that such an integer d exists because α�K is vertically periodic with period

at most
⌊
|w1∩S|

2

⌋
≤ |w1 ∩ S|− 2.) Let S∗ ⊂ S be the set obtained by removing the

topmost element of `x ∩ S for all x. Note that S∗ is a convex, proper subset of S.
Therefore B(d) ⊆ S∗ and Dη(S∗) > Dη(S), by Property (iii) of Lemma 4.1.

As a result, there are at most |S \ S∗| − 1 distinct η-colorings of S∗ that extend
non-uniquely to η-colorings of S.

In the next two sections, we obtain a contradiction, thus completing the proof
of the theorem. We show that there are at least |S \ S∗| = diamw1

(S) distinct
η-colorings of S∗ that extend non-uniquely to η-colorings of S. The colorings arise
from two sources: we find d such η-colorings that are of the form (T ~xβ)�S∗ (Sec-
tion 5.4.3) and we find diamw1

(S)−d additional η-colorings that we show are not of
the form (T ~xβ)�S∗ (Section 5.4.2). All of these colorings turn out to be α-colorings
of S∗ that extend non-uniquely to α-colorings of S (recall that by (9), α�K = β�K).
This causes no problem since α ∈ Xη, and so every α-coloring of S∗ that extends
non-uniquely to an α-coloring of S is also an η-coloring that extends non-uniquely.



NONEXPANSIVE Z2-SUBDYNAMICS AND NIVAT’S CONJECTURE 47

5.4.2. Counting colorings along the w1-boundary. In this section, we find

d := diamw1
(S)− d.

distinct α-colorings of S∗ that extend non-uniquely to α-colorings of S. We show
that none of the these colorings are of the form (T ~xβ)�S∗ for ~x ∈ Z2, meaning that
they are not also β-colorings of S∗.

Setup. Translating the coordinate system if necessary, we can assume that the
edge of conv(K) parallel to w1 is {(0, y) ∈ Z2 : y ≤ 0} and that the intersection
of the w1-extension of K with the line {(−1, y) : y ∈ Z} is the semi-infinite line
{(−1, y) : y ≤ y0} for some y0 ∈ Z. Without loss of generality, assume that

w1 = {(−1, y) ∈ Z2 : y0 − |w1 ∩ S|+ 1 ≤ y ≤ y0}.

Let S∗ and B(d) be as in Section 5.4.1.
Let

(13) c1, . . . , ct : B(d)→ A denote the set of all β-colorings of B(d),

and note that this set coincides with η-colorings of B(d) occurring as the restriction
of α to the set K. For i = 1, . . . , t, let Ci : S∗ → A denote the unique β-coloring of
S∗ whose restriction to B(d) is ci, and note that the uniqueness follows from (12).
Equivalently, this is the coloring (T ~uα)�S∗, where ~u ∈ Z2 is chosen such that
S + ~u ⊂ K and α�B(d) + ~u = ci.

As in Section 5.2.1, let S̃ := S \ w1. Let

~b ∈ Z2 be the shortest w3-period vector for α�K.

Let T2 be the (S̃, w1)-border of K, as in Notation 5.3. Then the colorings of

T2 given by α�T2 and (T
~bα)�T2 coincide. By maximality of K, the colorings of

T2∪{(−1, y) : y ≤ y0} given by α and T
~bα do not coincide. We begin by comparing

the colorings α�{(−1, y) : y ≤ y0} and (T
~bα)�{(−1, y) : y ≤ y0}.

The line {(−1, y) : y ≤ y0} and behavior of α. . By the first part of Claim 5.4, α�K
is vertically periodic of period at most

⌊
|w1∩S|

2

⌋
.

Let (0,−p) denote the shortest vertical period for (T
~bα)�{(−1, y) : y ≤ y0}. Then

p is a divisor of the smallest vertical period of α�K. In particular,

(14) p ≤
⌊
|w1 ∩ S|

2

⌋
.

Claim 5.5. α�{(−1, y) : y ≤ y0} is vertically periodic with period q ≤
⌊
|w1∩S|

2

⌋
.

