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Abstract. The automorphism group of a one dimensional shift space over a fi-
nite alphabet exhibits different types of behavior: for a large class with positive
entropy, it contains a rich collection of subgroups, while for many shifts of zero
entropy, there are strong constraints on the automorphism group. We view this
from a different perspective, considering a single automorphism (and sometimes en-
domorphism) and studying the naturally associated two dimensional shift system.
In particular, we describe the relation between nonexpansive subspaces in this two
dimensional system and dynamical properties of an automorphism of the shift.

1. Introduction

Suppose Σ is a finite alphabet and X ⊂ ΣZ is a closed set that is invariant under
the left shift σ : ΣZ → ΣZ. The collection of automorphisms Aut(X, σ), consisting of
all homeomorphisms φ : X → X that commute with σ, forms a group (under compo-
sition). A useful approach to understanding a countable group G is knowing if it has
subgroups which are isomorphic to (or are homomorphic images of) simpler groups
which are relatively well understood, such as matrix groups, and in particular, lat-
tices in classical Lie groups. While the automorphism group of a shift is necessarily
countable (as an immediate corollary of the Curtis-Hedlund-Lyndon Theorem [13],
any automorphism φ : X → X is given by a block code), there are numerous results
in the literature showing that the automorphism group of the full shift, and more gen-
erally any mixing shift of finite type, contains isomorphic copies of many groups: this
collection includes, for example, any finite group, the direct sum of countably many
copies of Z, the free group on any finite number of generators, and the fundamental
group of any 2-manifold (see [13, 4, 15]). In light of these results, it is natural to ask
if there is any finitely generated (or even countable) group which fails to embed in
any such automorphism group, meaning any group of the form Aut(X, σ). A partial
answer is given in [1], where it is shown that if (X, σ) is a subshift of finite type then
any group that embeds in the automorphism group must be residually finite. At the
other end of the complexity spectrum for (X, σ), there has been recent work showing
that Aut(X, σ) is significantly more tame for a shift with very low complexity (see
for example [6, 7, 9]).

Instead of viewing the entire group, we focus on the structure inherent in a single
automorphism φ ∈ Aut(X, σ), as studied for example in [13, 1, 15, 16]. Given an
automorphism φ, there is an obvious way to associate a Z2-shift action, which we
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call the spacetime of φ (in a slightly different setting, this is called the complete
history by Milnor [19] and is referred to as the spacetime diagram in the cellular
automata literature). We make use of a particular subset of the spacetime, dubbed
the light cone, that is closely related to the notion of causal cone discussed in [19].
We show that the light cone gives a characterization of a well studied structural
feature of a Z2-shift, namely the boundary of a component of expansive subspaces
(see [3] and [14]). In particular, in §4 we show that the edges of a light cone for φ
are always nonexpansive subspaces in its spacetime (the precise statement is given in
Theorem 4.4).

We also provide a complement to this result: for many Z2-subshifts with nonex-
pansive subspace L, the system is isomorphic to the space time of an automorphism
φ by an isomorphism which carries L to an edge of the light cone of φ.

We then use these structural results to describe obstructions to embedding in the
automorphism group of a shift. An important concept in the study of lattices is the
idea of a distortion element, meaning an element whose powers have sublinear growth
of their minimal word length in some (and hence any) set of generators. In §5, we
introduce a notion of range distortion for automorphisms, meaning that the range
(see Section 2.1 for the definitions) of the associated block codes of iterates of the
automorphism grow sublinearly. An immediate observation is that if an automor-
phism is distorted in Aut(X) (in the group sense), then it is also range distorted.
We also introduce a measure of non-distortion called the asymptotic spread A(φ) of
an automorphism φ and show that the topological entropies of φ and σ satisfy the
inequality

htop(φ) ≤ A(φ)htop(σ).

This recovers an inequality of Tisseur [24]; his context is more restrictive, covering the
full shift endowed with the uniform measure. We do not appeal to measure theoretic
entropy and our statement applies to a wider class of shifts.

This inequality proves to be useful in providing obstructions to various groups
embedding in the automorphism group. These ideas are further explored in [8].

Acknowledgement. We thank Alejandro Maass for helpful comments and for point-
ing us to references [22, 24], and we thank Samuel Petite for helpful conversations.
We also thank the referee for numerous comments that improved our article.

2. Background

2.1. Shift systems and endomorphisms. We assume throughout that Σ is a finite
set (which we call the alphabet) endowed with the discrete topology and endow ΣZ

with the product topology. For x ∈ ΣZ, we write x[n] ∈ Σ for the value of x at n ∈ Z.
The left shift σ : ΣZ → ΣZ is defined by (σx)[n] = x[n+1], and is a homeomorphism

from ΣZ to itself. We say that (X, σ) is a subshift, or just a shift when the context is
clear, if X ⊂ ΣZ is a closed set that is invariant under the left shift σ : ΣZ → ΣZ.

Standing assumption: Throughout this article, (X, σ) denotes a shift system
and we assume that the alphabet Σ of X is finite and that the shift (X, σ) is infinite,
meaning that |X| =∞.
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Definition 2.1. An endomorphism of the shift (X, σ) is a continuous surjection
φ : X → X such that φ ◦ σ = σ ◦ φ. An endomorphism which is invertible is called
an automorphism The group of all automorphisms of (X, σ) is denoted Aut(X, σ), or
simply Aut(X) when σ is clear from the context. The semigroup of all endomorphisms
of X with operation composition is denoted End(X, σ), or simply End(X). We also
observe that End(X, σ)/〈σ〉, the set of cosets of the subgroup 〈σ〉, is naturally a
semigroup with multiplication φ〈σ〉ψ〈σ〉 defined to be φψ〈σ〉.

For an interval [n, n + 1, . . . , n + k − 1] ∈ Z and x ∈ X, we let x[n, . . . , n + k − 1]
denote the element a of Σk with aj = x[n+ j] for j = 0, 1, . . . , k−1. Define the words
Lk(X) of length k in X to be the collection of all [a1, . . . , ak] ∈ Σk such that there
exist x ∈ X and m ∈ Z with x[m + i] = ai for 1 ≤ i ≤ k. The length of a word
w ∈ L(X) is denoted by |w|. The language L(X) =

⋃∞
k=1 Lk(X) is defined to be the

collection of all finite words.
The complexity of (X, σ) is the function PX : N → N that counts the number of

words of length n in the language of X. Thus

PX(n) =
∣∣Ln(X)

∣∣.
The exponential growth rate of the complexity is the topological entropy htop of the
shift σ. Thus

htop(σ) = lim
n→∞

log(PX(n))

n
.

