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Abstract. Let P ⊂ Z2 be a convex polygon with each vertex in it
labeled by an element from a finite set and such that the labeling
of each vertex v ∈ P is uniquely determined by the labeling of
all other points in the polygon. We introduce a class of Z2-shift
systems, the polygonal shifts, determined by such a polygon: these
are shift systems such that the restriction of any x ∈ X to some
polygon P has this property. These polygonal systems are related
to various well studied classes of shift systems, including subshifts
of finite type and algebraic shifts, but include many other systems.
We give necessary conditions for a Z2-system X to be polygonal,
in terms of the nonexpansive subspaces of X, and under further
conditions can give a complete characterization for such systems.

1. Introduction

If A is a finite alphabet, a Z2-shift X is a closed subspace of AZ2

that is invariant under the Z2-action by horizontal and vertical shifts.
Large classes of shifts have been well studied, including algebraic shifts
and shifts of finite type (see for example [26, 15, 19]). We focus on a
collection related to these, which we call polygonal shifts.

Roughly speaking, polygonal shifts are a class in which the data
in one region determines the data in a larger region. We defer the
precise definitions until Sections 2 and 3.1, starting with some examples
that motivate the study of these shifts. We refer to an element x =(
x(i, j) : i, j ∈ Z

)
in a Z2-shift X as coloring, and refer to the restriction

of x ∈ X to a set S ⊂ Z2 as a coloring of S. Perhaps the simplest
interesting example is the Ledrappier shift [18]: if A = Z/2Z, define X

to be the subshift of AZ2
such that every x ∈ X satisfies

(1.1) x(i, j) + x(i+ 1, j) + x(i, j + 1) = 0 mod 2.

The key property is that for the triangle T with vertices (0, 0), (0, 1),
and (1, 0), the coloring of a vertex is uniquely determined by the col-
oring of the other two vertices of the triangle, and this triangle is what
motivates the commonly used name three dot system for this shift. Shift
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invariance of the system implies that the same holds for vertices of any
integer translate of T .

Polygonal systems generalize this idea, and instead of using a trian-
gle, we consider an arbitrary convex polygon P ⊂ R2, and we refer to
such a polygon as an (integer) polygon if all its vertices lie in Z2. The
key property of the polygon P is that the color of each vertex v ∈ P
is uniquely determined by the coloring of all points of P other than v
(note that these other points may include interior points of the poly-
gon). If X is a Z2-shift and there is a convex polygon with vertices in
Z2 such that the restrictions of all colorings x ∈ X to the polygon P
has this property, then we say that the system is polygonal with respect
to P and that P is a coding polygon for the shift. We emphasize that
by definition coding polygons have their vertices in Z2 and hence all
edges have rational slopes. It is obvious that if a shift is polygonal with
respect to P , then it is also polygonal with respect to P+ (i, j) for any
i, j ∈ Z, and so the particular choice of polygon is only defined up to
translation.

Our primary goal is to characterize the Z2-shifts which are polygonal
and for a polygonal shift ascertain to what extent its coding polygon
P is canonical. In general, coding polygons are far from unique. For
example, the Ledrappier shift X is polygonal with respect to any of the
triangles Tn, n > 0 with vertices (0, 0), (0, n), and (n, 0). It is easy to
see that the triangle T is canonical in the sense that there is no smaller
polygon with respect to which X is polygonal.

Key concepts in our investigation are the notions of expansive and
nonexpansive. Again, we postpone the formal definitions until Sec-
tion 2, but we motivate their role. For the Ledrappier system X, it
is easy to check that for all but three (up to translation) half spaces
in R2, any coloring of its integer lattice points extends uniquely to a
coloring of all of Z2; this is well known, and follows from a more general
result given in Proposition 3.2. The only exceptions are the half spaces
which are translates of the three half spaces given by the inequalities
x ≥ 0, y ≥ 0, and y ≤ −x. To make precise the sense in which
data in one region determines data outside this region, we view a half
space as being specified by an oriented ray, namely a ray which lies in
the boundary of that half space and inherits its orientation from the
induced orientation on the boundary. If every coloring of the integer
lattice in a half space extends uniquely to the full space, we say that the
half space and corresponding oriented ray are expansive, and otherwise
we say that they are nonexpansive. In the Ledrappier system, the only
nonexpansive rays are the rays lying in the boundaries of the three
specified half spaces and having the appropriate orientation, namely
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the rays spanned by the vectors (1, 0), (−1, 1) and (0,−1). Note that
these three vectors form the edges (not vertices) of an oriented coding
polygon for the Ledrappier shift.

This terminology is consistent with standard notions of expansive-
ness and nonexpansiveness for one-dimensional subspaces of Z2-systems,
as studied, for example, in Boyle and Lind [3]. In particular, they
show that the set of nonexpansive subspaces is nonempty when X is
infinite. Accordingly, any Z2-shift X we consider is assumed to be infi-
nite. Allowable colorings of a nonexpansive half space do not uniquely
determine the coloring of even a single point in the complementary
half space, and this behavior again shows up in the Ledrappier sys-
tem. In our more general setting of polygonal systems, it is exactly the
nonexpansive rays that are used to characterize which shifts lie in this
class.

Generalizing the Ledrappier example, Kitchens and Schmidt [16, 17]
study Zd-actions on Markov subgroups. IfA is a finite abelian groupA,
then AZd

is a zero-dimensional compact abelian group when endowed
with the operation of component-wise addition. A Markov subgroup X
is a closed subgroup of this group such that there exists some finite set
S ⊂ Zd (called a shape) satisfying

∑
u∈(S+v)

x(u) = 0

for each fixed v ∈ Zd. For d = 2, it is easy to see that any Markov
subgroup is polygonal with coding polygon P given by the convex hull
of the finite set S.

The polygonal shifts are a class of zero-dimensional Z2-subshifts that
is more general and substantially larger than Markov subgroups or
similar systems with a strong algebraic structure. More precisely, a
result of Einsiedler [8] shows there are uncountably many Z2-invariant
subspaces of the Ledrappier shift X with distinct topological entropies
and it follows that there are uncountably many distinct polygonal shifts
with the same alphabet and the same polygon T . In particular, not
all polygonal shifts are isomorphic to subshifts of finite type or to Z2-
actions on Markov subgroups, as these classes are countable (up to
isomorphism).

We limit ourselves to shifts which are polygonal with respect to con-
vex polygons. There is no loss in doing so, as it is easy to see that a
shift which is polygonal with respect to a polygon P is also polygonal
with respect the convex hull P̂ of P . The advantage of working with



4 JOHN FRANKS AND BRYNA KRA

P̂ is that it has strictly fewer edges and vertices than P , unless P is
already convex.

Another reason to make use of the simplification in the geometry in
passing to the convex hull of a shape, rather than more general shapes,
is that the edges of a convex coding polygon are closely related to the
geometry of nonexpansive subspaces. For example, if X is a Markov
subgroup with shape S, then the nonexpansive subspaces are precisely
the subspaces parallel to the edges of P , the convex hull of S.

The fact that all other subspaces are expansive is a special case of a
result given in Proposition 3.2. Since for each edge e there are multiple
legal colorings of P̂ which differ on e but agree on P̂ \ e, it follows that
the edges are nonexpansive (see Definition 2.8).

In seeking the simplest polygon to represent a shift X we allow our-
selves to replace X with a particular kind of isomorphic shift Y which
we call a recoding of X. The precise definition of recoding is given in
Definition 2.3, but again we give an informal motivation. Starting with
a finite convex subset F ⊂ Z2, we create a new alphabet AF consisting
of all legal colorings of F . The recoding XF of X is then the subset of
(AF )Z

2
with the property that for each y ∈ XF there is an x ∈ X such

that for each i, j ∈ Z2, the coloring of y(i, j) is the restriction of the
coloring x to F + (i, j).

Considering the class P(X) of all (integer) coding polygons for all
recodings of a subshift X, we refer to a polygon P0 ∈ P(X) as a
minimal recoding polygon if it has the minimal number of edges of
all elements of P(X) and is minimal under inclusion among coding
polygons with that number of edges. Note that a minimal recoding
polygon for X is a coding polygon for a recoding of X, not necessarily
for X itself.

We show in Proposition 3.13 that if a coding polygon P for X is
equal to nP0 for some integral polygon P0, then X can be recoded to a
polygonal system with a coding polygon P0. Hence a minimal recoding
polygon must be primitive in the sense that it is not an integer multiple
of a smaller integer polygon. A natural question arises: what are the
possible minimal recoding polygons for a polygonal shift?

The geometry of the minimal recoding polygons for a polygonal sys-
tem X is closely linked to the nonexpansive rays of X. To make this
more precise we refine the notion of parallel to distinguish whether
parallel objects have orientations which coincide (see Section 2.3 for
complete definitions). We view a ray in R2 as a translate of the set
`v = {tv : t ≥ 0, v 6= 0 ∈ R2}, and assume it is oriented in the direc-
tion of increasing t. We refer to two rays `1 and `2 which are translates
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of each other as positively parallel, and when the rays `1 and −`2 are
positively parallel, we say `1 and `2 are antiparallel. Thus the standard
understanding of rays being parallel means they are either positively
parallel or antiparallel. We extend these conventions to oriented line
segments, referring to such as a segment as positively parallel to a ray `
(or to another line segment) if it has the same orientation and otherwise
as antiparallel to ` (or again to another line segment).

Orientations extend to polygons P ⊂ R2: such a polygon inherits
an orientation from R2, and this orientation induces an orientation on
the boundary ∂P and hence an orientation on each edge of P . In a
convex polygon, no two edges can be positively parallel, but pairs of
edges may be antiparallel.

Theorem 1.1. If X is an infinite polygonal shift and P0 is a minimal
recoding polygon for some recoding of X, then any ray positively parallel
to the oriented edges of P0 is nonexpansive for X and every other ray
is expansive.

This result is an immediate consequence of Proposition 3.2 and The-
orem 5.12 and Theorem 5.13, and it provides a necessary condition for
a Z2-system to be polygonal; it must have finitely many nonexpansive
rays and they must all have rational slope.

However, an example of Hochman [12] shows that this condition is
not sufficient. There is an additional necessary property, called closing
(see Definition 3.14), that must be satisfied by the nonexpansive rays
in polygonal systems. With this additional hypothesis we have both
necessity and sufficiency:

Theorem 1.2. Suppose X is an infinite Z2-subshift with finitely many
nonexpansive rays each of which has rational slope and is closing. Then
there is a recoding Y of X which is polygonal.

This result follows from Theorem 5.12, and in Theorem 5.13, we give
a version of the converse: if P0 is a coding polygon for X, then X can
be recoded to a subshift Y with a coding polygon P having m edges,
the minimum possible.

Moreover any two such minimal recoding polygons have parallel
edges (and hence have equal corresponding angles). If P0 is a triangle,
we can say more and in Corollary 5.14, we show that if P0 is a minimal
recoding triangle for an infinite X, then it is uniquely determined up
to translation. We do not know if this generalizes, and in particular
do not know if minimal recoding polygons which are not triangles are
unique up to translation.
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In our setting, we do not know if a system isomorphic to a polygonal
system is also polygonal, but in Corollary 5.5 we show that if Y is a
recoding of X and X is polygonal then so is Y .

In Section 6, we study various forms of entropy for Z2-systems. For
an arbitrary Z2-system X and direction v ∈ Z2, there is a seminorm
‖ · ‖X that captures the directional entropy for X in direction v (see [3]
and [21]). In Corollary 6.6 we observe that a result of Milnor implies
that for any polygonal system, whose coding polygon has no antiparal-
lel sides, this seminorm ‖·‖X is either identically zero or is a norm. Fur-
thermore, in Proposition 6.10 we show that in this case, if the entropy
norms are nontrivial, then the associated seminorms for the family of
polygonal systems associated to a given polygon is a quasi-conformal
family. Roughly speaking, this means that for any subshift Y in the
same family as a subshift X, a sphere in the norm ‖ · ‖X has bounded
eccentricity in ‖ · ‖Y with a bound that is independent of Y .

More precisely, suppose P is a rational polygon which has no an-
tiparallel edges and F(P) is the family of all Z2-subshifts which are
polygonal with respect to P and which have nontrivial entropy norms,
Then we show (Proposition 6.10) that there is a uniform dilatation
constant D > 0, depending only on P , which has the property that for
all X ∈ F(P) and any u, v ∈ S1 we have

1

D
≤ hu(X)

hv(X)
≤ D.

When the polygon is a triangle we obtain a stronger result, showing
that they are conformally equivalent.

Corollary 6.9, we show that if X, Y are triangular Z2-subshifts with
nontrivial entropy norms with respect to the same rational triangle T ,
then there is a constant C > 0 such that ‖ · ‖X = C‖ · ‖Y and the
constant does not depend on the direction chosen in R2.

Acknowledgment. We thank Van Cyr for many invaluable conversa-
tions during the preparation of this paper.

2. Background on shift systems

2.1. Shift systems. We assume throughout that A is a finite set,
called the alphabet, endowed with the discrete topology. For d ≥ 1,
we endow AZd

with the product topology. We review the standard
definitions for AZd

for any d ≥ 1 when there is no notational difference,
but in most of the article we focus on two dimensions.