To prove the claim, we first show that there are no integers 0 ≤ j1, j2 < p such
that

(T (0,−j1)α)�S = (T (0,−j2)+~bα)�S.
For contradiction, suppose not. We consider the case that j1 6= j2 first and then
address the case j1 = j2.

Suppose j1 < j2 and observe that

(T (0,−j1)α)�S̃ = (T (0,−j2)+~bα)�S̃.
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Since ~b is a period vector for α�K,

(T (0,−j1)α)�S̃ = (T (0,−j2)α)�S̃.

Since S is w1-balanced, every line parallel to w1 that has nonempty intersection
with S̃ intersects in at least |w1 ∩ S| − 1 places. Since α�K is vertically periodic

of period at most
⌊
|w1∩S|

2

⌋
≤ |w1 ∩ S| − 2, this implies that j2 − j1 is a vertical

period for T2 (the (S̃, w1)-border of K). By Claim 5.4, the minimal w3-period of
α�K is smaller than the w3-width of T2, so j2 − j1 is a vertical period for α�K.
This contradicts minimality of p, and we conclude that j1 cannot be smaller than
j2. A similar argument shows that j1 cannot be larger than j2.

Suppose j1 = j2. Then since S is η-generating and

(T (0,−j1)α)�S = (T (0,−j1)+~bα)�S;

α�T2 = (T
~bα)�T2,

we have that

α�{(−1, y) : y ≤ y0} = (T
~bα)�{(−1, y) : y ≤ y0}.

This contradicts maximality of K. We conclude that no such integers j1, j2 exist.
Now, there are at most Pη(S) − Pη(S̃) distinct η-colorings of S̃ that extend

non-uniquely to η-colorings of S. Each of the colorings

{(T (0,−j)α)�S̃ : j ∈ N}

is such a coloring, by maximality of K and the fact that S is η-generating. However,

(15) {(T (0,−j)α)�S : j ∈ N} ∩ {(T~b+(0,−j)α)�S : j ∈ N} = ∅.

On the other hand,∣∣∣{(T (0,−j)α)�S : j ∈ N} ∪ {(T~b+(0,−j)α)�S : j ∈ N}
∣∣∣

≤ Pη(S)− Pη(S̃) +
∣∣∣{(T (0,−j)α)�S̃ : j ∈ N}

∣∣∣ .
Since ∣∣∣{(T~b+(0,−j)α)�S : j ∈ N}

∣∣∣ ≥ ∣∣∣{(T (0,−j)α)�S̃ : j ∈ N}
∣∣∣ ,

there are at most Pη(S)− Pη(S̃) ≤
⌊
|w1∩S|

2

⌋
elements of the set

{(T (0,−j)α)�S : j ∈ N}.

By Proposition 4.8 α�{(−1, y) : y ≤ y0} is vertically periodic and by the above

bound,

(16) the minimal vertical period of α�{(−1, y) : y ≤ y0} is q ≤
⌊
|w1 ∩ S|

2

⌋
.

This establishes the claim.
Using the bounds on p and q given by (14) and (16), we establish the following

claim.

Claim 5.6. There do not exist integers 0 ≤ i < d and y ≤ 0 such that

(T (−i,−y)α)�S∗ is a β-coloring of S∗.
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We establish the claim by contradiction, and so choose i and y for which the
claim fails. Then by definition of d = diamw1(S)−d, we have that B(d) + (i, y) is a
subset of K, and since α�K = β�K, we have that (T (−i,−y)α)�B(d) is a β-coloring

of B(d). By definition of d, this extends uniquely to a β-coloring of S∗. By choice
of (−i,−y), T (−i,−y)α)�S∗ is a β-coloring, so

(T (−i,−y)α)�S∗ = (T (−i,−y)+~bα)�S∗.
Therefore,

(17)
there is a set of |w1 ∩ S| − 1 consecutive integer points

on the line {(−1, y) : y ≤ y0} where α and T
~bα coincide.