This is equivalent to the usual definition of topological entropy using (n, ε)-separated
sets (see, for example [18]).

A map φ : X → X is a sliding block code if there exists R ∈ N such that for any
x, y ∈ X with x[i] = y[i] for −R ≤ i ≤ R, we have that φ(x)[0] = φ(y)[0]. The least
R such that this holds is called the range of φ.

By the Curtis-Hedlund-Lyndon Theorem [13], any endomorphism φ : X → X of a
shift (X, σ) is a sliding block code. In particular, End(X) is always countable.

Definition 2.2. Suppose (X, σ) and (X ′, σ′) are shifts and φ ∈ End(X, σ) and φ′ ∈
End(X ′, σ′) are endomorphisms. We say that φ and φ′ are conjugate endomorphisms
if there is a homeomorphism h : X → X ′ such that

h ◦ σ = σ′ ◦ h and h ◦ φ = φ′ ◦ h.
A homeomorphism h satisfying these properties is a sliding block code. If φ and φ′

both lie in Aut(X, σ), then φ and φ′ are conjugate if and only if they are conjugate
as elements of the group Aut(X, σ).

A shift X is irreducible if for all words u, v ∈ L(X), there exists w ∈ L(X) such
that uwv ∈ L(X).

Definition 2.3. A shift (X, σ) is a subshift of finite type provided it is defined by a
finite set of excluded words. In other words, there is a finite set F ⊂ L(ΣZ) such that
x ∈ X if and only if there are no n ∈ Z and k > 0 such that x[n, . . . , n+ k] ∈ F .

We make use of the following proposition due to Bowen [2]. A proof can be found
in [18, Theorem 2.1.8].
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Proposition 2.4. A shift (X, σ) is a shift of finite type if and only if there exists
n0 ≥ 0 such that whenever uw,wv ∈ L(X) and |w| ≥ n0, then also uwv ∈ L(X).

2.2. Higher dimensions. More generally, one can consider a multidimensional shift
X ⊂ ΣZd

for some d ≥ 1, where X is a closed set (with respect to the product
topology) that is invariant under the Zd action (T ux)(v) = x(u + v) for u ∈ Zd. We
refer to X with the Zd action as a Zd-subshift and to η ∈ X as an X-coloring of Zd.

We note that we have made a slight abuse of notation in passing to the multidimen-
sional setting by denoting the entries of an element x ∈ X by x(u) (where u ∈ Zd),
rather than x[u] as we did for a one dimensional shift. This is done to avoid confusion
with interval notation, as we frequently restrict ourselves to the two dimensional case,
writing x(i, j) rather than the possibly confusing x[i, j].

Definition 2.5. Suppose X ⊂ ΣZd
is a Zd-subshift, endowed with the natural Zd-

action by translations. If S ⊂ Zd is finite and α : S → Σ, define the cylinder set

[S, α] := {η ∈ X : the restriction of η to S is α}.
The set of all cylinder sets forms a basis for the topology of X. The complexity
function for X is the map PX : {finite subsets of Zd} → N given by

PX(S) :=
∣∣{α ∈ ΣS : [S, α] 6= ∅}

∣∣
which counts the number of colorings of S which are restrictions of elements of X.
If α : S → Σ, is the restriction of an element of X we say it extends uniquely to an
X-coloring if there is exactly one legal η ∈ X whose restriction to S is α. Similarly, if
S ⊂ T ⊂ Zd and if α : S → Σ is such that [α,S] 6= ∅, then we say α extends uniquely
to an X-coloring of T if there is a unique β : T → Σ such that [β, T ] 6= ∅ and the
restriction of β to S is α.

Note that as in the one dimensional setting, the complexity function is translation
invariant, meaning that for any v ∈ Zd, we have

PX(S) = PX(S + v).

2.3. Expansive subspaces. An important concept in the study of higher dimen-
sional systems is the notion of an expansive subspace (see Boyle and Lind [3] in
particular). For our purposes it suffices to restrict to the case d = 2.

Definition 2.6. Suppose X ⊂ ΣZ2
is a Z2-subshift and L is a one-dimensional sub-

space of R2. We consider Z2 ⊂ R2 in the standard way. For r > 0, define

L(r) = {z ∈ Z2 : d(z, L) ≤ r}.
We say that the the line L is expansive if there exists r > 0 such that for any
η ∈ X, the restriction η|L(r) extends uniquely to an X-coloring of Z2. We call the
one-dimensional subspace L nonexpansive if it fails to be expansive.

It is also important for us to consider one-sided expansiveness for a subspace L. To
define this we need to specify a particular side of a one-dimensional subspace. For this
we require an orientation of R2 (or Z2) and an orientation of the subspace. We use
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the standard orientation of R2 given by the two form ω = dx∧ dy or equivalently the
orientation for which the standard ordered basis {(1, 0), (0, 1)} is positively oriented.

If L is an oriented one-dimenstional subspace of R2 then the orientation determines
a choice of one component L+ of L \ {0} which we call the positive subset of L. We
then denote by H+(L) the open half space in R2\L with the property that ω(v, w) > 0
for all v ∈ L+ and w ∈ H+(L). Alternatively, H+(L) is the set of all w ∈ R2 such
that {v, w} is a positively oriented basis of R2 whenever v ∈ L+ and w ∈ H+(L).
Equivalently

H+(L) = {w ∈ R2 : ivω(w) > 0}
whenever v ∈ L+ and iv is the interior product. The half space H−(L) is defined
analogously or by H−(L) = −H+(L).

Definition 2.7. Suppose L is an oriented one-dimenstional subspace of R2, i.e. it has
a distinguished choice of one component L+ of L\{0} . Then L is positively expansive
if there exists r > 0 such that for every η ∈ X, the restriction η|L(r) extends uniquely
to the half space H+(L). Similarly L is negatively expansive if the restriction η|L(r)
extends uniquely to the half space H−(L).

Proposition 2.8. The oriented subspace L is positively expansive if for every η ∈ X,
the restriction η|H−(L) extends uniquely to an X-coloring of Z2. Equivalently L fails
to be positively expansive if and only if there are colorings η, ν ∈ X such that η 6= ν,
but η(i, j) = ν(i, j) for all (i, j) ∈ H−(L).