An element x : Zd → A is called a coloring and x(u) denotes the
color of x at the position u ∈ Zd. When we want to make use of both
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coordinates in two dimensions, we use x(i, j) to denote the color of x
at the position (i, j) ∈ Z2.

If X ⊂ AZd
is closed and invariant under the Zd action (T ux)(v) =

x(u + v) for u ∈ Zd, then we say that X is Zd-subshift, and when
the context is clear, we shorten this and say that X is a shift system
or just a shift, omitting the transformations from the notation. Thus
in two dimensions, such X is implicitly endowed with the horizontal
T (1,0) and vertical T (0,1) shifts. When considering more than one shift
possibly with different alphabets, we write (X,A) to emphasize the
alphabet. If in addition we need to distinguish the transformations
on different shifts, we write (X,TX), or (X,A, TX) when we need to
capture all of the data. When there is no possible ambiguity, we refer
to transformations TX and TY on different spaces X and Y as just T .

2.2. Coding and Recoding. Of particular interest is how the col-
oring information from one region in Zd forces the coloring of another
region, or perhaps all of Zd. We recall a definition from [3] which makes
this precise:

Definition 2.1. If X is a Zd-subshift and A,B ⊂ Rd, then A X-codes
B if for all x, x′ ∈ X, whenever x and x′ agree on A∩Zd, then they also
agree on B ∩ Zd. If the shift X is clear from the context, we just say
that A codes B. In a slight abuse of notation, we say A codes v ∈ Zd
to mean that A codes the set {v} of a single element.

Note that there is no assumption that the region A is finite, and the
definition is stated for A,B as subsets of Rd. Though the configurations
x, x′ ∈ X are only defined on integral coordinates, the more general
definition of the subsets gives us necessary flexibility for some of the
results.

A trivial example of a region coding another is in a doubly periodic
shift, where any set A that contains a full period completely determines
an entire configuration and so codes all ofAZ2

. At the opposite extreme
is the full shift AZ2

; no region codes any larger region.
Since by definition a shift system is translation invariant, we have

the following immediate fact:

Remark 2.2. Since a shiftX is invariant under the Zd-action, it follows
immediately that for every v ∈ Zd, if A codes B then A+v codes B+v.

Recall that an isomorphism Ψ: (X,A, TX) → (Y,A′, TY ) is homeo-
morphism such that Ψ ◦ TX = TY ◦Ψ.

Definition 2.3. If (X,A) is a Z2-shift and F is a finite subset of Z2,
we say the Z2-shift (Y,A′) is a recoding of (X,A) via F provided there
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is an isomorphism of Z2-shifts Ψ: (X,A)→ (Y,A′) such that for every
(i, j) ∈ Z2 and all x, x′ ∈ X

Ψ(x)(i, j) = Ψ(x′)(i, j) if and only if x|F (i,j) = x′|F (i,j)

where F (i, j) := F +(i, j). Equivalently {(i, j)} Ψ−1-codes F (i, j) and
F (i, j) Ψ-codes {(i, j)}.

Note that we slightly overload notation but it should be clear from
the context what is meant. We use capital letters such as F or R for
subsets of Z2 and in this case, for example, F (i, j) denotes the translate
of the set F + (i, j) = {f + (i, j) : f ∈ F} , while we use lower case
letters such as x or y for elements of a shift X and in this case, for
example, x(i, j) denotes the color which x assigns to (i, j).

Given X and any finite subset F ⊂ Z2, we define the canonical
recoding (XF ,AF , ) via F by setting AF to be the set of all colorings of
F which are the restriction of colorings in X and setting Ψ to be the
isomorphism induced by the block map which assigns to a restriction
to F of an X-coloring the element of AF it represents.

Recall that a map Ψ: X → Y is an r-block code if for all x ∈ X, the
color that Ψ(x) assigns to 0 is determined by the values of x(i, j) with
‖(i, j)‖ ≤ r (when needed, we use the Euclidean norm ‖ · ‖ on R2).

If Ψ: (X,A) → (Y,A′) is a recoding, then its inverse is an isomor-
phism induced by a 0-block map φ : A′ → A. It is clear that the relation
“Y is a recoding of X” is reflexive. It is also transitive, because the
composition of two recodings is a recoding. However, this relation is
not symmetric, as whenever (Y,A′) is a recoding of (X,A), it follows
that card(A′) ≥ card(A) and this inequality is usually strict. Indeed if
Y is a recoding of X and X is a recoding of Y , then there is a bijection
of their respective alphabets which induces an isomorphism.

We now show if (Y,A′) is a recoding of (X,A) via a finite set F ,
then there is an isomorphism of Y with XF induced by a bijection of
A′ and AF .

Lemma 2.4. Suppose X is a Z2-shift, F ⊂ Z2 is finite, and XF is the
canonical recoding.

(1) If v ∈ Z2 and T vX is the shift on X corresponding to v, then
Ψ: (X,A) → (Y,A′) is a recoding via F if and only if T vY ◦ Ψ
is a recoding of X via T vX(F ).

(2) If (Y,A′) is a recoding of (X,A) via F , then there is an isomor-
phism of (Y,A′) and the canonical recoding (XF ,AF ) induced
by a bijection of the alphabet A′ with the alphabet AF .

Proof. The first part follows immediately from the definition of recod-
ing. To prove the second statement, note that if α ∈ A′, then α
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determines a coloring of {(0, 0)} for the shift Y . Since {(0, 0)} Ψ−1-
codes F , it follows that α determines a unique coloring β of F for X.
The assignment α 7→ β determines a bijection from A′ to AF which,
as a block map, determines an isomorphism ΨF ◦ Ψ−1 from (Y,A′) to
(XF ,AF ). �

It is frequently useful to know that a finite set coded by a set A is
also coded by a finite subset of A. This follows via an easy compactness
argument:

Lemma 2.5. Assume that X is a Zd-subshift. If A ⊂ Zd codes B and
B is finite, then there is a finite subset A0 ⊂ A such that A0 codes B.

Proof. Without loss of generality, it suffices to prove the result when
B contains a single point b ∈ Zd which is not an element of A. If the
result fails, then for every m ≥ 0 there exist xm, ym ∈ X such that
xm(b) 6= ym(b), but xm(u) = ym(u) for all u ∈ A with ‖u‖ ≤ m. Since
X is compact, by passing to by subsequences if needed, we can assume
that limm→∞ xm = x′ and limm→∞ ym = y′ for some x′, y′ ∈ X. Then
x′(b) 6= y′(b), but x′(u) = y′(u) for all u ∈ A, a contradiction as A
codes {b}. �

2.3. Notions of parallel. We summarize the various notions of par-
allel that we use throughout the sequel.

By a ray in R2, we mean a translate of the set `v = {tv : t ≥ 0, v 6=
0 ∈ R2}, and we view a ray as oriented in the direction of increasing t.

Two rays `1 and `2 are positively parallel if one is a translate of the
other, and they are antiparallel if `1 and −`2 are positively parallel.
We say that two rays are parallel if they are either positively parallel
or antiparallel.

We extend these conventions to line segments, and we say that an
oriented line segment J is positively parallel to a ray ` if a translate of
J lies in ` with matching orientations, and we say that the orientated
line segment J is antiparallel if J is positively parallel to −`.

Similarly, we say that two oriented line segments are positively paral-
lel if a translate of one lies in the other with matching orientations and
are antiparallel if one is positively parallel with the other with reversed
orientation. Since we need to distinguish the various notions our ter-
minology differs a bit from that in [6], where parallel corresponds to
our use of positively parallel, while the use of antiparallel is the same.

A polygon P ⊂ R2 inherits an orientation from R2, and this orien-
tation induces an orientation on the boundary ∂P , and this further
restricts to an orientation on each edge of P . For a convex polygon,
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no two edges can be positively parallel, but pairs of edges may be
antiparallel.

2.4. Expansive and nonexpansive. The fundamental concept re-
lated to one region coding another is that of expansivity, defined in
Milnor [21] and developed by [3], and we review this in our particu-
lar setting of two dimensions. Letting d denote the distance in R2,
a subspace L of R2 is expansive if there exists r > 0 such that the
r-neighborhood Nr = {u ∈ R2 : d(u, L) < r} of L codes R2 (the analo-
gous definition can be made in any dimension). Any subspace that is
not expansive is called a nonexpansive subspace.

Nonexpansive subspaces are common:

Theorem 2.6 (Boyle and Lind [3]). If X is an infinite compact metric
space with a continuous Zk-action, then for each 0 ≤ j < k there exists
a j-dimensional subspace of Rk that is nonexpansive.

For the two dimensional setting, an immediately corollary is that
a system X is finite (and hence doubly periodic) if and only if every
subspace of R2 is expansive.

For our purposes, the notion of expansiveness can be refined to con-
sider one-sided expansiveness, where the coloring of Nr determines the
coloring of one component of the complement of L. We make this more
precise (similar notions were considered in [1, 2, 6]):

Lemma 2.7. Assume X is a Z2-subshift and suppose H is an (open
or closed) half space in R2. Then either H codes all of R2 or H codes
itself but no points of Z2 \ H. In particular, if any subset of H codes
any point of Z2 \H, then H codes all of R2.

Proof. Suppose there is no b ∈ Z2 \ H such that H codes {b}. In
this case, H codes subsets of itself and no other subsets of R2 ∩ Z2.
Otherwise, there exists b ∈ Z2 \ H such that H codes {b}. We prove
this implies H codes R2.

First consider a special case: assume that H is closed and there
exists some z ∈ ∂H ∩ Z2. Let w = b− z ∈ Z2 and define H1 = w +H.
Then ∂H1 = L+w contains b. Thus H1 is a closed half space properly
containing H. We claim that if u ∈ H1∩Z2, then H codes {u}. To see
this, let v = u−b. Since b ∈ ∂H1 and u ∈ H1∩Z2, we have v+H1 ⊂ H1

and hence v + H ⊂ H. Since H codes {b}, we have that v + H codes
v + b = u. But v +H ⊂ H, proving the claim.

By the claim, it follows that H codes H1. Define Hn = nw + H.
Then since H codes H1, it follows from the translation invariance (Re-
mark 2.2) that Hn = H + nw codes Hn+1 = H1 + nw. Hence H codes
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nHn = R2, meaning that H codes R2. This completes the proof in

the special case that H is closed and ∂H ∩ Z2 is nonempty.
We now turn to the general case, assuming that H is an open or

closed half space bounded by L (and no assumption that the line L
contains points of Z2). The point b ∈ Z2 is coded by H, but b /∈ H.
By Lemma 2.5, there is a finite set A ⊂ H which codes {b}. For
each a ∈ A, let Ya denote the closed half space contained in H whose
boundary is the line La which is parallel to L and contains a. If

Y =
⋃
a∈A

Ya,

then Y ⊂ H and Y is a closed half space which codes {b} and b /∈ Y .
Also ∂Y contains some point of A and hence some point of Z2. It
follows that Y satisfies the hypothesis of the first case and so Y codes
R2. Since Y ⊂ H, we also have that H codes R2. �

Note that for any v ∈ R2 (not necessarily integral), a half space H
is expansive if and only if v + H is expansive. For v ∈ Z2, this fol-
lows immediately from the translation invariance (Remark 2.2). More
generally, for any v ∈ R2 there exist z1, z2 ∈ Z2 such that z1 + H ⊂
v + H ⊂ z2 + H and so z1 + H expansive implies v + H is expansive
and v +H expansive implies z2 +H is expansive.

We encapsulate the dichotomy of Lemma 2.7 in the following defini-
tion:

Definition 2.8. Assume X is a Z2-subshift. If H is an (open or closed)
half space in R2, we say that H is expansive if H codes R2 and otherwise
we say that H is nonexpansive. If H is expansive and ` is a ray parallel
to the boundary of H whose orientation agrees with the orientation
∂H inherits from the standard orientation on H, we say that ` is an
expansive ray in X and otherwise we say that ` is a nonexpansive ray
in X. When it is clear from the context, we shorten this and say that
` is expansive (or nonexpansive).

Remark 2.9. It is easy to see that if (X,A) and (Y,A′) are isomorphic
shifts, then a ray ` is expansive for one if and only if it is expansive for
the other (see Remark 2.2).

We note that the half space H being nonexpansive is equivalent to
the existence of x1, x2 ∈ X with x1 6= x2 such that x1(i, j) = x2(i, j) for
all (i, j) ∈ H. This non-uniqueness in the extension of the half space
is often how we make use of this notion.

A one-dimensional subspace L of R2 is (two-sided) expansive if for
some r > 0, the strip Nr(L) = {u ∈ R2 : d(u, L) ≤ r} codes R2. This
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implies that the action on X by a nonzero element v ∈ L ∩ Z2 is an
expansive homeomorphism of X. The following corollary shows that a
subspace L is expansive in this sense if and only if both of its comple-
mentary half spaces satisfy our definition of one-sided expansiveness
(Definition 2.8).

Proposition 2.10. If H and H ′ are the two closed half spaces whose
common boundary is L and H codes all of R2, then there exists r > 0
such that the closed strip Nr(H) = {u ∈ H : d(u, L) ≤ r} codes all of
H ′.