By (14), the vertical period of the coloring α�{(−1, y) : y ≤ y0} is p ≤
⌊
|w1∩S|

2

⌋
and

by (16) the vertical period of the coloring (T
~bα)�{(−1, y) : y ≤ y0} is q ≤

⌊
|w1∩S|

2

⌋
.

If p = q, then α�{(−1, y) : y ≤ y0} = (T
~bα)�{(−1, y) : y ≤ y0}, contradicting

maximality of K. Otherwise p 6= q, and since both are integers, p+ q− gcd(p, q) ≤
|w1 ∩ S| − 2. By the Fine-Wilf Theorem and (17), we again have that

α�{(−1, y) : y ≤ y0} = (T
~bα)�{(−1, y) : y ≤ y0},

again a contradiction. We conclude that no such 0 ≤ i < d and y ≤ 0 exist,
establishing the claim.

If there were some j = 0, . . . , d − 1 such that the restriction of α to the strip
given by ⋃

s∈Z
(S̃ + (−j, s))

is vertically periodic, then η would be vertically periodic by Corollary 4.9, a contra-
diction. On the other hand, by Corollary 4.9, the restriction of α to each such strip
is eventually vertically periodic, since α�K is. Therefore for all j = 0, . . . , d − 1,
there exists maximal sj ∈ Z such that

(18) the restriction of α to

sj−1⋃
s=−∞

(S + (−j, s)) is vertically periodic.

Counting α-colorings of S∗ that extend non-uniquely.

Claim 5.7. With the integers {sj}d−1j=0 as defined above,

(i) the η-colorings of S∗ given by α�(S∗ + (−j, sj)) are distinct for j = 1, . . . , d;

(ii) for each such j, the coloring of S∗ given by α�(S∗ + (−j, sj)) extends non-

uniquely to an α-coloring of S.

We begin by establishing the first statement. Observe that (B(d)− (j, 0)) ⊂ K.
By maximality of sj , the coloring (T (j,−sj)α)�B(d) is a β-coloring of B(d). Using

the colorings of (13), there is some i = 1, . . . , t such that (T (j,−sj)α)�B(d) = ci and

Ci is the unique β-coloring of S∗ whose restriction to B(d) is ci. We claim that
(T (j,−sj)α)�S∗ 6= Ci.

For each j ≥ 0, the coloring (T (0,−j)+~bα)�S is a β-coloring of S since α�K = β�K.
By (15), none of the colorings {(T (0,−j)α)�S : j ∈ N} are β-colorings. By (16) and
maximality of sj , α�{(−1, sj − y) : y ∈ N ∪ {0}} is vertically periodic with period
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at most
⌊
|w1∩S|

2

⌋
. Since every vertical line that has nonempty intersection with S∗

intersects in at least |w1 ∩ S| − 2 integer points, the restrictions of α and β to the
set {(−1, y) : y ∈ Z2} ∩ (S∗ + (−j, sj)) cannot coincide (otherwise by the Fine-Wilf
Theorem they would coincide everywhere on the semi-infinite line). On the other
hand, the restrictions of α and β to {(x, y) ∈ Z2 : x ≥ 0} ∩ (S∗ + (−j, sj)) do coin-
cide, since they agree on K and sj was chosen such that the semi-infinite S-strip
below it was vertically periodic. Consequently, the rightmost vertical line where
α�S∗ + (−j, sj) differs from β�S∗ + (−j, sj) has x-coordinate xmin + j − 1. There-

fore, for distinct 1 ≤ j1 < j2 ≤ d, the η-colorings of S∗ given by α�(S∗ + (−j1, sj1))
and α�(S∗ + (−j2, sj2)) are distinct.