Proof. Suppose L is positively expansive and η, ν ∈ X are such that η(i, j) = ν(i, j)
for all (i, j) ∈ H−(L). Find r such that for any ξ ∈ X, ξ|L(r) extends uniquely to the
half-space H+(L). Let v ∈ H−(L) be such that the functions ηv, νv ∈ X defined by
ηv(x) = η(x + v) and νv(x) = ν(x + v) have the same restriction to L(r) ∪ H−(L).
Then by positive expansiveness of L, ηv and νv coincide on H+(L) and hence on all
of Z2. So ηv = νv and it follows that η = ν. In other words, the restriction of η to
H−(L) extends uniquely to an X-coloring of Z2.

Now suppose that for all η ∈ X the restriction η|H−(L) extends uniquely to an X-
coloring of Z2. We claim that L is positively expansive. For contradiction, suppose
that for all r > 0 there exist ηr, νr ∈ X such that ηr|L(r) = νr|L(r) but there exists
ar ∈ H+(L) such that ηr(ar) 6= νr(ar). Define

Br = {(i, j) ∈ H+(L) : ηr(i, j) 6= νr(i, j)}.
Let H be the intersection of all closed half-planes (in R2) contained in H+(L) that
contain Br. Fix some x ∈ Br. These half-planes are linearly ordered by inclusion, all
of them are contained in H+(L), and all of them contain x. Thus their intersection
is a closed half-plane (which might not have any integer points on its boundary).
Therefore we can find a closed half-plane J ⊆ H+(L), with integer points on its
boundary, that contains H and is such that for all y ∈ J ∩Z2 there exists z ∈ H ∩Z2

with ‖y − z‖ ≤ 1. Choose an integer vector wr ∈ R2 \ J such that there exists vr ∈
Br∩Z2 satisfying ‖wr−vr‖ ≤ 2. Finally, define ηr,wr , νr,wr ∈ X by ηr,wr(y) = ηr(y+wr)
and νr,wr(y) = νr(y+wr). Note that although vectors wr are not bounded, we shift η
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and ν so that wr is moved to the origin. This shift is in the direction taking H−(L)
into itself and thus preserves orientation in R2, ensuring that the shifted functions still
agree on H−(L). The purpose of the shift is that the point at which the functions
disagree now can be bound in a bounded set.) Then ηr,wr |H−(L) = νr,wr |H−(L) but
there exists tr ∈ H+(L) ∩ ([−2, 2]× [−2, 2]) such that ηr,wr(tr) 6= νr,wr(tr). We pass
to a subsequence r1 < r2 < · · · such that tr is constant. By compactness of X,
we can pass if needed to a further subsequence along which ηrk,wrk

and νrk,wrk
both

converge; call these limiting functions η∞ and ν∞. By construction η∞(tr1) 6= ν∞(tr1),
but η∞|H−(L) = ν∞|H−(L), a contradiction. �

Proposition 2.9. Assume that X ⊂ ΣZ2
is a Z2-subshift and L is a one-dimensional

oriented subspace in the u, v-plane. Suppose there is a convex polygon P ⊂ R2 such
that

(1) There is a finite set F ⊂ Z2 such that P is the convex hull of F .
(2) There is a unique e ∈ F which is an extreme point of P and which lies in

H+(L).
(3) For any η ∈ X, the restriction of η to F \ {e} extends uniquely to F .

Then L is positively expansive.

Proof. For contradiction, suppose not. Let η, ν ∈ X be such that η|H−(L) = ν|H−(L),
but η 6= ν. Define B = {(i, j) ∈ H+(L) : η(i, j) 6= ν(i, j)}. For each b ∈ B, define
d(b, L) to be the distance from b to L and let

I = inf{d(b, L) : b ∈ B}.
For each f ∈ F \ {e}, let d(f, e) be the distance between lines Le and Lf parallel to
L that pass through e and f , respectively. Since e ∈ H+(L) and f /∈ H+(L), for all
f ∈ F \ {e}, we have Le 6= Lf . Thus

ε := min{d(f, e) : f ∈ F \ {e}} > 0.

If there exists b ∈ B such that d(b, L) = I, then define η̃, ν̃ ∈ X by η̃(x) = η(x+b−e)
and ν̃(x) = ν(x + b − e). Then η̃|H−(L) = ν̃|H−(L) but η̃(e) 6= ν̃(e). This contradicts
the fact that the restriction of η to F \ {e} extends uniquely to an X-coloring of F .

If for all b ∈ B we have d(b, L) > I, then there exists b ∈ B such that d(b, L)− I <
ε/2. Define η̃, ν̃ ∈ X by η̃(x) = η(x+b−e) and ν̃(x) = ν(x+b−e). Then η̃(e) 6= ν̃(e),
but η̃|F\{e} = ν̃|F\{e}, again a contradiction. �

Examples 2.10.

(1) Suppose (X, σ) is a shift and φ = σk, k 6= 0. If L is the line i = kj and
L+ = L∩{(u, v) : v > 0}, then L is neither positively or negatively expansive,
but all other lines are expansive.

(2) (Ledrappier’s three dot system [17]). With the alphabet Σ = {0, 1}, consider

the subset of ΣZ2
defined by

x(i, j) + x(i+ 1, j) + x(i, j + 1) = 0 (mod 2)

for all i, j ∈ Z. Other than the horizontal axis, the vertical axis, and the
reflected diagonal y = −x, every one-dimensional subspace is expansive. None
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of these three subspaces is expansive, but each of them is either positively or
negatively expansive.

(3) (Algebraic examples; see [3, 10] for further background). With the alphabet

Σ = {0, 1}, consider the subset of ΣZ2
defined by

x(i, j) + x(i+ 1, j + 1) + x(i− 1, j + 2) = 0 (mod 2)

for all i, j ∈ Z. It is not difficult to see that the subspaces parallel to the sides
of the triangle with vertices (0, 0), (1, 1), and (−1, 2) each fail to be one of
positively or negatively expansive (but not both). All other one-dimensional
subspaces are expansive.

3. The spacetime of an endomorphism

3.1. φ-coding. We continue to assume that (X, σ) is an infinite shift over the finite
alphabet Σ.

Some of the results in this section overlap with results of Nasu [21], where he
studies endomorphisms of subshifts that are resolving, which roughly speaking is a
notion of being determined. While his language and terminology are different from
ours, Lemma 3.4 and Proposition 3.5 correspond to results in Section 6 of [21] and
the limiting objects given in Definition 3.12 and some of their properties (portions of
Proposition 3.13) are described in Section 9 of [21].