Proof. Without loss of generality, we can assume that L = ∂H contains
some point of Z2: choosing a (not necessarily integral) translate L0 of
L which lies in H and does contain a point of Z2, we can prove the
result for H0 ⊂ H with L0 = ∂H0 and obtain the result for H (possibly
with a larger value of r).

As in the special case in the proof of Lemma 2.7, H codes some
b ∈ int(H ′) ∩ Z2. Choose z ∈ L ∩ Z2 and set w = b − z. There is a
finite set A ⊂ H which codes {b}. Let δ = d(b, L). Suppose u ∈ H ′
and d(u, L) ≤ δ. Setting v = u− b, the component of v orthogonal to
L has length ≤ δ and so A+ v ⊂ Nr(H) where r = δ + diam(A). Also
A + v codes b + v = u and so Nr(H) codes the closed strip S whose
boundary components are L and L + w. The strip S is parallel to L
and has width δ. The same argument shows that S ∪ Nr(H) codes
the strip S + w. Inductively, it follows that Nr(H) ∪ (nw + S) codes
Nr(H) ∪ ((n+ 1)w + S), and so Nr(H) codes H ′. �

The set of expansive rays in R2 is open (see [3, 7]). This also follows
immediately from Lemma 2.5, which gives the existence of a finite set
A ⊂ H which codes b /∈ H, and the fact that the set of oriented rays
in the plane which span lines separating b from A is an open set.

It thus follows that the set of nonexpansive rays is closed, and it is
known to be nonempty if X is infinite (see Theorem 2.6). For the full

shift AZ2
, it is easy to see that all rays are nonexpansive; there are no

expansive half spaces. The nonexpansive rays play a significant role in
the dynamics of Z2-subshifts because the boundary of a nonexpansive
half space forms a barrier to coding. In particular, Lemma 2.7 asserts
that if H is nonexpansive, then no subset of H can code a subset of
Z2 \H.

3. Defining the class of shifts

3.1. Polygonal shifts. We have assembled the tools to define the class
we study:
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Definition 3.1. Suppose X is an infinite Z2-subshift, P is a convex
integer polygon, and v is a vertex of P . If P \ {v} X-codes {v}, then
we say that P is a coding polygon for the vertex v. If P is coding for
each of its vertices, we say X is polygonal with respect to P or that P
is a coding polygon for X.

A polygonal Z2-system is triangular if the associated polygon is a
triangle.

Note that translation invariance implies that when P \ {v} X-codes
{v}, we also have that (P + u) \ {v + u} X-codes {v + u} for all
u ∈ Z2. Thus it makes sense to discuss a coding polygon defined only
up to translation in Z2. However, coding polygons, even up to this
translation, are not unique and it takes work to understand to what
extent a coding polygon can be simplified. One notion of simplification
is having the fewest number of edges, and this motivates us to restrict
our attention to convex polygons. If a non-convex polygon is coding,
then its convex hull has fewer sides and is also a coding polygon.

Proposition 3.2. Suppose X is a Z2-subshift and P is a coding polygon
for X. If ` is a nonexpansive ray in X, then ` is positively parallel to
an edge of P whose orientation matches the orientation of `.

Proof. Let L be the one-dimensional subspace of R2 containing ` and
let H be the open half space bounded by L such that expansiveness of
H implies expansiveness of `. Suppose first that L is not parallel to
any edge of P . Then there is vertex e of P such that P ∩ (e+L) = {e}
and P ⊂ e + H. Since P \ {e} ⊂ e + H codes e /∈ e + H, Lemma 2.7
implies that e + H is expansive. Hence H is expansive and so is `, a
contradiction.

It follows that if ` is nonexpansive, then it is parallel to an edge of P .
If it is positively parallel to one edge and antiparallel to another, then
those edges have opposite orientations and so ` is positively parallel to
one of them. Finally, if ` is antiparallel to a single edge E, then there
is a unique vertex e ∈ P and a unique supporting line L parallel to `
such that L∩P = {e}. If H is the open half space which is bounded by
L and which contains P \ {e}, Lemma 2.7 implies that H is expansive
(note that P \ {e} ⊂ H codes e /∈ H). The orientation L inherits
from H is the opposite of the orientation E inherits from P . Since
the ray ` is antiparallel to E and H is expansive, ` must be expansive,
a contradiction. The only remaining possibility is that ` is positively
parallel to E. �

Although coding polygons are not unique, the existence of a coding
polygon implies that scaled versions are also coding polygons. To make
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this precise, given P ⊂ Z2, we write

nP = {nx : x ∈ P}.
We frequently make use of the following straightforward observation:

Observation 3.3. IfX is polygonal with respect to the convex polygon
P , then it is also polygonal with respect to the polygon nP for every
n ∈ N.

This can be seen by noting that if v is a vertex of P , there is a
translation T such that T (v) = nv and then T (P) is a subpolygon of
nP whose vertex at nv coincides with that of nP .

3.2. Examples of polygonal shifts. We give various examples of
polygonal shifts.

Example 3.4. Ledrappier three-dot system [18]. Let A = {0, 1} be the

field with two elements and take X to be the subshift of AZ2
defined

by

X = {x ∈ AZ2

: x(i, j) + x(i+ 1, j) + x(i, j + 1) = 0 mod 2}
for i, j ∈ Z. Note that if x ∈ X and Ri(x) is the element in the
one-dimension shift AZ obtained by restricting x to its ith horizontal
row, then Ri+1(x) = φ(Ri(x)) where φ is the endomorphism defined
by φ(y)0 = y0 + y1 (mod 2). The Z2-subshift X is triangular (with
respect to the triangle T with vertices (0, 0), (1, 0), and (0, 1)). It has
three nonexpansive rays, which are the positive x-axis, the negative
y-axis, and the ray (−t, t), t ≥ 0.

Ledrappier’s three dot system and related algebraic systems have
been studied by Ledrappier [18], Einsiedler [8], and Kitchens and Schmidt [16].
In particular we have the following extension:

Example 3.5. Einsiedler’s examples. In [8] Einsiedler proves the ex-
istence of closed Z2-invariant subsystems of the Ledrappier example
realizing any horizontal directional entropy between 0 and ln(2). Since
these are subsystems of the Ledrappier system, they are all triangular
with respect to the triangle T . Following [8] and [17], we describe one
such example. Taking X to be the Ledrappier system of Example 3.4,
consider the subset

Y0 = {x ∈ X : x(2v) = 0 for all v ∈ Z2}.
Then Y0 is invariant under the Z2 -action obtained by restricting the
Z2-action on X to the lattice (2Z)2. While Y0 is not invariant under the
full Z2-action, defining Y1 = Y0+(1, 0), Y2 = Y0+(0, 1), Y3 = Y0+(1, 1),
then Y = Y0 ∪ Y1 ∪ Y2 ∪ Y3 is a closed proper Z2-invariant subset of
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X. Let Ri denote the restriction of Yi to the x-axis and R denote the
restriction of Y . Then each Ri is a closed subset of the one-dimensional
full shift space Σ = AZ with

R0 = {y ∈ Σ: y2n = 0 for all n ∈ Z}
R1 = {y ∈ Σ: y2n+1 = 0 for all n ∈ Z}
R2 = {y ∈ Σ: y2n = y2n+1 for all n ∈ Z}
R3 = {y ∈ Σ: y2n = y2n−1 for all n ∈ Z}.

Define σ : R→ R to be the left shift and observe that σ2(Ri) = Ri. One
checks easily that σ2|Ri

: Ri → Ri is conjugate to the full 2-shift, and
so σ2 : Ri → Ri has topological entropy ln(2). Since Ri ∩ Rj contains
at most the two σ-fixed points 0̄ and 1̄ for all i 6= j, it follows that
σ2 : R→ R has topological entropy ln(2) and hence h(σ) = ln(2)/2.

It follows from Einsiedler’s results that uncountably many horizontal
entropies can be realized in constructing the examples in 3.5. All but
countably many of the associated subshifts are not sofic, since there
are at most countably many sofic systems with a given alphabet. Thus
some of the subshifts realized in Example 3.5 are not sofic and, in
particular, are not subshifts of finite type.

Example 3.6. Low complexity examples. Polygonal systems arise nat-
urally in studying the Nivat Conjecture, and in this direction, It follows
immediately from [6, Corollary 2.6] that (note our terminology differs,
and related results appear in [5, 14]):

Proposition 3.7. Suppose X is a Z2-subshift with alphabet A, S is
a finite convex subset of Z2, and C(S) denotes the number of legal X
colorings of S. If

C(S) ≤ |S|+ |A| − 2,

then X is polygonal.

In particular, it follows from [6] that any counterexample to the Nivat
conjecture must be polygonal.

Example 3.8. Non-abelian groups. Similar to the construction of the
Ledrappier system, one can take a finite (possibly non-abelian) group
G as the alphabet and require, for example, that the product of the
colors at the vertices of a convex polygon P is the identity (or some
other fixed g ∈ G).

Example 3.9. Enveloping SFTs. Any polygonal subshift X with cod-
ing polygon P is a closed invariant subset of a polygonal subshift X̂
which has the same coding polygon P and which is a (two-dimensional)
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SFT. Namely, let X̂ be the SFT whose excluded blocks are precisely
the set of colorings of P which violate the requirements for P to be
a coding polygon. Then X̂ is an SFT by definition and is nonempty
because it contains the points of X.

Definition 3.10. We say that a Z2-subshift X is a polygonal subshift
of finite type (polygonal SFT) provided it is a (two-dimensional) SFT
and its defining finite set of excluded blocks are all colorings of a single
coding polygon P for X

We note that a subshift X is a polygonal SFT if and only if it is
polygonal and also an SFT. This follows from Observation 3.3 since
one can scale up the polygon P to nP until it is sufficiently large to
hold all excluded colored blocks which define the SFT X.

Example 3.11. Products. Let X and Y be two (one-dimensional)
subshifts and extend X to a two dimensional subshift by extending
it with period one in the horizontal direction and extend Y to a two
dimensional subshift by extending it with period one in the vertical
direction. Consider the Z2-subshift obtained by taking the product of
the two alphabets, meaning that the entry (i, j) is endowed with the
symbol i from the corresponding entry in X and the symbol j from the
corresponding entry in Y . This product system is polygonal, and the
associated polygon is a 2× 2 square.

This last example can be generalized to construct further polygonal
shifts:

Proposition 3.12. Suppose X1 and X2 are polygonal Z2-shifts with
respect to polygons P1 and P2. If no pairs of edges from the two polygons
are parallel, then X1 ×X2 is also polygonal.

Proof. Consider the oriented edges of P1 and P2 as vectors and order
them to form the edges of a convex polygon P . Define an alphabet
consisting of ordered pairs of colors from the alphabets of X1 and X2.

To check that this is a polygonal system, note that given a coloring
of all but one vertex w of P , we can translate the polygon P1 associated
to X1 such that P1 lies in P and a vertex of P1 coincides with w. This
uniquely determines the color of the vertex of P1 and hence the first
component of the pair which is the coloring for X1 ×X2. The second
component of the coloring for w ∈ P is obtained similarly. �

Proposition 3.13. If X is polygonal with respect to the convex integer
polygon P and P = nP0 for some integer polygon P0 and integer n > 1,
then there is a recoding Y of X which is polygonal with respect to P0.
Hence mP0 = m

n
P is also a coding polygon for Y .
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Proof. Let {ei}ki=0 denote the edge vectors of P taken in some order
such that consecutive edges have a vertex and common. Then vj =∑j

i=0 ei denote the jth vertex of P in this ordering. Note that vk =∑k
i=0 ei = 0. Since 1

n
P is an integer polygon, so is m

n
P = mP0 for

1 ≤ m ≤ n.
Define P1 := n−1

n
P = (n−1)P0. Then for each edge e of P , there are

exactly n translates of P1 each of which lies in P and has a translate
of the edge 1

n
e of P1 lying in e.

Let Ψ: X → XP1 be the canonical recoding of X (see Definition 2.3)
via P1 and let Y = XP1 . Then the polygon P Ψ-codes a translate of
P0 = 1

n
P . Likewise P0 Ψ−1-codes a translate of P . It follows that P0

is a coding polygon for Y . �

This result shows that if P is a coding polygon for X and P =
nP0, then X can be recoded to Y with a strictly smaller but similar
coding polygon. Hence if P has the minimal number of edges of coding
polygons for X, then X can be recoded to a polygonal system with a
minimal recoding polygon.

3.3. Refining notions of expansivity. Suppose L is a rational line
in R2 containing a point of Z2 (and hence infinitely many points of Z2).
Recall that L+Z2 is a discrete set of lines, meaning there exists r > 0
such that any line z + L distinct from L and with z ∈ Z2 must have
distance from L equal to mr with m ∈ N. There are two closest integer
translates of L which have distance r from L, lying on opposite sides
of L.

If L ⊂ R2 is a one dimensional subspace, we refer to the intersection
of a connected segment of L with Z2 as a block in L ∩ Z2.