For the second statement, by (18) the restriction of α to the semi-infinite S-strip
given by

sj−1⋃
s=−∞

(S + (−j, s))

is vertically periodic and sj is the largest integer with this property. If the vertical
period is p ∈ N, then by periodicity, the η-colorings of S∗ given by α�S∗ + (−j, sj)
and α�S∗ + (−j, sj − p) coincide. But by maximality of sj , the η-colorings of S∗
given by the functions α�S + (−j, sj) and α�S + (−j, sj − p) are distinct, estab-

lishing the claim.
In total, we have counted diamw1

(S∗)− d distinct η-colorings of S∗ that extend
non-uniquely to η-colorings of S. Moreover, for each such coloring, the coloring of
S∗ was not of the form (T ~xβ)�S∗ for any ~x ∈ Z2, since there was a vertical line
in S∗ where the coloring can be distinguished from the β-coloring induced from its
restriction to B(d).

5.4.3. Counting colorings along the w3-boundary. In this section we find d distinct
α-colorings of S∗ that extend non-uniquely to α-colorings of S. Each of these
colorings is of the form (T ~xβ)�S∗ for some ~x ∈ Z2, and hence they are all distinct
from those found in Section 5.4.2.

Recall that T1, as defined in Notation 5.3 is the (S \ w3, w3)-border of K and

that the restriction α�T1 is periodic with period vector parallel to w3. Fix ~d ∈ Z2

such that the sets {(S \ w3) + ~d+ iw3 : i = −1, 0, 1} are subsets of T1, but none of

the sets {S + ~d+ iw3 : i = −1, 0, 1} are.
Let A,B ∈ Z denote the minimal and maximal x-coordinates of elements of w3,

respectively. Enumerate the elements of S \ S∗ whose x-coordinates are between
A and B as z1, . . . , zdiamw1

(B−A+1), where the x-coordinate of zi+1 is always larger

than that of zi. By Claim 5.4, β is w3-periodic with period at most |w3 ∩ S| − 1.
It follows that d ≤ B − A + 1 (recall that d is the integer defined by (11)). Let

~u1, . . . , ~ud ∈ Z2 denote the vectors ~ui = z1 − zi. Observe that (S∗ + ~d + ~ui) ⊂
T1 ⊂ K for i = 1, . . . , d. For i = 1, . . . , d, we claim that the η-colorings of S∗
given by α�S∗ + ~d+ ~ui are distinct. If not, suppose that the colorings given by
α�S∗ + ~d+ ~udiamw1

(S∗)−j1
and α�S∗ + ~d+ ~udiamw1

(S∗)−j2
coincide for some 1 ≤

j1 < j2 ≤ d. Then 0 < j2 − j1 < d − 1. By (10), B(d) is the intersection of Z2

with the disjoint union of vertical line segments, each of which contains at least
|w1 ∩ S|−2 integer points. Since the vertical period of β is at most |w1 ∩ S|−2, we
have that the vector uj2 − uj1 must be a period vector for β, and the x-component
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of this vector is j2− j1 ≤ d− 1. Thus any β-coloring of S can be deduced from the
β-coloring of B(j2 − j1), contradicting the minimality of d.

Finally, since α�K is vertically periodic, (S∗+ ~d+ui) ⊂ K, and (S+ ~d+ui) 6⊂ K,
the η-colorings of S∗ given by α�(S∗ + ~d+ ui) and α�(S∗ + ~d+ ui−(0,P )) coin-

cide, where P denotes the minimal vertical period of α�K. But by the maxi-
mality of K and Corollary 3.9, the η-colorings of S given by α�(S + ~d+ ui) and

α�(S + ~d+ u(i−(0,p))) cannot coincide. Therefore we obtain at least d distinct η-

colorings of S∗ that extend non-uniquely to η-colorings of S that are of the form
(T ~uβ)�S∗ for some ~u ∈ Z2.

5.4.4. Total number of colorings. In Sections 5.4.2 and 5.4.3, we have described at
least diamw1

(S∗) distinct η-colorings of S∗ that extend non-uniquely to η-colorings
of S. However, since the discrepancy of S∗ is larger than that of S, this produces
more than Pη(S) − Pη(S∗) ≤ diamw1

(S∗) − 1 colorings of S∗ that extend non-
uniquely to colorings of S, the desired contradiction. This completes the proof of
Theorem 1.5. �
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