Definition 3.1. If φ ∈ End(X, σ) is an endomorphism we say that a subset A ⊂ Z
φ-codes (or simply codes if φ is clear from context) a subset B ⊂ Z if for any x, y ∈ X
satisfying x[a] = y[a] for all a ∈ A, it follows that φ(x)[b] = φ(y)[b] for all b ∈ B.

We remark that if φ ∈ End(X, σ) is an endomorphism then, as φ is determined
by a block code of some range (say R), the ray (−∞, 0] φ-codes the ray (−∞,−R].
Similarly the ray [0,∞) φ-codes the ray [R,∞). Of course, it could be the case that
(−∞, 0] φ-codes a larger ray than (−∞,−R]. This motivates the following definition:

Definition 3.2. If φ ∈ End(X, σ) and n ≥ 0, let W+(n, φ) be the smallest element
of Z such that the ray [W+(n, φ),∞) is φn-coded by [0,∞) meaning that if x and y
agree on [0,∞), then necessarily φn(x) and φn(y) agree on [W+(n, φ),∞) and this
is the largest ray with that property. Similarly W−(n, φ) is the largest element of Z
such that the ray (−∞,W−(n, φ)] is φn-coded by (−∞, 0]. When φ is clear from the
context, we omit it from the notation and denote W+(n, φ) and W−(n, φ) by W+(n)
and W−(n), respectively.

Note that for n ≥ 1 we have W+(n, φ) = W+(1, φn) and W−(n, φ) = W−(1, φn).
These quantities have been studied in [22, 24] in order to define Lyapunov exponents
for cellular automata, and then used to study the speed of propagation of perturba-
tions with respect to a shift invariant measure. They use this to give bounds on the
entropy of the measure in terms of these (left and right) Lyapunov exponents. We do
not consider the role of an invariant measure in this article, but we give an estimate
for topological entropy closely related to a result of [24] (see our Theorem 5.13 below).



8 VAN CYR, JOHN FRANKS, AND BRYNA KRA

The following result, known as Schwartzman’s Theorem, has been frequently re-
discovered. It was proven in Schwartzman’s Thesis [23] and an account of the result
seems to have first been published in [12] (see [3] for further references.)

Theorem 3.3. If X is an infinite one-dimensional subshift, then there exist x, y ∈ X
such that x[0,∞) = y[0,∞) but x[−1] 6= y[−1], and there exist w, z ∈ X such that
w(−∞, 0] = z(−∞, 0] but w[1] 6= z[1].

We check that W+(n, φ) and W−(n, φ) are well-defined:

Lemma 3.4. If X is infinite, then W+(n, φ) > −∞ and W−(n, φ) <∞.

Proof. This is an immediate consequence of Schwartzman’s Theorem!3.3.. �

By Lemma 3.4, the function Θ+
n : Σ[0,∞) → Σ[W+(n,φ),∞) defined by

Θ+
n (x[0,∞)) = φn(x)[W+(n, φ),∞)

is well defined for all n ≥ 0, as is the analogous function Θ−n : Σ(−∞,0] → Σ(−∞,W−(n,φ)].
These functions are continuous:

Proposition 3.5. The functions Θ+
n and Θ−n are continuous. In particular, there

exists k = k(n, φ) > 0 such that [0, k] φn-codes {W+(n, φ)} and [−k, 0] φn-codes
{W−(n, φ)}.

Proof. Assume Θ+
n is not continuous. Then there exist xj and y in X and r ≥

W+(n, φ) such that xj[0,mj] = y[0,mj], for a sequence {mj} with lim
j→∞

mj = ∞,

and such that φ(xn)[r] 6= φ(y)[r]. By passing to a subsequence, w can assume
that there exists z ∈ X with lim

n→∞
xn = z. Clearly z[0,∞) = y[0,∞) and hence

φn(z)[W+(n, φ),∞) = φ(y)[W+(n, φ),∞). In particular, φ(z)[r] = φ(y)[r], and so
by continuity of φ we conclude that lim

n→∞
φ(xn)[r] = φ(z)[r] = φ(y)[r]. But since

φ(xn)[r] 6= φ(y)[r], we also have that lim
n→∞

φ(xn)[r] 6= φ(y)[r], a contradiction. Thus

Θ+
n is continuous, and a similar argument shows that Θ−n is continuous. �

3.2. The spacetime of φ.

Definition 3.6. If φ ∈ End(X, σ) is an endomorphism, its φ-spacetime U = U(φ) is
a Z2-subshift together with a preferred ordered basis for Z2 which defines what we
call the “horizontal” and “vertical” directions. It is defined to be the closed subset
of x ∈ ΣZ2

such that for all i ∈ Z and j ≥ 0 φj(x)[i] = x(i, j).

Thus the rows of U are elements of X with row n equal to φ of row n − 1. There
is an action of Z2 on U given by having (i, j) shift i times in the horizontal direction
and j times in the vertical direction. A vertical shift by j ≥ 0 can also be viewed as
applying φj to each row of U .

It follows immediately from the definition of expansiveness (Definition 2.6) that
the horizontal axis in a spacetime U of an automorphism is always an expansive
subspace for the Z2-subshift U with the Z2-action by translations. Also if L is the
horizontal axis in the spacetime of an endomorphism and L+ is the intersection of
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L with the positive horizontal axis, then H+(L) is the upper half space and L is
positively expansive.

Note that given a spacetime U (including the preferred basis of Z2), one can extract
the shift (X, σ) by taking X to be the Σ-colorings of Z obtained by restricting the
colorings in U to the i-axis (j = 0). Likewise, one can extract the endomorphism φ by
using the fact that if y ∈ U and x ∈ X is given by x[i] = y[i, 0], then φ(x)[i] = y[i, 1].

A concept somewhat more general than our notion of spacetime is defined in Mil-
nor [19] and referred to as the complete history of a cellular automaton. Our context
is narrower, using the spacetime to study a single endomoprhism rather than the full
system. However, there are analogs in our deveopment; Milnor defines an m-step
forward cone, which corresponds to our interval [W−(m,φ),W+(m,φ)], his definition
of a limiting forward cone corresponds to our asymptotic light cone, and the case
n0 = 0 of Theorem 3.22 corresponds to results in Milnor.