Definition 3.14. Assume L ⊂ R2 is a one dimensional subspace with
rational slope and suppose L bounds a nonexpansive closed half space
H. Let L0 be the closest line of the form z + L in the complement of
H for some z ∈ Z2. If there exists N > 0 such that every block B in
L0 ∩ Z2 of length ≥ N the set H ∪ B codes H ∪ L0 then, we say that
H is closing. If ` is the ray in L whose orientation is inherited from H,
we say that ` is closing.

Note that by definition, a ray that is closing is also nonexpansive
and has rational slope.

We example the rationale behind the use of the term closing. In, for
example, the Ledrappier system (Example 3.4), the upper half space
H = {(u, v) : v ≥ 0} is nonexpansive. The subspace H is also closing.
This latter property is equivalent to the fact that the endomorphism
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φ defining the system is both right and left closing in the sense of [19,
Chapter 8].

We illustrate the property of closing with an example:

Proposition 3.15. If X is polygonal with coding polygon P and ` is
a nonexpansive ray with the same direction as an oriented edge of P,
then ` is closing.

Proof. Without loss of generality, we may assume the ray ` is the pos-
itive horizontal axis, meaning that the oriented edge lies in the hori-
zontal axis L and P lies in the closed upper half space H. Then L0 is
the line L + (0,−1). Let N be the number of points in J := L ∩ P .
Set B = J(0,−1) and note that every integer point of the polygon
P + (1,−1) lies in H ∪B except one, namely the first point b to the
right of B in L0. Since P is a coding polygon, the coloring at b is deter-
mined by P + (1,−1) and hence by H ∪B. Repeating this, it follows
that H ∪ B codes all points to the right of B. A similar argument
shows it codes all points to the left of B. �

It follows from Remark 2.9 that if a ray is nonexpansive for (X,A),
then it is also nonexpansive for any isomorphic Z2-shift (Y,A′). Our
next lemma shows that a recoding (and its inverse) preserves closing
rays:

Lemma 3.16. Suppose Ψ: (X,A) → (Y,A′) is a recoding via a finite
set F and suppose ` is a rational nonexpansive ray in R2. Then ` is
closing for X if and only if it is closing for Y.

Proof. Suppose ` is closing for one of X or Y . We show it is closing for
the other. By a change of coordinates, without loss of generality we
can assume that ` is the positive x-axis. Let L be the x-axis and let H
be the closed upper half space with boundary L. Thus H is closing for
X.

By Lemma 2.4, if T is an action on X translating by some element
of Z2, then recoding via T (F ) is the same as recoding via F and then
translating by T . Since translating by T preserves closing half spaces,
we can assume that F lies in H and contains (0, 0) ∈ L, but contains no
point of Z2 \H. Let B0 be the finite set F ∩L and let L0 = L+(0,−1).

Suppose B is a finite block in L0. Since F Ψ-codes {(0, 0)}, it follows
that H Ψ-codes H and H + (0,−1) Ψ-codes H + (0,−1). By the
definition of recoding, {(0, 0)} Ψ−1-codes F and therefore {(i, j)} Ψ−1-
codes F+(i, j). Thus it follows that for all i, j, we have that (i, j)+F Ψ-
codes {(i, j)} and {(i, j)} Ψ−1-codes F + (i, j) and hence {(i, j)}.

Suppose now that H is X-closing and B ⊂ L0 is a block such that
H ∪B X-codes L0. We wish to show that H ∪B Y -codes L0, and so
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H is Y -closing. Since {(i, j)} Ψ−1-codes {(i, j)}, we know that H ∪ B
Ψ−1-codes H ∪ B which X-codes H ∪ L0 = H + (0,−1). This in turn
Ψ-codes H+ (0,−1) ⊃ L0 and we have shown that H ∪B Y -codes L0.
Thus H is Y -closing.

Conversely, suppose H is Y -closing and B ⊂ L0 is a block such that
H ∪ B Y -codes L0. Since (i, j) + F Ψ-codes {(i, j)} we have, in fact,
that H ∪ ((i, j)+B0) Ψ-codes {(i, j)}. It follows that H ∪ ((B+B0) Ψ-
codes H ∪B. Note that H ∪ ((B +B0) Ψ-codes H ∪B which, in turn
Y -codes L0 Since B′ := B ∪ B0 is finite and H ∪ B′ X-codes L0 we
have shown that H is X-closing. �

4. Coding corners in closing light cones.

4.1. Spacetimes and light cones. We give way to extend a one di-
mensional system to a two dimensional version, with a variant of the
definition of a spacetime from [7] (there is also a related notion called
the complete history in Milnor [21]):

Definition 4.1. If X is a Z2-subshift with oriented basis e1, e2 of Z2

and if the ray spanned by e1 is expansive, then U = (X, {e1, e2}) is
called a spacetime and {e1, e2} is called its distinguished basis. If U1 =
(X1, {e1, e2}) and U2 = (X2, {f1, f2}) are spacetimes, an isomorphism
of spacetimes Ψ: U1 → U2 is a Z2-subshift isomorphism Ψ: X1 → X2

such that Ψ ◦ Tei = Tfi ◦Ψ.

Note that this definition of a spacetime U is more general than that
given in [7], where it is required that e1 be 1-expansive in the sense
that the line L ∩ Z2 containing e1 codes the half space {je1 + me2 ∈
Z2 : m ≥ 0}. This requirement is equivalent to the existence of an
endomorphism φ of a Z-subshift σ : Y → Y with the same alphabet as
U such that u ∈ U if and only if

(1) for each j ∈ Z the sequence {yn = u(n, j) : n ∈ Z} is an admis-
sible sequence in Y , and

(2) if y ∈ Y satisfies yn = u(n, j) for all n ∈ Z, then for φm(y)n =
u(n, j +m) for all n ∈ Z.

When these two conditions are satisfied, we say the spacetime U is the
spacetime of the endomorphism φ. We show (see Lemma 5.7 below)
that if V is any spacetime with at least one expansive ray, then it can
be recoded to be the spacetime of an endomorphism.

If φ ∈ End(Y, σ) and n ≥ 0, following [7] we define W+(n, φ) to be
the smallest integer such that the ray [W+(n, φ),∞) is φn-coded by
[0,∞) and define W−(n, φ) to be the largest integer such that the ray
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(−∞,W−(n, φ)] is φn-coded by (−∞, 0]. It is straightforward to check
that

(4.1) W+(k, φσp) = pk+W+(k, φ) and W−(k, φσp) = pk+W−(k, φ),

for all p ∈ Z (see [7] for details).

Definition 4.2. The future light cone Cf (φ) of φ ∈ End(X) is defined
to be

Cf (φ) = {(i, j) ∈ Z2 : W−(j, φ) ≤ i ≤ W+(j, φ), j ≥ 0}.

The past light cone Cp(φ) of φ is defined to be Cp(φ) = −Cf (φ). The
full light cone C(φ) is defined to be Cf (φ) ∪ Cp(φ).

We emphasize that Cp(φ), the past light cone of φ, is typically not
closely related to the light cone of φ−1.

The light cone is naturally stratified into levels: define the nth level
of C(φ) to be the set

(4.2) I(n, φ) := {i ∈ Z : (i, n) ∈ C(φ)}.

Recall that the edges of a light cone have asymptotic slopes defined
by

α+ := lim
k→∞

W+(k, φ)

k
and

α− := lim
k→∞

W−(k, φ)

k
.

These limits exist by Fekete’s Lemma.
The edges of the light cone C(φ) are given by the graphs of the func-

tions i = W+(k, φ) i = W−(k, φ) and have nice asymptotic properties.

Definition 4.3. The asymptotic light cone A(φ) of φ is defined to be
the cone in R2 bounded by the lines x = α+(φ)y and x = α−(φ)y,
meaning that

A(φ) ={(x, y) ∈ R2 : y ≥ 0, α−(φ)y ≤ x ≤ α+(φ)y}
∪{(x, y) ∈ R2 : y ≤ 0, α+(φ)y ≤ x ≤ α−(φ)y}.

We view A(φ) as a subset of R2 rather than of Z2, as we want to
consider lines with irrational slope that may lie in A(φ) but would
intersect Cf (φ) only in {0}.

The rays t(α−, 1) and t(−α+,−1) for t ≥ 0 are nonexpansive rays
(see [7, Theorem 4.4]), where the notation t(·, 1) means the set of all
positive scalar multiples of the vector (·, 1).
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Definition 4.4. We say the asymptotic light cone A(φ) has closing
edges if the rays t(−α+,−1) and t(α−, 1) are closing (in other words,
the two rays forming the left edge of A(φ) are closing).

For α ∈ R, define the α quadrants in Z2 by

Q1(α) = {(i, j) ∈ Z2 : j ≥ 0, i ≥ αj}
Q2(α) = {(i, j) ∈ Z2 : j ≥ 0, i ≤ αj}
Q3(α) = {(i, j) ∈ Z2 : j ≤ 0, i ≤ αj}
Q4(α) = {(i, j) ∈ Z2 : j ≤ 0, i ≥ αj}

Even though Qi(α) is a subset of Z2 and has no dependence on any
particular spacetime, it frequently is the case that we are interested in
Qi(α) as a subset of the domain of colorings in a space time. This can
become confusing when more than one spacetime is involved. Hence
for clarity we write Qi(α,U) to indicate that we are viewing it as a
subset of the domain of the colorings in the spacetime U . We refer to a
subset of Z2 as a strip (respectively, half strip) if it is the intersection of
Z2 with the set of points in R2 between two parallel lines (respectively,
the intersection of a strip in Z2 with a closed half space whose edge is
not parallel to the strip).

Lemma 4.5. Suppose U is a spacetime, α is rational, and the quadrant
Q4(α) U-codes the quadrant Q1(α). Then there exists N > 0 such that
the half strip

Q4(α) ∩
( N⋃
j=0

Lj
)

U-codes the quadrant Q1(α) where Lj = {(n,−j) ∈ Z2 : n ∈ Z} is the
horizontal line in Z2 through (0,−j).

Moreover there exists a spacetime V of a Z-subshift endomorphism
ψ such that V is a recoding of U and such that the ray

R := ([0,∞)× {0}) ∩ Z2 ⊂ Q1(α,V)

V-codes the entire quadrant Q1(α,V).

Proof. First assume that α ≥ 0. Let (p, q) be the point of Q1(α,V)
closest to (0, 0) such that p = αq with q > 0. Hence α = p/q and
p ≥ 0. We claim that there exists N > 0 such that the finite set of
points

T := {(r, s) ∈ Q1(α,V) : 0 ≤ r ≤ p, 0 ≤ s ≤ q}
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is U -coded by the half strip

S(N) := {(i, j) : −N ≤ j ≤ 0, i ≥ αj} = Q4(α)∩((−∞,∞)×[−N, 0]).

Clearly the points with s = 0 are coded since they lie in S(N). If not
all points of T are coded by S(N), then there exist xn, yn ∈ U and
(r0, s0) ∈ T such that for all n > 0 xn(r0, s0) 6= yn(r0, s0), but xn and
yn agree on the strip S(n). By passing to subsequences if necessary,
we can assume that the sequences {xn} and {yn} converge to x∞ and
y∞ respectively with x∞(r0, s0) 6= y∞(r0, s0). Since these two elements
of U agree on S(n) for all n, they agree on the quadrant Q4(α). This
contradicts the hypothesis, proving the claim.

Since S(N) + (m, 0) ⊂ S(N) for all m ≥ 0 and the half strip S(N)
U -codes T , it also U -codes T + (m, 0). Thus it U -codes the half strip
S(N) + (p, q). It then follows by induction on n ≥ 0 that the strip
S(N)+n(p, q) U -codes S(N)+(n+1)(p, q). Hence the half strip S(N)
U -codes the quadrant Q1(α). This proves the first assertion of the
lemma for α ≥ 0.

Note that if we define the bi-infinite strip

Ŝ(N) := (−∞,∞)× [−N, 0] =
⋃
n≥0

(S(N)− (n, 0)),

then since S(N) U -codes Q1(α), we have that Ŝ(N) U -codes the upper

half space j ≥ 0 and Ŝ(N) + (i0, j0) U -codes the half space j ≥ j0.
Next we consider Ψ: (X,A) → (XF ,AF ), the canonical recoding of

X (see Definition 2.3) via the finite set F ⊂ Z2 which we define to be
the triangle

S(N) ∩ {(i, j) : i ≤ 0} = {(i, j) : −N ≤ j ≤ 0, αj ≤ i ≤ 0}.
Then V := XF is a spacetime and the horizontal axis j = 0 in Z2 Ψ−1-
codes all horizontal translates of F . But the union of these horizontal
translates is Ŝ(N). Since Ŝ(N) U -codes the upper half space j ≥ 0, it
follows that the horizontal axis j = 0 V-codes the half space j ≥ 0.

The ray R := [0,∞)×{0} (for V) Ψ−1-codes the half strip S(N) (for
U). But S(N) U -codes the quadrant Q1(α,U). Hence R Ψ−1-codes
Q1(α,U) ∪ S(N). But Q1(α,U) ∪ S(N) Ψ-codes Q1(α,V). Thus R
V-codes Q1(α,V). This completes the second assertion of the lemma
for α ≥ 0.