We say that spacetimes U and U ′, which share the same alphabet Σ, are isomorphic
if there is a homeomorphism h : U → U ′ such that

h(z)(i′, j′) = z(i, j),

where the isomorphism of Z2 for which (i, j) 7→ (i′, j′) is given by sending the preferred
basis of Z2 for U to the preferred basis of U ′. (Note that the assumption that the
spacetimes share the same alphabet is not necessary, but simplifies our notation.) It
is straightforward to check that φ, φ′ ∈ Aut(X) are conjugate automorphisms (see
Definition 2.2) if and only if their respective spacetimes with the obvious preferred
bases are isomorphic.

We extend definition 3.1 of coding to a spacetime:

Definition 3.7. If U is a Z2-subshift, we say that a subset A ⊂ Z2 codes a subset
B ⊂ Z2 if for any x, y ∈ U satisfying x(i, j) = y(i, j) for all (i, j) ∈ A, it follows that
x(i′, j′) = y(i′, j′) for all (i′, j′) ∈ B. Equivalently if x and y differ at some point of
B, they also differ at some point of A.

Definition 3.8 (Light Cone). The future light cone Cf (φ) of φ ∈ End(X) is defined
to be

Cf (φ) = {(i, j) ∈ Z2 : W−(j, φ) ≤ i ≤ W+(j, φ), j ≥ 0}
The past light cone Cp(φ) of φ is defined to be Cp(φ) = −Cf (φ). The full light cone
C(φ) is defined to be Cf (φ) ∪ Cp(φ).

The rationale for this terminology is that if x ∈ X and j > 0, then a change in
the value of x(0) (and no other changes) can only cause a change in φj(x)[i], j ≥ 0 if
(i, j) lies in the future light cone of φ. Similarly if φj(y) = x,  ≥ 0, then a change in
y[i] can only affect x[0] if (i,−j) lies in the past light cone of φ.

The light cone is naturally stratified into levels: define the nth level of C(φ) to be
the set

(3.1) I(n, φ) := {i ∈ Z : (i, n) ∈ C(φ)}.
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In Corollary 3.23 below, we show that if σ is a subshift of finite type and n is large,
then the horizontal interval in the light cone at level −n i.e., I(−n, φ), is the unique
minimal interval which φn-codes {0}, provided φ has infinite order in End(X, σ)/〈σ〉.

In general, it is not clear if φ ∈ Aut(X), what the relationship, if any, between
C(φ) and C(φ−1) is. However there are some restrictions given in Part (5) of Propo-
sition 3.13.

Remark 3.9. A comment about notation is appropriate here. We are interested in
subsets of the i, j-plane. Our convention is that i is the abscissa, or first coordinate,
and we consider the i-axis to be horizontal. Likewise j is the ordinate, or second
coordinate, and we consider the j-axis to be vertical. However some subsets of the
plane we consider are naturally described as graphs of a function i = f(j). For
example, we frequently consider lines given by an equation like i = αj, j ∈ R, and
think of α as a “slope” even in standard parlance it would be the reciprocal of the
slope of the line i = αj.

Our next goal is to study the asymptotic behavior of W+(j, φ) and W−(j, φ) for a
fixed φ ∈ End(X). We start by recalling Fekete’s Lemma, which is then applied to
the sequence W+(n) = W+(n, φ) for n ≥ 0 which is shown to be subadditive.

Lemma 3.10 (Fekete’s Lemma [11]). If the sequence an ∈ R, n ∈ N, is subadditive
(meaning that an + am ≥ am+n for all m,n ∈ N), then

lim
n→∞

an
n

= inf
n≥1

an
n
.

We note a simple, but useful, consequence of this: if s(n) is subadditive, and if

lim
n→∞

s(n)

n
≥ 0, then s(n) ≥ 0 for all n ≥ 1 as otherwise inf

m≥1

s(m)

m
would be negative.

Lemma 3.11. If φ, ψ ∈ End(X, σ) then W+(1, φψ) ≤ W+(1, φ) + W+(1, ψ) and
similarly W−(1, φψ) ≥ W−(1, φ)+W−(1, ψ). In particular the sequences {W+(n, φ)}
and {−W−(n, φ)}, n ≥ 0, are subadditive.

Proof. The ray [0,∞) ψ-codes [W+(1, ψ),∞) and the ray [W+(1, ψ),∞) φ-codes
[W+(1, φ) + W+(1, ψ),∞). Hence [0,∞) φψ-codes [W+(1, φ) + W+(1, ψ),∞) so
W+(1, φψ) ≤ W+(1, φ) +W+(1, ψ). This proves the first assertion.

Replacing φ by φm and ψ by φn in this inequality gives

W+(1, φn+m) ≤ W+(1, φm) +W+(1, φn).

Since for n ≥ 1 we have W+(n, φ) = W+(1, φn) we conclude that W+(m + n, φ) ≤
W+(m,φ)+W+(n, φ), so {W+(n, φ)} is subadditive. The proof for W− is similar. �

We now want to consider two quantities which measure the asymptotic behavior
of W±(n, φ). These quantities (and other closely related ones) have been considered
in [22, 24] in the context of measure preserving cellular automata and are referred to
there as Lyapunov exponents of the automaton. If we fix φ and abbreviate W+(n, φ)

by W+(n) then Fekete’s Lemma and Lemma 3.11, imply the limit lim
n→∞

W+(n)

n
exists.
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Definition 3.12. We define

α+(φ) := lim
n→∞

W+(n)

n
and

α−(φ) := lim
n→∞

W−(n)

n
.

Note that the limit α+(φ) is finite, since if D ≥ range(φ), then for j ≥ 0 we have
|W+(j))| ≤ Dj (and |W−(j))| ≤ Dj). As a consequence, we conclude that

(3.2) W+(n) = nα+(φ) + o(n).

This describes an important asymptotic property of the right light cone boundary
function W+(n) used in the proof of Theorem 4.4 below. That theorem says that if
α+ = α+(φ), then the line i = α+j is a nonexpansive subspace of R2 for the spacetime
of φ.

Similarly, we can consider W−(n) and obtain a second nonexpansive subspace
namely the line x = βy where

β = α−(φ) := lim
n→∞

W−(n)

n
.

As a consequence, we conclude that the left light cone boundary function satisfies

(3.3) W−(n) = nα−(φ) + o(n).