The proof is analogous for α < 0. �

4.2. The role of closing. Recall that if H is a closing half space with
boundary L and L0 = L + z0 where z0 ∈ Z2 is chosen such that L0 is
the closest coset of L in the complement of H, then there is a finite
block B in L0 ∩Z2 such that H ∪B codes L0. We want to show there
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is a constant ρ > 0 such that any (i, j) ∈ L0, close to B is coded by
the set B ∪ (Bρ(i, j) ∩H ∩ Z2) where Bρ(i, j) ⊂ R2 is the open ball in
R2 with radius ρ.

Lemma 4.6. Let ` be a rational closing ray contained in the one-
dimensional subspace L ⊂ R2 which bounds the closing half space H.
Suppose L0 := z + L, z ∈ Z2, and B ⊂ L0 are as in the definition of
closing. Suppose further that (i, j) ∈ L0 ∩Z2 and B(i, j) is a translate
of B in L0 ∩ Z2 such that (i, j) /∈ B, but (i, j) ∈ B + eL, where eL is
a generator of L ∩ Z2. Then there is a constant ρ > 0, independent of
i and j such that {(i, j)} is coded by the set

B(i, j) ∪ (Bρ/2(i, j) ∩H ∩ Z2),

where Bρ/2(i, j) is the open ball with radius ρ/2 centered at (i, j).

Proof. Let B be the block whose existence is guaranteed by the assump-
tion that ` is closing. If the result does not hold, then for any (i, j) ∈ L0

there exist sequences {xn}, {yn} ∈ X such that xn(i, j) 6= yn(i, j) but
xn and yn have colorings which agree on B(i, j) ∪ (Bn(i, j) ∩H ∩ Z2).
Choosing subsequences if necessary we can assume that there exist
x∞, y∞ ∈ X such that

lim
n→∞

xn = x∞ and lim
n→∞

yn = y∞.

Then the restrictions of x∞ and y∞ to B(i, j)∪ (H ∩Z2) are equal but
x∞(i, j) 6= y∞(i, j). This contradicts the fact that ` is closing and so
there exists some value of ρ with the desired property. Since such a
ρ exists for one (i, j), it follows by translating in L0 that the same ρ
works for any (i′, j′) ∈ L ∩ Z2. �

While in general

W+(k, φ) = α+k + o(k),

it is not in general true that W+(k, φ) = dα+ke. However, with appro-
priate hypotheses we can recode the spacetime of φ to the spacetime
of an endomorphism ψ satisfying W+(k, ψ) = dα+ke. The object of
the next three lemmas is to show this holds if φ has a closing light
cone. We begin with some basic facts about W+(k, φ) and its relation
to α+k. Recall that if ψ is a recoding of φ then α±(φ) = α±(ψ) by
Proposition 5.3 of [7].

Lemma 4.7. Suppose U is the spacetime of an endomorphism φ and
V is the spacetime of an endomorphism ψ which is a recoding of U .
Then:
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(1) W+(k, φ) ≥ dα+ke for all k ≥ 0 and W−(k, φ) ≤ bα−kc for all
k ≥ 0.

(2) W+(k, φ) ≥ W+(k, ψ) and W−(k, φ) ≤ W−(k, ψ) for all k ≥ 0.
(3) If W+(k, φ) = dα+ke for all k ≥ 0, then W+(k, ψ) = dα+ke for

all k ≥ 0. Similarly if W−(k, φ) = bα−kc for all k ≥ 0, then
W−(k, ψ) = bα−kc, k ≥ 0.

Proof. By [7, Lemma 4.2], we always have that W+(k, φ) ≥ α+k. Since
W+(k, φ) is an integer, it follows that W+(k, φ) ≥ dα+ke for all k ≥ 0.
Similarly W−(k, φ) ≤ bα−kc for k ≥ 0 and so (1) follows.

To prove (2), assume that F ⊂ Z2 is finite and Ψ: U → V is a
recoding of U via F . LetR(r, s) denote the horizontal Z2 ray {(i, j) : i ≥
r, j = s}. By the definition of W+(n, φ), we have that R(0, 0) U -codes
R(W+(n, φ), n) for n ≥ 0. Hence R(i, j) U -codes R(i+W+(n, φ), j+n)
for n ≥ 0. Therefore

⋃
(i,j)∈F R(i, j) U -codes⋃

(i,j)∈F

R(i+W+(n, φ), j + n) =
⋃

(i,j)∈F+(W+(n,φ),n)

R(i, j).

But the latter Ψ-codes R(W+(n, φ), n). It follows that R(0, 0) V-codes
R((W+(n, φ), n) for n ≥ 0. Thus W+(n, φ) ≥ W+(n, ψ). The fact that
W−(k, φ) ≤ W−(k, ψ) is proved similarly.

To prove (3), note that parts (1) and (2) imply that

dα+ke ≤ W+(k, ψ) ≤ W+(k, φ) = dα+ke.

The proof for W− is similar. �

Lemma 4.8. Suppose the asymptotic light cone A(φ) has closing edges
and that α+(φ) = p/q and α−(φ) = p′/q with p, p′ ∈ Z+ and q > 0.
Then the spacetime U of φ can be recoded to the spacetime V of an
endomorphism of another shift ψ ∈ End(Y ), for which

W+(kq, ψ) = α+kq and W−(kq, ψ) = α−kq

when k > 0.

Proof. To prove the equality W+(kq, ψ) = α+kq, it suffices to consider
the special case α+ = 0. Namely, suppose α+ = p/q. It follows from [7,
Proposition 3.12]) that α+(φmσk) = k+mα+(φ). Letting k = −p, m =
q, and φ′ = φqσ−p we have that α+(φ′) = 0. Hence if we show that
W+(k, φ′) = 0 for all k ≥ 0, then by Equation 4.1

0 = W+(k, φqσ−p) = −pk +W+(k, φq) = −pk +W+(kq, φ),

and so W+(kq, φ) = pk = α+kq. Thus it suffices to consider the special
case α+ = α+(φ) = 0.
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Define δ+(n) = W+(n, φ) − α+n. By [7, Lemma 4.2], the function
δ+(n) is subadditive, nonnegative, and δ+(n) = o(n). Since α+ = 0,
it follows that W+(n, φ) = δ+(n) for all n ≥ 0 and we are left with
showing that δ+(n) = 0.

Let ρ be the constant given by Lemma 4.6. Without loss of generality,
we can assume that ρ is an integer > 1. Then there exists C > 0 and
arbitrarily large n0 with the property that if r0 = δ+(n0) + C, then

(4.3) W+(k, φ) = δ+(k) ≤ r0 for all 0 ≤ k ≤ n0

and

(4.4)
r0

n0

<
1

2ρ
.

Namely, to prove (4.3), note that if δ+(n) is bounded for all n ≥ 1 we
can choose C to be an upper bound, and if δ+(n) is unbounded we can
choose arbitrarily large n0 such that for all 0 ≤ k ≤ n0, δ+(k) ≤ δ+(n0)
and let C = 0. Then equation (4.4) follows from (4.3) and the fact that
δ+(m) = o(m).

Observe that if Q is the fourth quadrant [0,∞)× (−∞, 0], then

(4.5) Q U -codes [r0,∞)× [0, n0],

where again r0 = δ+(n0)+C. This holds because r0 ≥ δ+(m) = W+(m)
for all m with 0 ≤ m ≤ n0.

But we claim that also ([r0,∞)× [0,∞]) ∪Q codes [m,∞)× [0,∞]
for 0 ≤ m ≤ r0. To see this, we first code the vertical line through
(r0 − 1, 0) as follows: use the one-sided expansiveness of the vertical
ray (r0 − 1, 0) + t(0, 1), t ≥ 0 with a block

B(r0 − 1, 0) = {(m− 1, t) : −N ≤ t ≤ 0}.

By Lemma 4.6, we have that {(r0−1, 1)} is coded by ([r0,∞)×[0, n0])∪
Q if n0 > ρ. We can repeat this using B(r0 − 1, 1) = {(m − 1, t) : −
N + 1 ≤ t ≤ 1} to code {(r0 − 1, 2)} and then B(r0 − 1, 2) := {(r0 −
1, t) : − N + 2 ≤ t ≤ 2}, to code {(r0 − 1, 3)} etc. We can continue
coding {(r0 − 1, k)} so long as k ≤ n0 − ρ, where ρ > 1 is the constant
from Lemma 4.6.

If H is the half space to the right of the line (r0 − 1, t), t ∈ Z,
then (r0 − 1, k) with k ≤ n0 − ρ satisfies B(r0 − 1, k − 1) ∪ Bρ/2(r0 −
1, k)∩H ∩Z2 ⊂ B(r0 − 1, k− 1)∪ ([r0,∞)× [0,∞])∪Q, which codes
(r0 − 1, k). Thus we have shown that ([r0,∞) × [0, n0]) ∪ Q codes
[r0 − 1,∞)× [0, n0 − ρ].

Since [r0,∞) × [0, n0] ∪ Q codes [r0 − 1,∞) × [0, n0 − ρ], we can
repeat this argument to show that [r0 − 1,∞) × [0, n0 − ρ] ∪ Q codes
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[r0 − 2,∞) × [0, n0 − 2ρ], etc. So, as long as m satisfies n0 −mρ > 0
and m ≤ r0 we have that

[r0,∞)× [0, n0] ∪Q codes [r0 −m,∞)× [0, n0 −mρ].

But by Equation 4.4 above

r0

n0

<
1

2ρ
,

so r0ρ < n0/2. Thus if we take m = r0 then n0−mρ = n0−r0ρ > n0/2
so

[r0,∞)× [0, n0] ∪Q codes [0,∞)× [0, n0/2].

Then by Equation 4.5 we see that Q codes [0,∞)×[0, n0/2]. Since n0

can be arbitrarily large we get that Q codes the full quadrant [0,∞)×
[0,∞), and in particular the claim follows.

When U is the spacetime of the endomorphism φ, it follows from
Lemma 4.5 that there is a spacetime V0 of an endomorphism ψ0 and a
recoding Ψ: U → V0, with the property that the horizontal ray [0,∞)×
{0} V0-codes the entire first quadrant of Z2. In particular, V0-codes the
vertical ray {0} × [0,∞). In other words W+(m,ψ0) = 0 for all m ≥ 0
which is the desired result when α+ = 0. As noted, this suffices to prove
the general case that when α+(φ) = p/q we have W+(kq, ψ0) = α+kq.

By a similar argument we can recode V0 to a spacetime V of the
endomorphism ψ with the property that W−(kq, ψ) = α−kq. Since ψ
is a recoding of ψ0, using part (3) of Lemma 4.7, it follows that

W+(kq, ψ) = W+(kq, ψ0) = α+kq.

Thus the second recoding did not effect the desired equality forW+. �

Proposition 4.9. Suppose U is the spacetime of the endomorphism
φ ∈ End(Y0) whose asymptotic light cone A(φ) has closing edges and
asymptotic slopes α+ = p/q and α− = p′/q. Then U can be recoded to
the spacetime V of some endomorphism ψ ∈ End(Y1) such that for all
n ≥ 0,

W+(n, ψ) = dα+ne and W−(n, ψ) = bα−nc.

Proof. By Lemma 4.8, there exists m ∈ Z+ such that

W+(m,φ) = α+m and W−(m,φ) = α−m.

By [7, Lemma 3.10], the function W+(n, φ) is subadditive. Hence
W+(m,φ) = α+m implies that W+(km, φ) ≤ α+km for all k > 0.
But we always have that W+(k, φ) ≥ α+k (see [7, Lemma 4.2]) and so
W+(km, φ) = α+km.
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For fixed i0, j0, define the ray

R(i0, j0) := {(i, j) ∈ Z2 : i ≥ i0, j = j0}
to be the positive horizontal ray emanating from (i0, j0). Then R(0, 0)
codesR(α+km, km) for all k ≥ 0. Translating, we obtain thatR(α+j, j)
codes R(α+(j + km), j + km) for all j ∈ Z. Hence the half strip
S(m) = {(i, j) : − m ≤ j ≤ 0 and i ≥ α+j} codes the quadrant
Q1(α+).

It follows from the second part of Lemma 4.5 that U can be recoded
to be the spacetime V0 of a Z-subshift endomorphism ψ0 with the
property that the horizontal ray R(0, 0) V0-codes the entire quadrant
Q1(α,V).

Since (dα+je, j) ∈ Q1(α+), the ray [0,∞) ψj0-codes [dα+je,∞) and
so W+(j, ψ0) ≤ dα+je. But by part (1) of Lemma 4.7, we have that
W+(j, ψ0) ≥ dα+je and so W+(j, ψ0) = dα+je.

We can apply an analogous argument to the spacetime V0 of ψ0 to
obtain a recoding of V0 to V , the spacetime of an endomorphism ψ
such that W−(n, ψ) = bα−nc. This recoding still has the property
that W+(n, ψ) = dα+ne because part (3) of Lemma 4.7 asserts

W+(n, ψ) = W+(n, ψ0) = dα+ne.
Thus the second recoding did not effect the desired equality forW+. �

Recall that we have defined levels in the light cone of an endomor-
phism by I(n, φ) := {i ∈ Z : (i, n) ∈ C(φ)}. Our next step is the
following lemma about light cones:

Lemma 4.10. Suppose φ is an endomorphism of a Z-subshift (Y, σ)
which has a closing asymptotic light cone A(φ) with α+ > α−. Then
there exist integers m and n0 with n0 > m > 0 such that I(−n, φ)
φm-codes I(−n+m,φ) whenever n ≥ n0.