We list some elementary properties of the limits α+(φ) and α−(φ):

Proposition 3.13. If φ ∈ End(X, σ) then

(1) For all k ∈ Z, α−(σkφ) = α−(φ) + k and α+(σkφ) = α+(φ) + k.
(2) For all m ∈ N, α+(φm) = mα+(φ) and α−(φm) = mα−(φ)
(3) If X is infinite, then α−(φ) ≤ α+(φ)
(4) If φ, ψ ∈ Aut(X, σ) are commuting endomorphisms then

α+(φψ) ≤ α+(φ) + α+(ψ) and α−(φψ) ≥ α−(φ) + α−(ψ).

(5) If φ is an automorphism and X is infinite, then

α+(φ) + α+(φ−1) ≥ 0 and α−(φ) + α−(φ−1) ≤ 0.

Proof. Since

W+(n, (σkφ)) = W+(1, σnkφn) = W+(1, φn) + nk = W+(n, φ) + nk,

property (1) follows. Since

lim
n→∞

W+(mn, φ)

n
= m lim

n→∞

W+(mn, φ)

mn
= mα+(φ),

property (2) follows.
To show (3), we proceed by contradiction and assume that α−(φ) > α+(φ). Since

W+(n) = nα+(φ) + o(n) and W−(n) = nα−(φ) + o(n), the assumption that α−(φ) >
α+(φ) implies that W−(n) > W+(n) for all sufficiently large n. By Proposition 3.5,
Θ+
n is continuous and so for each fixed n ∈ N, there exists R > 0 such that the
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interval [0, R] φn-codes {W+(n)}. Therefore the interval [0, R+t] φn-codes the interval
[W+(n),W+(n) + t− 1]. Similarly there exists R′ > 0 such that the interval [−R′, 0]
φn codes {W−(n)} and so the interval [0, R′ + t] φn-codes the interval [W−(n) +
R′,W−(n) + R′ + t − 1]. Therefore for t > W+(n) −W−(n) + R′ − 1, the interval
[0, R + t] φn-codes the interval [W+(n),W−(n) + R + t] (in other words, the two
intervals above overlap and so their union is an interval). For any such t, an interval
of length R+t+1 φn-codes an interval of length W−(n)−W+(n)+R+t+1 > R+t+1.
However this means that

PX(R + t+ 1) ≥ PX(R + t+ 1 +W−(n)−W+(n)),

as every word of length R+ t+ 1 +W−(n)−W+(n) is φn-determined by some word
of length R + t + 1. Since PX(n) is a nondecreasing function, we have PX(R + t +
1) = PX(R + t + 1 + W−(n) − W+(n)). Therefore any word in L(X) of length
R+ t+ 1 extends uniquely to the right to a word of greater length, namely of length
R + t + 1 + W−(n) −W+(n). Hence it extends uniquely to the infinite ray to the
right. Similarly it extends uniquely to the infinite ray to the left. It follows that X
contains at most PX(R + t + 1) points, contradicting our standing assumption that
X is infinite. This establishes (3).

To prove (4) we note that

W+(n, φψ) = W+(1, (φψ)n) = W+(1, φnψn)

≤ W+(1, φn) +W+(1, ψn) = W+(n, φ) +W+(n, ψ).

Hence,

lim
n→∞

W+(n, φψ)

n
≤ lim

n→∞

W+(n, φ)

n
+ lim

n→∞

W+(n, ψ)

n
giving the inequality of item (4). The result for α− is similar.

Item (5) follows immediately from (4) if we replace ψ with φ−1, since α+(id) =
α−(id) = 0. �

Other than the restriction that α−(φ) ≤ α+(φ), any rational values can be taken
on for some automorphism of the full shift:

Example 3.14. We show that given rationals r1 ≤ r2, there is a full shift (X, σ) with
an automorphism φ such that α−(φ) = r1 and α+(φ) = r2.

Suppose that r2 = p2/q2 ≥ 0. Consider X2 the Cartesian product of q2 copies of the
full two shift σ : {0, 1}Z → {0, 1}Z. Define an automorphism φ0 by having it cyclically
permuting the copies of {0, 1}Z and perform a shift on one of them. Then φq20 =
σ2 : X2 → X2 is the shift (indeed a full shift on an alphabet of size 2q2). Since α+(σ2) =
α−(σ2) = 1, it follows from parts (1) and (2) of Proposition 3.13 that α+(φ0) =
α−(φ0) = 1/q2. Setting φ2 = φp20 , we have that α+(φ2) = p2α

+(φ2) = p2/q2 = r2.
Similarly α−(φ2) = r2. If r2 = −p2/q2 < 0 we can do the same construction, defining
φ0 to cyclically permute the copies of Σ2 but use the inverse shift (instead of the shift)
on one of the copies. Then φq2 = σ−12 : X2 → X2. In this way we still construct φ2

with α+(φ2) = α−(φ2) = r2.
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By the same argument we can construct an automorphism φ1 of (X1, σ1) such
that α+(φ1) = α−(φ1) = r1. Taking X to be the Cartesian product X1 × X2 and
considering the (full) shift σ = σ1×σ2 : X → X, and the automorphism φ = φ1×φ2,
it is straightforward to check that α+(φ) = α+(φ2) = r2 and α−(φ) = α−(φ1) = r1.

In light of the work on Lyapunov exponents for cellular auomata, it is natural to
ask for a general shift σ and φ ∈ Aut(X, σ) which conditions on φ and/or σ suffice
for the existence of a σ-invariant φ-ergodic measure µ such that α±(φ) are Lyapunov
exponents in the sense defined by [22, 24].

3.3. Two dimensional coding.

Remark 3.15. We thank Samuel Petite for suggesting the short proof of the following
lemma (in an earlier version of this paper we had a longer proof of this lemma).

Lemma 3.16. Let ϕ ∈ End(X) and suppose that there exists K such that range(ϕn) ≤
K for infinitely many n. Then ϕ has finite order.

Proof. There are only finitely many block maps of range ≤ K and so, by the pigeon-
hole principle, there exist 0 < m < n such that ϕm = ϕn. It follows that ϕn−m is the
identity. �

Recall that the interval I(n, φ) is defined in equation (3.1) to be {i ∈ Z : (i, n) ∈
C(φ)}. Thus for n ∈ N, we have |I(−n, φ)| = W+(n, φ)−W−(n, φ) + 1, is the width
of the nth level of the light cone for φ.

Lemma 3.17. Suppose φ is an endomorphism of the shift (X, σ) and n ≥ 0. If J is
any interval in Z which φn-codes {0}, then J ⊃ I(−n, φ).

Proof. If the interval J = [a, b] φn-codes {0}, then [a,∞) φn-codes [0,∞), and so
[0,∞) φn-codes [−a,∞). It follows that −a ≥ W+(n, φ) and hence a ≤ −W+(n, φ).
Similarly b ≥ −W−(n, φ) and so I(−n, φ) ⊂ [a, b]. �

Lemma 3.18. Assume φ is an endomorphism of a shift of finite type (X, σ) and
suppose that

lim
n→∞

∣∣I(−n, φ)
∣∣ = +∞.

Then there is n0 such that whenever n ≥ n0, the interval I(−n, φ) φn-codes {0}.
Moreover, if σ is a full shift we can take n0 to be 0 and the hypothesis lim

n→∞
|I(−n, φ)| =

∞ is unnecessary.

Proof. Suppose that φ is an endomorphism and σ is a subshift of finite type. Then
by Proposition 2.4, there exists m0 ≥ 0 such that if w is a word of length at least m0

and if w−1 ww
+
1 and w−2 ww

+
2 are elements of X for some semi-infinite words w±i , then

both w−1 ww
+
2 and w−2 ww

+
1 are elements of X. Clearly m0 = 0 suffices if σ is a full

shift.
By hypothesis,

lim
n→∞

∣∣I(−n, φ)
∣∣ = lim

n→∞

∣∣W+(n, φ)−W−(n, φ)
∣∣+ 1 = +∞,
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and so we can choose n0 such that the length of I(−n, φ) is greater than m0 when n ≥
n0. Suppose n ≥ n0 and that x, y ∈ X agree on the interval I(−n, φ). We show that
φn(x)[0] = φn(y)[0]. Let w = x[−W+(n, φ),−W−(n, φ)] = y[−W+(n, φ),−W−(n, φ)]
and define w±i by x(−∞,∞) = w−1 ww

+
1 and y(−∞,∞) = w−2 ww

+
2 . Then w−1 ww

+
2

is an element of X satisfying x[i] = w−1 ww
+
2 [i] for all i ≤ −W−(n, φ) and y[i] =

w−1 ww
+
2 [i] for all i ≥ −W+(n, φ). It follows that φn(x)[0] = φn(w−1 ww

+
2 )[0] and

that φn(y)[0] = φn(w−1 ww
+
2 )[0]. Hence φn(x)[0] = φn(y)[0] and {0} is φn-coded by

[−W+(n, φ),−W−(n, φ)].
�

Definition 3.19. Let X be a subshift and let φ ∈ End(X, σ). Define r(n, φ) to be
the minimal width of an interval which φn-codes {0}.

Lemma 3.20. Suppose (X, σ) is a subshift of finite type and φ ∈ End(X, σ). Then
there is a constant C(φ) such that |I(−n, φ)| ≤ r(n, φ) ≤ |I(−n, φ)|+ C(φ). If X is
a full shift we can take C(φ) = 0.

Proof. The first inequality follows immediately from Lemma 3.17. We prove the sec-
ond inequality by contradiction. Thus suppose that for any C, there exist infinitely
many n ∈ N and points xC,n 6= yC,n which agree on the interval [−W+(n, φ),−W−(n, φ)+
C] but are such that φn(xC,n)[0] 6= φn(yC,n)[0].

Recall from Proposition 2.4 that there exists a constant n0 (depending on the
subshift X) such that if x, y ∈ X agree for n0 consecutive places, say x[i] = y[i] for
all p ≤ i < p+n0, then the Z-coloring whose restriction to (−∞, p+n0− 1] coincides
with that of x and whose restriction to [p + n0,∞) coincides with that of y, is an
element of X.

Choose C > n0. By assumption, there exist infinitely many n ∈ N and points
xn, yn ∈ X which agree on [−W+(n, φ),−W−(n, φ)+C] but are such that φn(xn)[0] 6=
φn(yn)[0]. Let z ∈ X be the Z-coloring whose restriction to (−∞,−W−(n, φ) + C]
coincides with xn and whose restriction to [−W−(n, φ) +C+ 1,∞) coincides with yn.
Then since C > n0, we have that z ∈ X. Since z agrees with yn on [−W+(n, φ),∞),
it follows that (φnz)[0] = (φnyn)[0]. On the other hand, (φnz)[0] = (φnxn)[0], since z
agrees with xn on (−∞,−W−(n, φ)]. But this contradicts the fact that (φnxn)[0] 6=
(φnyn)[0], and so C(φ) exists. �

Recall that in any semigroup G an element g has finite order if {gn}n≥1 is finite
and otherwise g has infinite order.

Proposition 3.21. Suppose X is a subshift of finite type and φ ∈ End(X, σ). If

lim inf
n→∞

|I(−n, φ)| <∞,

then φ has finite order in End(X, σ)/〈σ〉.

Proof. By hypothesis, there exists M such that |I(−n, φ)| < M for infinitely many n.
By Lemma 3.20, there is a constant C(φ) such that r(n, φ) < M +C(φ) for infinitely
many n. Let n1 < n2 < · · · be a subsequence along which r(ni, φ) < M + C(φ) is
constant; define this constant to be R. Then for each i = 1, 2, . . . there is an interval
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[ai, bi] of length R which φni-codes {0}. Therefore the interval [0, R] (σ−aiφni)-codes
{0} for all i. It follows that σ−aiφni is a block map of range R for all i. There
are only finitely many block maps of range R, so there must exist i1 < i2 such that
σ−ai1φni1 = σ−ai2φni2 or simply

φni1 (x) = σai1−ai2φni2 (x) = σai1−ai2φni2
−ni1 (φni1 (x))

for all x ∈ X. Since φni1 is a surjection, we have

y = σai1−ai2φni2
−ni1 (y)

for all y ∈ X. In other words, φni2
−ni1 = σai2−ai1 . �

Theorem 3.22. Assume that φ is an endomorphism of a shift of finite type (X, σ)
and that φ has infinite order in End(X)/〈σ〉. Then there exists n0 such that whenever
n ≥ n0, the interval I(−n, φ) φn-codes {0}. If σ is a full shift, we can take n0 to be
0.

Proof. If σ is a full shift, the result follows from Lemma 3.18. Otherwise, since φ has
infinite order in End(X)/〈σ〉, Proposition 3.21 tells us that

lim
n→∞

|I(−n, φ)| = +∞.