Proof. The endomorphism φ is fixed throughout this proof and so we
simplify notation by writing I(n) for I(n, φ) and W±(n) for W±(n, φ).
Since the asymptotic slopes α+ and α− satisfy α+ > α−, we have

lim
n→∞

|I(−n)| =∞,

where | · | denotes the length of an interval.
By Proposition 4.8, there exists m > 0 such that W+(jm)/m = jα+

and W−(jm)/m = jα− for all j > 0. Indeed m can be chosen to be
the least common multiple of the denominators of α+ and α−. Also by
Proposition 4.9 we know that |I(−n)| is monotonically increasing in n.

It follows from [7, Proposition 3.4] that there is a constant C such
that the interval [0, C] φm-codes {W+(m)} and [−C, 0] φm-codes
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{W−(m)}. Hence for t > 0, we have that the interval [0, C+t] φm-codes
[W+(m),W+(m) + t] and the interval [−C − t, 0] φm-codes [W−(m)−
t,W−(m)]. Translating, it follows that for any t > 0, we have that
[W+(−n),W+(−n)+C+ t] φm-codes [W+(−n+m),W+(−n+m)+ t].
Therefore a left-aligned subinterval of I(−n) with length C + t φm-
codes a left-aligned subinterval of I(−n + m) with length t whenever
t ≤ |I(−n+m)| and otherwise φm-codes all of I(−n+m).

Let t = t(n) := |I(−n)| − C. Then by monotonicity of |I(−n)|, we
have that

t(n) > |I(−n+m)| − C.
Since |cI(−n + m)| tends to infinity with n, there exists n0 > 0 such
that n ≥ n0 implies

t = t(n) ≥ |I(−n+m)| − C >
|I(−n+m)|

2
.

Thus I(−n) codes a left-aligned subinterval of I(−n+m) with length
t which is greater than half the length of I(−n + m). An analogous
argument shows that I(−n) codes a right-aligned subinterval of I(−n+
m) with length greater than half the length of I(−n+m). We conclude
that I(−n) codes I(−n+m) when n > n0. �

5. Corner coding Sectors

5.1. Corner coding.

Definition 5.1. Suppose `1 and `2 are nonparallel rays in R2 ema-
nating from the origin labeled such that for ei 6= 0 ∈ `i, the basis
{e1, e2} is positively oriented and the angle γ between e1 and e2 satis-
fies 0 < γ < π.

Define the sector S determined by `1 and `2 to be

S = Z2∩
(
`1∪`2∪{v ∈ R2 : {e1, v, e2} is positively cyclically ordered}

)
for any nonzero e1 ∈ `1, e2 ∈ `2. The supplementary sector to S is
defined to be the sector determined by `2 and −`1 and is denoted by
Ss. The sector S is rational if the two rays determining it are rational.

Note that the sector determined by `1 and `2 is the set of points of
Z2 lying either between these rays or on them.

Definition 5.2. A rational sector S for a Z2-shift X is corner coding
if for any finite set F ⊂ S, the set S \ F X-codes all of S. A rational
sector S for a Z2-shift X is weakly corner coding if there is a finite set
F0 such that for any finite set F ⊂ S the set S \ F X-codes all of
S \ F0.
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Equivalently, the rational sector S is corner coding if the set S \
{(0, 0)} X-codes {(0, 0)} (and hence all of S). This is easily checked
by induction on the cardinality of F .

We sometimes make use of sectors whose vertex v is not at the origin,
for example S = S0 +v for some S0 a sector as defined in Definition 5.1
with its vertex at the origin. Extending the definition, we say that
such an S is corner coding if S0 is corner coding. In particular, if v
is a vertex of a polygon P , then S(v), the sector based at the vertex
v is defined to be the sector with vertex v and rays emanating from
v containing the edges of P which meet at v. Thus a sector based at
a vertex other than the origin is a translate of a sector based at the
origin.

Proposition 5.3. Suppose X is a Z2-subshift and P is a convex integer
polygon. If for each vertex v ∈ P the sector S(v) based at v is corner
coding, then for sufficiently large n > 0, nP is a coding polygon for
X. Conversely, if P is a coding polygon for X, then for each vertex
v ∈ P the sector S(v) based at v is corner coding.

Proof. Assume that for each v ∈ P , the sector S(v) is corner coding.
Then there is a finite set G(v) ⊂ S(v) with v /∈ G(v) that codes v
(see Lemma 2.5). The sector nS(v) with vertex nv has the property
that nv + G(v) codes its vertex nv. It follows that for n0 sufficiently
large, any n ≥ n0 satisfies nv + G(v) ⊂ nP and hence nP codes nv.
Repeating this for each vertex of P , we obtain n > 0 such that for
each vertex w of nP , the set nP \ {w} codes w. Hence nP is a coding
polygon.

The converse follows immediately from the definition of corner cod-
ing. �

Lemma 5.4. If a rational sector S is corner coding for X and Ψ: X →
Y is a recoding, then S is corner coding for Y .

Proof. Suppose Ψ: X → Y is a recoding via the finite set F . By the
equivalent formulation of Definition 5.2, it suffices to show that the set
Š := S \ {(0, 0)} Y -codes {(0, 0)}. But the set {(0, 0)} Ψ−1 codes F ,
and so {(i, j)} Ψ−1 codes F (i, j) := F + (i, j). Hence Š Ψ−1 codes⋃

(i,j)∈Š

F (i, j).

But ⋃
(i,j)∈Š

F (i, j) =
⋃

(r,s)∈F

((r, s) + Š)
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and since S is corner coding for X, each translate ((r, s) + Š) X-codes
(r, s). Since this holds for each (r, s) ∈ F , it follows that Š Ψ−1-codes
F . Thus Š Y -codes (0, 0) and hence S is corner coding for Y . �

Corollary 5.5. If X is a polygonal subshift with coding polygon P and
Ψ: X → Y is a recoding, then Y is a polygonal subshift with coding
polygon nP for some n > 0.

Proof. Since P is a coding polygon for X, each sector based at a vertex
of the polygon P is corner coding for X. By Lemma 5.4, each of these
sectors is corner coding for Y . Then by Proposition 5.3, for sufficiently
large n, the polygon nP is a coding polygon for Y . �

However, an example of Salo [25] shows that a system isomorphic
to a polygonal system need not itself be polygonal: he constructs a
system isomorphic to the Ledrappier system with an isomorphism that
does not preserve the polygonal property.

Proposition 5.6. If a rational sector S is weakly corner coding for X,
then there is a recoding Y of X for which S is corner coding.

Proof. By the definition of weakly corner coding, there is a finite set
F0 such that for any finite set F ⊂ S, the set S \ F X-codes all of
S \ F0. Without loss of generality we can assume that 0 ∈ F0 and F0

is convex.
Choose K to be a strip in R2 with several properties we now describe

(see Figure 1). Assume that K crosses both sides of S transversely
such that each of its edges intersects the edges of S in points of Z2.
We choose K so that S \K has two parts separated by K: the first B0

is finite and the second B∞ is unbounded. Assume further that K is
chosen so that B0 contains the finite set F0. Let D = K ∩S ∩Z2. Then
D is a finite subset whose convex hull is a trapezoid D̂. Two edges
of D̂ are antiparallel and lie in the two edges of K, and the other two
sides of D̂ lie in the two edges of S. Note that D + (i, j) ⊂ S for any
(i, j) ∈ S. We also assume that K has been chosen to be sufficiently
wide such that

D ∪ B∞ =
⋃

(i,j)∈S

(D + (i, j)).

Finally, let (m,n) be the closest point of D to (0, 0) and note that
without loss of generality we can assume that (m,n) ∈ `1.

Note that it suffices to show that the translate S(m,n) of S is
strongly corner coding.
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(0, 0)

A

B

C

(m,n)

D̂

K

B0

B∞

Figure 1: The rays from the origin (0, 0) through A and through C are the edges of the sector S,

and the rays from (m,n) through B and through C are the edges of the sector S(m,n).

Set D′ = D− (m,n) and let Ψ: X → XD′ be the canonical recoding
of X via D′ to XD′ . (We use D′ instead of D because we want D to
Ψ-code (m,n), but using the canonical recoding XD, the set D codes
(0, 0) not (m,n).). Thus with the recoding Ψ via D′, we have that D′
codes (0, 0) and so D = D′ + (m,n) Ψ-codes (m,n).

Thus if y ∈ XD, then the singleton {(m,n)} Ψ−1-codes D for the
shift X. It follows that the sector S(m,n) Ψ−1-codes⋃

(i,j)∈S

(D + (i, j)) = D ∪B∞

for the shift X. Furthermore, D ∪B∞ Ψ-codes the sector S(m,n) for
XD. Since for any finite set F the set (D∪B∞) \F X-codes D∪B∞,
it follows that S(m,n) \ F XD-codes S(m,n) for XD. Thus S(m,n)
is strongly corner coding for XD. Since S(m,n) is a translate of S, it
follows that S is strongly corner coding for XD. �

Proposition 5.7. Suppose X is a Z2-subshift and C is a component
of the open set of expansive rays for X. Then there is a basis {u1, u2}
of Z2 and a Z2-subshift Y such that:

(1) The rays ρ1 containing u1 and ρ2 containing u2 lie in C.
(2) There is a recoding Ψ: X → Y .
(3) The one-dimensional subspace L1 containing u1 has the property

that L1 ∩ Z2 codes all of Y and hence it Ψ−1-codes all of X.

In particular, Y endowed with the basis {−u1,−u2} is a spacetime U
of an endomorphism of a Z-subshift.
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Proof. Let `1 and `2 be rays bounding the component C. Choose a ray
ρ in the interior of C with irrational slope λ. Let p1/q1 and p2/q2 be suc-
cessive convergents for the continued fraction expansion of λ which are
chosen such that the subspaces Ln with slopes pn/qn have slopes suffi-
ciently close to λ that the vectors u1 = (pn, qn) and u2 = (pn+1, qn+1)
determine rays ρ1, ρ2 which lie in the interior of C. Since pn/qn and
pn+1/qn+1 are successive convergents in the continued fraction expan-
sion of λ, it follows that {u1, u2} is a basis of Z2 (see Olds [24, Section
3.4]). Switching the roles of u1 and u2 we may assume it is a positively
oriented basis.

Let L be the line containing ρ1. Since ρ1 is expansive, one of the
complementary components of L (call this one H) codes the other H ′.
By a change of basis, we can assume that L is the horizontal axis and
u1 = (−1, 0) and so u2 = (0,−1) ∈ H. See Figure 2.

u1

u2

H ′

H

`1

`2

Ss

Figure 2: The rays `1 and `2 and the sector Ss.

Since the negative horizontal axis is an expansive ray, there exists
r > 0 such that the strip S consisting of points of L∪H with distance
at most r from L X-codes the half space H ′.

Let F be the ball in Z2 of radius r around 0 and let Y be the shift
XF obtained by the canonical recoding Ψ: X → XF . Then Y together
with the basis {−u1,−u2} is the spacetime of an automorphism of the
projective subdynamics obtained by restricting Y to L. �

Lemma 5.8. Suppose S is the sector for the Z2-subshift X determined
by the rays `1 and `2. If the supplementary sector Ss (bounded by `2

and −`1) is weakly corner coding, then any ray ` in the interior of the
sector S is expansive.
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Proof. If L is the line containing `, then Ss \{(0, 0)} lies in the comple-
mentary half space H of L whose orientation determines an orientation
of L matching that of `. Let H ′ be the other complementary compo-
nent of L. Translate Ss by an element of Z2 to obtain S ′s such that
B := S ′s ∩H ′ is finite, nonempty, and such that some element b ∈ B is
coded by S ′s ∩H. Then by Lemma 2.7, H, and hence `, is expansive.
See Figure 2. �

Proposition 5.9. Suppose `1 and `2 are nonparallel closing rays for
a Z2-subshift X0 and let S0 be the sector they determine. Assume that
every ray interior to S0 is expansive. Let Ss be the supplementary sector
to S0 (the sector determined by `2 and −`1). Then X0 can be recoded
to a Z2-subshift X1 such that the sector Ss is strongly corner coding for
X1.

Note that in this lemma it is not the sector S0 which has the corner
coding property, but its supplement Ss.
Proof. By hypothesis, the set of all rays in the interior of S0 is a com-
ponent of the space of expansive rays for X. By Lemma 5.7, after
recoding we can assume that X is the spacetime (V , {u1, u2}) of an en-
domorphism ψ with u1, u2 ∈ S0. The lines containing the edges of the
asymptotic light cone A(ψ) of ψ must be the lines containing `1 and `2,
since these edges are nonexpansive and there are no other nonexpansive
rays in S0. Then Ss is the lower half of the asymptotic light cone of
this endomorphism. (See Figure 2.) It follows from Lemma 4.10 that
Ss is weakly corner coding. By Proposition 5.6, Ss is strongly corner
coding. �

5.2. Recoding to obtain polygonal shifts. The primary aim of this
section is to prove that if a Z2-shift X has finitely many nonexpansive
rays, all of which are rational and closing, then X recodes to a polygonal
shift. Hence, given a finite set E := {`i} of rational closing rays, which
includes all nonexpansive rays, we want to construct a coding polygon
(for a recoding) whose oriented edges are positively parallel to the
elements of E . Recall (see Section 2.3) that an oriented edge E is
positively parallel to a ray ` if a translate of E lies in ` with matching
orientations, meaning that they are parallel with matching orientations.

Abstractly, given a set of rays, a necessary condition for the existence
of a convex polygon with one oriented edge positively parallel to each
ray is that we can find a nonzero vector in each ray such that the sum of
the vectors is 0. These vectors are just the edge vectors of the polygon.
Thus, given the finite set E of nonexpansive rays, we want to find a
nonzero integer vector ei ∈ `i for each `i ∈ E such that

∑
ei = 0 and
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show these vectors form the edges of a polygon. We first consider a
degenerate case where the polygon turns out to be a line segment.

Lemma 5.10. Suppose X has two closing and nonexpansive antipar-
allel rays, ` and −`, which lie in the rational line L. If one of the two
components of the complement of L does not intersect any nonexpan-
sive rays, then ` and −` are the only nonexpansive rays and the line
L determines a periodic direction for X. In particular, X recodes to a
polygonal shift with a degenerate coding polygon which is a line segment
parallel to L.

Proof. Without loss of generality, we can assume that that L is vertical,
taking L to be the y-axis, and further assume that the left half space
H := {(x, y) : x < 0} is disjoint from nonexpansive rays. As we canre-
code without affecting nonexpansive directions or periodic directions.
we can do so and further assume that X is the spacetime of an endo-
morphism φ (see Proposition 5.7). Recall the left upwardly oriented
edge of the top half of the asymptotic light cone is a nonexpansive ray
and there are no other nonexpansive rays between it and the negative
x-axis (see [7, Theorem 4.4]). Hence this ray must be either ` or −`;
we assume without loss that it is `. The same argument shows that
the left downwardly oriented edge of the bottom half of the asymptotic
light cone is positively parallel to −`. It follows that both edges of the
asymptotic light cone of φ must be the line L; in other words, the light
cone is degenerate.

Since ` and −` are closing, it follows from Proposition 4.9 that
[0,∞)×{0} codes the first quadrant and hence [0,∞)×{1}. Likewise
(−∞, 0] × {0} codes the second quadrant and hence (−∞, 0] × {1}.
Therefore there exists b > 0 such that for all sufficiently large c, the
set [0, c] × {0} codes [0, c − b] × {1} and similarly [−c, 0] × {0} codes
[−c+ b, 0]×{1}. Translating the second by c, we have that [0, c]×{0}
codes [b, c] × {1}. If c > 2b this implies [0, c] × {0} codes [0, c] × {1},
and so the strip [0, c]× [0,∞) is periodic. It is easy to check that this
implies [0, c]× (−∞,∞) is periodic. Hence L is periodic, which implies
any non-vertical ray is expansive. �

Lemma 5.11. Suppose X is an infinite Z2-subshift with finitely many
nonexpansive subspaces, all of which are rational and closing.

(1) If E ⊂ R2 is a one-dimensional rational expansive subspace
of X, there exist nonexpansive rays ρ1 and ρ2 and ui 6= 0 ∈
ρi, i = 1, 2, such that u1 and u2 lie in different components of
the complement of E. In particular, there are at least 2 distinct
nonexpansive rays.
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(2) If X has only two nonexpansive rays, then they must be antipar-
allel.

(3) Suppose {`i}ni=1 is the complete set of nonexpansive rays for X
and n ≥ 3. Then there exist nonzero vectors ei ∈ `i ∩ Z2 such
that {ei}ni=0 (cyclically ordered by angle with an axis) are the
edges of a convex polygon P.

Proof. The number of nonexpansive rays is nonzero by [3, Theorem
3.7], since X is an infinite, compact metric space. Part (1) essentially
follows from [7, Theorem 4.4]. More precisely, if we make a change of
basis such that E is horizontal and recode (per Lemma 5.7), then X
is the spacetime of an endomorphism φ and the asymptotic light cone
A(φ) of φ is not empty. By the same result of [7], the ray ρ1 which
forms the the left edge of the part of the asymptotic light cone A(φ)
which is above the horizontal axis is a nonexpansive ray. Similarly the
ray ρ2 which is the left edge of the part of A(φ) which is below the
horizontal axis is a nonexpansive ray. This proves (1).

To prove (2), note that if the two rays are not antiparallel there is
an expansive subspace L with the nonzero vectors in both rays lying
on the same side. This contradicts (1).

To prove (3), we first claim that 0 lies in the interior of the convex
hull of {ui}ni=1 for any choice of ui 6= 0 ∈ `i ∩ Z2, and we proceed by
contradiction. Recall that n ≥ 3. If 0 does not lie in the interior of
the convex hull of {ui}ni=1 and ui 6= 0 ∈ `i ∩ Z2, then there is a one-
dimensional subspace L bounding a closed half space H such that ui
lies in H for all i.

If each ui lies in the interior of H, then L is expansive, a contradiction
of (1). If one ui lies in L and all the remaining ones lie in the interior
of H, then there is a subspace L′ lying arbitrarily close to L such that
all of {ui} lie in the interior of one component of its complement, again
contradicting (1).

Finally, suppose two of the ui lie in L, and any others lie in the
interior of H. Then the nonexpansive rays containing these two are
antiparallel and by Lemma 5.10, there are no others. Hence we have
contradicted the assumption that there are n ≥ 3 nonexpansive rays.

This completes the proof of the claim that 0 lies in the interior of
the convex hull of {ui}ni=1 for any choice of ui 6= 0 ∈ `i ∩ Z2.

We next proceed to the proof of the existence of P . Observe that the
claim implies that given {ui}ni=1 as above, there are {ti}ni=1 ⊂ (0,∞)
such that ∑

ti = 1 and
∑

tiui = 0.
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Since ui ∈ Z2, all of the ti are rational. Let ei = mtiui where m > 0 is
chosen such that the vectors ei ∈ Z2. Then

∑
ei = 0 and ei ∈ `i ∩ Z2.

We label the ei such they are cyclically ordered by the angle they
make with the x-axis, and form a polygonal curve P by concatenating
translates of the ei end-to-end in order. Since

∑
ei = 0, it follows that

this defines a closed polygonal curve. The vertex where the end of the
translate of ei meets the start of the translate of ei+1 has an exterior
angle equal to the angle between `i and `i+1. Since these exterior angles
are all positive and sum to 2π, it follows that P is a simple closed curve
which is convex. �

Theorem 5.12. Assume that X is a Z2-subshift with a finite nonempty
set of nonexpansive rays, each of which is rational and closing. Then
X can be recoded to be a polygonal shift with a polygon P having each
oriented edge positively parallel to one of the nonexpansive rays and
each nonexpansive ray positively parallel to an edge of P.

Proof. By part (1) of Lemma 5.11, there are at least two nonexpansive
rays. If there are exactly two, Lemma 5.10 implies that X can be
recoded to a (periodic) polygonal system with a degenerate polygon
with oriented edges positively parallel to the two expansive rays.

Hence we may assume there are at least three nonexpansive rays.
By part (3) of Lemma 5.11, there are vectors {ei} forming the edges
of a polygon T with ei ∈ `i, where `i denotes the ith nonexpansive
ray in X and the rays {`i}ni=1 are cyclically ordered by the angle made
with the positive horizontal axis. Let S i be the sector determined by
`i and `i+1. Note that the angle determined by S i is an exterior angle
of the polygon T , and there are no nonexpansive rays in the interior of
S i. By Proposition 5.9, we can recode X such that the supplementary
sector S is is corner coding. The sector S is is the sector determined by
ei+1 and −ei, meaning it is a translate of the ith vertex of T , and we
denote this vertex by by wi. By repeated recoding, we can guarantee
that each S is is corner coding, and it follows from Lemma 5.4 that
each additional recoding does not affect the corner coding properties
of previous corners. Denote the final recoding by Y .

By Lemma 2.5, there is a finite set Gi ⊂ (S is \ {(0, 0)}) such that Gi

Y -codes {(0, 0)} for each i. Setting G′i := Gi + wi, we have that G′i
Y -codes wi. Choosing n sufficiently large, we can guarantee that the
polygon P := nT contains G′i for all i. It follows that for each i, the
set P \ {wi} Y -codes {wi}, meaning that the polygon P is a coding
polygon for Y . �

In the spirit of a converse to Theorem 5.12, we have:
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Theorem 5.13. Let X be an infinite polygonal Z2 subshift. Assume
that P is a coding polygon for a recoding Y of X such that P has the
minimal number of sides among all coding polygons for recodings of X.
Then each of the oriented edges of P determines a ray which is closing
for X, and these rays are the only nonexpansive rays for X.

Proof. By Lemma 5.8, every subspace not parallel to an edge of P is
expansive. By Proposition 3.15), oriented edges that are nonexpansive
determine rays which are closing. It then follows that every oriented
edge determines a nonexpansive ray since otherwise by Theorem 5.12
we could produce a recoding with a coding polygon having fewer sides.

�

Corollary 5.14. Let X be a polygonal Z2 subshift. Then any two min-
imal recoding polygons for X which are similar differ by a translation.
In particular, if X is triangular, any two minimal recoding polygons for
X differ by a translation.

Proof. By Theorem 5.13, any two similar minimal coding polygons P
and P ′ have oriented edges which make the same angles with respect to
the axes of R2. In other words, two coding polygons differ at most by a
homothety and a translation. By translating, we can assume that they
differ only by a homothety and there are corresponding edges e and e′

which emanate from the origin. Suppose the homothety carrying P to
P ′ is multiplication by the rational r > 0. If r > 1, then P is a proper
subset of P ′ and if r < 1, then P ′ is a proper subset of P . Hence r = 1
and P = P ′.

If P and P ′ are triangles, they must have the same angles and so are
similar. �

Example 5.15. We contrast Corollary 5.14 with a polygonal system
X whose coding polygon P is an m × n rectangle whose edges are
horizontal and vertical. If we let P ′ be an (m+ 1)× (n+ 1) rectangle
containing P , then X is polygonal with respect to P ′. It is easy to
check that if XF is the canonical recoding of X via F = P , then a 2×2
square is a coding polygon for XF and is the minimal recoding polygon
for X.

6. Directional entropies of polygonal systems

6.1. Linear polygonal entropy. We turn to the study of entropy for
two dimensional shifts. If X is a Z2-shift with at least one expansive
ray, then any finite region in the shift is coded by an interval in the
expansive direction. In particular, this implies that the two dimen-
sional entropy of any Z2-shift with at least one expansive ray is zero,
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and so we restrict ourselves to linear entropy. This leads us to define a
generalization of directional entropy that depends on a polygon, rather
than a line. One of the goals of this section is to show that for a polyg-
onal Z2-subshift with polygon P , there are strong relations between
H(X,P) and the directional entropies.

For a a polygon P in R2 and r > 0, we denote the r-neighborhood
the polygon by Pr, meaning that

Pr = {u ∈ Z2 : d(u,P) < r}.
If X is a Z2-subshift and S ⊂ R2, we denote the complexity of S in
X by P (X,S), meaning that P (X,S) is the number of X-colorings of
S ∩ Z2.

Definition 6.1. If X is a Z2-subshift and P is a polygon in R2, define
the linear polygonal entropy of P by

H(X,P) = lim
r→∞

lim
n→∞

lnP (X, (nP)r)

n
.

Note that we allow the P to be a degenerate polygon, meaning that
we all P to be a line segment. If v ∈ R2 and Iv = {tv : t ∈ [0, 1]}, then
H(X, Iv) is the directional entropy hv(X) in the direction v as defined
by Milnor[21]. Abusing notation slightly, for v ∈ R2 we write H(X, v)
for H(X, Iv), where Iv denotes the interval {tv : 0 ≤ t ≤ 1} (considered
as a degenerate polygon in R2).

If X = AZ2
, then P (X,nP) is exponential in the area of nP , and

thus is an exponential function of something quadratic that is in n.
In particular, this means that in this setting H(X,P) = ∞. On the
other hand, this quantity is finite for any Z2-system with at least one
expansive ray (see the remark following Lemma 6.2).

We record the following elementary properties of polygonal entropy:

Lemma 6.2. For a Z2-subshift X, the polygonal entropy H(X,P) sat-
isfies the following properties:

(1) If v ∈ Z2, the directional entropy hv(X) corresponding to v is
equal to H(X, v).

(2) For v ∈ R2, H(X,P + v) = H(X,P).
(3) For r > 0, H(X, rP) = rH(X,P). In particular for v ∈ R2,
H(X, rv) = rH(X, v).

(4) If P1 and P2 are polygons in R2 and there are v1, v2 ∈ R2 such
that P1 + v1 ⊂ P2 ⊂ rP1 + v2 for some r ∈ Q, then

H(X,P1) ≤ H(X,P2) ≤ rH(X,P1)

Remark 6.3. If X is a Z2-subshift with at least one expansive ray, then
P (X,nP) is bounded above by a linear function of n and so H(X,P)
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is finite. To see this, note that a long interval J parallel to a one-sided
expansive ray codes a triangle T with J on one side. Taking J to be
sufficiently long, then T is large enough to contain a translate of P . It
follows from the properties in Lemma 6.2 that

H(X,P) ≤ H(X, T ) = H(X, J) <∞.
We recall the following definition (see [20] for example).

Definition 6.4. If X is a Z2-subshift, the entropy seminorm for X on
R2 is defined by

‖v‖X = hv(X).

In general ‖v‖X defines a seminorm (see [3]), but whenX is polygonal
with respect to P and no two sides of P are antiparallel, then ‖ ‖X is
either identically 0 or a norm. To prove this, we make use of a small
variation of a result of Milnor [21] (see also Boyle and Lind [3, Theorem
6.3, part 4]):

Lemma 6.5 (Milnor [21]). Suppose X is a Z2-subshift with finitely
many nonexpansive rays and assume that for each ray ` ⊂ R2, at least
one of ` or −` is an expansive ray. Then the directional entropy hv(X)
is either 0 for all v ∈ R2 or is nonzero for all v 6= 0. Thus the entropy
seminorm ‖ ‖X is either trivial or a norm.

Proof. A special case of [3, part 4, Theorem 6.9] implies that the di-
rectional entropy function hv(X) is continuous in v. Thus the set

Z = {v ∈ R2 : ‖v‖ = 1 and hv(X) = 0}
is a closed subset of the unit circle S1 ⊂ R2. We show that the set Z
is also open, and hence is either empty or is all of S1.

Let v 6= 0 and let J be an interval in R2 that is parallel to v and
contains 0. Then for some n, r > 0, the set (nJ) codes a rectangle R on
one side of nJ with two of its edges parallel to J . If hv(X) = 0, then
H(X, J) = 0 implies H(X,R) = 0. This implies that H(X, I) = 0 for
any interval I with endpoints on the ends of R which are perpendicular
to nJ . But the unit vectors vI parallel to such I (with orientation
determined by the orientation nJ inherits from v) form a neighborhood
of v in S1. Since for each such vI we have hvI = 0, it follows that the
set Z is open. �

Corollary 6.6. Suppose X is a polygonal Z2-shift with a coding polygon
having no pairs of antiparallel sides. Then the entropy seminorm ‖ ‖X
is either trivial or a norm.

Proof. By Proposition 3.2, X satisfies the hypotheses of Lemma 6.5
and the statement follows. �
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6.2. Triangular Z2-systems. Define the girth G(X,P) of a polygon
P in the direction v for some nonzero v ∈ Z2 to be the maximal length
of a line segment that is the intersection of P with a line parallel to
v. Equivalently, the girth is the smallest distance between two parallel
lines which enclose P and are orthogonal to v.

For triangles, we are able to say more:

Proposition 6.7. Suppose X is a triangular Z2-subshift with coding
polygon T . If v ∈ R2, then the directional entropy of X corresponding
to a vector v is

hv(X) =
H(X, T )

G(T , v)
‖v‖.

This means that for a triangular polygonal system X, depending on
whether or not H(X, T ) = 0, the directional entropy hv(X) is either
identically 0 or is nonzero for all v 6= 0.

Proof. Assume first that the vector v is not parallel to one of the sides
of T . The girth G(T , v) is the length of a line segment J parallel to
v with one end on a vertex of T (which we assume without loss to be
(0, 0)) and the other end on the side of T opposite to this vertex. The
vector from one end of J to the other is

G(T , v)
v

‖v‖
.

Hence

H(X, J) =
G(T , v)

‖v‖
hv(X),

and so

hv(X) =
H(X, J)

G(T , v)
‖v‖.

We complete the proof by showing that H(X, J) = H(X, T ). The
interval J divides T into two smaller triangles U and W which share
the common side J . The triangle U shares a vertex u 6= 0 with T
and W shares a vertex w 6= 0 with T . The sectors S(u) and S(w)
whose edges are positively parallel to the edges emanating from u and
w, respectively, are corner coding sectors for X. Let L be the subspace
containing J and choose r > diam(P) so that all the translates P (e) :=
P+e, with e ∈ L, lie in Lr. Note that for sufficiently large n, the union
of the translates P (e) which lie in nP codes all of nU .

Therefore there exists n0 > 0 and s ∈ (0, 1] such that (nJ)r X-
codes (nU)sr for all n > n0. Similarly, we can assume that (nJ)r
X-codes (nW )sr for all n > n0 and hence (nJ)r X-codes (nT )sr. By
the definition of H(X, .), we conclude H(X,nJ) ≥ H(X,nT ) for all



POLYGONAL Z2-SUBSHIFTS 41

n > n0. Clearly (nT )r X-codes (nJ)r and so by the definition of
H(X, .) and part (4) of Lemma 6.2, we have H(X,nJ) ≤ H(X,nT ).
Thus H(X, J) = H(X, T ).

If v is parallel to one of the sides J of T , then that side has length
G(T , v). A similar argument shows that H(X, J) = H(X, T ), and
again the result follows. �

Corollary 6.8. Suppose X is a rational triangular Z2-subshift and
suppose E(T ) is the set of oriented edges of T . If H(X, T ) 6= 0, then
the unit sphere in the entropy norm ‖ ‖X is

1

H(X, T )
SX

where SX is the convex hexagon whose oriented edges are {±e : e ∈
E(T )}.

Proof. If e is an oriented edge of T , then the girth G(T , e) = ‖e‖.
Thus by Proposition 6.7, it follows that he(X) = H(X, T ). Hence if e
is a positively or negatively oriented edge of T , then he(X) lies on the
sphere of radius H(X, T ) in the norm ‖ ‖X . Suppose w0 is a vertex of
T and e1, e2 are the edges emanating from w0. If v is a vector from w0

to a point on the opposite side of T , then the girth G(T , v) = ‖v‖. So
by Proposition 6.7 we have hv(X) = H(X, T ) and hence v lies on the
sphere of radius H(X, T ) in the norm ‖ ‖X . �

Corollary 6.9. Suppose X, Y are triangular Z2-subshifts with non-
trivial entropy norms and assume both are polygonal with respect to the
same rational triangle T . Then there is a constant c > 0 such that the
entropy norms of X and Y satisfy ‖v‖X = c‖v‖Y for all v ∈ R2.

Proof. Let

c =
H(X, T )

H(Y, T )
.

The result then follows from Corollary 6.8. �

Note this implies that if X, Y are polygonal Z2-subshifts with respect
to the same triangle T , then the ratio of their directional entropies of
X in the direction v is independent of the choice of v. The Z2-subshifts
X and Y can be different and even have different alphabets, but the
shape of the unit ball in the entropy norm depends only on the triangle
T not the shift X.

Next we turn to the relationship between entropy norms ‖ ‖X and
‖ ‖Y when X and Y with respect to the same polygon P , but with no
restriction on the number of edges in the polygon.
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Proposition 6.10. Suppose X is a polygonal Z2-subshift with coding
polygon P and assume that P has no antiparallel sides. If F(P) is
the family of all Z2-subshifts which are polygonal with respect to P and
which have nontrivial entropy norms, then there is a uniform dilatation
constant D > 0, depending only on P, which has the property that for
all u, v ∈ S1 we have

1

D
≤ hu(X)

hv(X)
≤ D

for all X ∈ F(P).

Thus the conclusion means that F(P) is a quasi-conformal family.

Proof. Suppose v is a unit vector and let L1 and L2 be the supporting
lines for P which are parallel to v. Since P has no antiparallel sides, at
least one of these lines contains a vertex w of P . Without loss, assume
that this line is L1. Let Tv be the unique triangle such that

(1) The vertex w of P is also a vertex of Tv.
(2) The two edges of Tv which meet at w contain the two edges of
P which meet at w.

(3) The other two vertices of Tv lie in L1.

LetW := W (v) be the side of Tv which lies in L1 and let |W | = |(W (v))|
denote the length of W .

Because the vertex w of P is corner coding, if we replace P by nP
for some large n > 0 (still calling it P), then for a given r > 0 there
is s ∈ (0, 1] such that Wr X-codes Tsr. Clearly Tr X-codes Wr.
Thus it follows from Lemma 6.2 that H(X,W ) = H(X,Tv). Choose
K := Kv > 0 sufficiently large such that a translate of KP contains
Tv. Then K depends only on P and v. Since P ⊂ Tv, we have that

(6.1) H(X,P) ≤ H(X,Tv) ≤ K(v)H(X,P).

Note that hv(X) = CvH(X,Tv), where Cv = |(W (v))| which depends
only on P and v. Since hv(X) is Lipschitz in v with a Lipschitz constant
independent of X (see [3, part 4, Theorem 6.9]) there is a neighborhood
Nv of v in S1 which is independent of X and such that for all u ∈ Nv,

Cv
2
H(X,Tv) ≤ hu(X) ≤ 2CvH(X,Tv).

Since S1 is compact, there is a finite subcovering {Nvi}mi=1 of {Nv}. Let
K = maxK(vi). Then Equation 6.1 implies that

H(X,P) ≤ H(X,Tvi) ≤ KH(X,P)
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for all 1 ≤ i ≤ m. Setting C = maxCvi and c = minCvi , then for each
i and u ∈ Nvi

c

2
H(X,P) ≤ c

2
H(X,Tvi) ≤ hu(X) ≤ 2CH(X,Tvi) ≤ 2CKH(X,P).

Therefore
c

2
H(X,P) ≤ hu(X) ≤ 2CKH(X,P)

for all u ∈ S1.
It follows that for all u1, u2 in S1

hu1(X)

hu2(X)
≤ 2CKH(X,P)

c
2
H(X,P )

=
4CK

c
.

Setting D := 4CK
c

, since C,K and c are independent of X, the result
follows. �

7. Further directions

We have several questions we are unable to answer, and we collect
some of these in this section. The first is if there is a canonical way to
represent a polygonal system:

Question 7.1. If X is an infinite polygonal system, are minimal re-
coding polygons for X unique up to translation?

Corollary 5.14 shows this holds when X has a triangular coding poly-
gon and Example 5.15 shows that this holds when X has a rectangular
coding polygon with sides parallel to the axes, However, even adding
an assumption that the polygonal system has no antiparallel sides, we
can not answer this question.

One of our results has the hypothesis of a coding polygon with no
two antiparallel sides, or equivalently no two nonexpansive rays with
opposite directions. We ask:

Question 7.2. Does the conclusion of Corollary 6.6 remain valid with-
out the assumption of no antiparallel sides? In other words, is the en-
tropy seminorm for a polygonal system always either a norm or trivial?

There is an example of Hochman [13] which has exactly two nonex-
pansive rays, each of which is the negative of the other and neither of
which is closing. Both this example and its Cartesian product with a
polygonal system are not polygonal (see Proposition 3.12). It seems
likely that there exists an example with finitely many nonexpansive
rays, no two of which are antiparallel, with at least one of them not
closing, but we do not know how to construct such an example.
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In Corollary 6.8, we showed that for a triangular system whose coding
triangle T has H(X, T ) 6= 0, the unit sphere in the entropy norm is
determined by the triangle T . In fact this sphere is

1

H(X, T )
SX ,

where SX ddnotes the convex hexagon whose oriented edges are {±e : e ∈
E(T )}.
Question 7.3. Does the analogous result hold for systems that are not
necessarily triangular polygonal systems? More precisely, if X has a
minimal recoding polygon P with n sides and H(X,P) 6= 0, must the
unit sphere in the entropy norm of X be the 2n-gon

1

H(X,P)
SX ,

where SX denotes the convex polygon whose oriented edges are {±e : e ∈
E(P)} and E(P) denotes the set of oriented edges of P?

This question may be easier to answer under the additional hypoth-
esis that P has no antiparallel sides. A positive answer to this ques-
tion would imply a positive answer to Question 7.1 for systems with
H(X,P) 6= 0, meaning that for such systems, the minimal recoding
polygon for such an X is unique.

In Example 3.9 we observed that any polygonal shift X with coding
polygon P is a closed invariant subshift of X̂, an SFT which is polygonal
and has the same coding polygon P . However, at least a priori the SFT
X̂ depends on P . This leads to the following:

Question 7.4. If P and P ′ are two coding polygons for X is the con-
struction of X̂ in Example 3.9 independent of the polygon? More gen-
erally how canonical is an enveloping SFT X̂, and in particular is it
the smallest SFT containing X with the same alphabet as X?

Results of Einsiedler [8] show that for a large class of algebraic sys-
tems defined over a compact abelian group, including the Ledrappier
example, there are uncountably many invariant subspaces realizing dis-
tinct directional entropies. We ask if this is true in greater generality.

Question 7.5. If X is a nontrivial polygonal shift (not necessarily al-
gebraic), is there a rational direction for which there uncountably many
closed Z2-invariant subspaces of X realizing distinct directional topo-
logical entropies? In particular does this hold if X is a polygonal SFT?

Is it possible that all values in an open interval could be realized as
the directional entropies in a fixed direction of closed subsytems of X.
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Question 7.6. Are there higher dimensional analogues for our results.
What is the appropriate definition of a polyhedral Zd-shift?
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