Thus we can apply Lemma 3.18 to conclude that I(−n, φ) φn-codes {0}. �

Corollary 3.23. If φ has infinite order in End(X)/〈σ〉, then for n sufficiently large,
I(−n, φ) is the unique minimal interval which φn-codes {0}.

Proof. The fact that I(−n, φ) φn-codes {0} for large n follows from Theorem 3.22.
Minimality and uniqueness follow from Lemma 3.17. �

Question 3.24. Is the hypothesis that (X, σ) is an SFT necessary in Theorem 3.22?

4. The light cone and nonexpansive subspaces

The main result of this section is Theorem 4.4: it states that the line u = α+(φ)v in
the u, v-plane is a nonexpansive subspace of R2 for the spacetime of φ. The analogous
statement holds in the other direction: the line u = α−(φ)v in the u, v-plane is a
nonexpansive subspace.

4.1. The deviation function. We begin by investigating the properties of the func-
tion which measures the deviation of W+(n, φ) from α+(φ)n.

Definition 4.1. Suppose φ ∈ End(X, σ). For n ≥ 0 define the positive and negative
deviation functions δ+(n) = δ+(n, φ) and δ−(n) = δ−(n, φ) by δ+(n) = W+(n) −
nα+(φ) and δ−(n) = W−(n)− nα−(φ)

Lemma 4.2. Suppose δ+(n) and δ−(n) are the deviation functions associated to φ.
Then

(1) The functions δ+(n) and −δ−(n) are subadditive.

(2) The deviation functions satisfy lim
n→∞

δ+(n)

n
= 0 and lim

n→∞

δ−(n)

n
= 0.
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(3) For all n ≥ 0, we have δ+(n) ≥ 0 and δ−(n) ≤ 0.

Proof. Since δ+(n) is the sum of the subadditive function W+(n) = W+(φn) and the
additive function −nα, part (1) follows. Since

lim
n→∞

δ+(n)

n
= lim

n→∞

W+(n)− nα+(φ)

n
= lim

n→∞

W+(n)

n
− α+(φ) = 0,

part (2) follows.
To see part (3), observe that parts (1) and (2) together with Fekete’s Lemma

(Lemma 3.10) imply

inf
n≥1

δ+(n)

n
= 0

and so δ+(n) < 0 is impossible. The analogous results for δ−(n) are proved similarly.
�

Lemma 4.3. Let U be the φ-spacetime of (X, σ) for φ ∈ End(X) and let α = α+(φ)
and δ(n) = δ+(n, φ). Suppose that α ≥ 0 and the deviation δ(n) is unbounded for
n ≥ 0. Then there exist two sequences {xm}m≥1 and {ym}m≥1 in U such that

(1) xm(i, j) = ym(i, j) for all (i, j) with −m ≤ j ≤ 0 and i ≥ αj
(2) xm(i, j) = ym(i, j) for all (i, j) with j ≥ 0 and i ≥ (α + 1

m
)j

(3) xm(−1, 0) 6= ym(−1, 0) for all m ∈ N.

The analogous result for α−(φ) and δ−(n, φ) also holds.

Proof. For notational simplicity, denote W+(n) by W (n), so δ(n) = W (n)− nα.
We define a piecewise linear F (t) from the set {t ∈ Z : t ≥ −m} to Z and show

W (t) ≤ F (t) for all t ≥ −m. We then use this to define xm, ym satisfying the three
properties.

Given m ∈ N and using the facts that lim
k→∞

W (k)

k
= α and lim

k→∞

δ(k)

k
= 0, we can

choose n0 = n0(m) > m such that

δ(k)

k
<

1

m
for all k > n0. For the moment as m is fixed we suppress the dependence of n0 on m.
By hypothesis, δ(k) is unbounded above and so we can also choose n0 so that

(4.1) δ(n0) > δ(j) for all 0 ≤ j < n0.

Define a line i = L(j) in the i, j-plane by

L(j) =
1

m
(j − n0) + δ(n0).

We claim that the set of j with δ(j) ≥ L(j) is finite. By Lemma 4.2,

lim
j→∞

δ(j)

j − n0

= lim
j→∞

δ(j)

j
= 0
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and so for sufficiently large j,

δ(j) ≤ 1

m
(j − n0) <

1

m
(j − n0) + δ(n0) = L(j),

since δ(n0) ≥ 0 (by Lemma 4.2). This proves the claim.
Let J be the finite set {j : δ(j) ≥ L(j), j ≥ 0} and let S = {(δ(j), j) : j ∈ J}.

Note that S 6= ∅ since (δ(n0), n0) ∈ S.
Let t0 = t0(m) ∈ N be the value of j with j ≥ n0 for which δ(j)−L(j) is maximal.

Then (δ(t0), t0) ∈ S. Since, for the moment m is fixed, we suppress the m and simply
write t0 for t0(m).

Suppose now that j ∈ [n0, t0]. Then since δ(t0)−L(t0) ≥ δ(j)−L(j), it follows that
δ(t0) ≥ δ(j) + L(t0) − L(j) ≥ δ(j) since j ∈ [n0, t0] and L is monotonic increasing.
Thus we have

(4.2) δ(t0) ≥ δ(j) for all j ∈ [n0, t0].

Let αm = α +
1

m
and consider the two lines

i = K(j), where K(j) = α(j − t0) +W (t0)

and
i = L(j), where L(j) = αm(j − t0) +W (t0).

Both lines pass through (W (t0), t0).
Define

(4.3) F (j) =

{
K(j), if 0 ≤ j ≤ t0
L(j), if j ≥ t0.

We claim that for all j ≥ 0
W (j) ≤ F (j).

We prove this claim by considering two separate ranges of values for j, first j ≥ t0,
then 0 ≤ j ≤ t0.

In the range j ≥ t0, by the choice of t0 we have that δ(j) − L(j) ≤ δ(t0) − L(t0)
if j ∈ J . But the same inequality holds for j /∈ J since then δ(j) − L(j) < 0 and
δ(t0)− L(t0) ≥ 0. Thus δ(j) ≤ L(j) + δ(t0)− L(t0) for all j ≥ t0. Therefore

W (j) = δ(j) + αj

≤ L(j) + δ(t0)− L(t0) + αj

=
1

m
(j − n0)−

1

m
(t0 − n0) + δ(t0) + αj

=
1

m
(j − t0) + δ(t0) + αt0 + α(j − t0)

= αm(j − t0) + δ(t0) + αt0

= αm(j − t0) +W (t0)

= L(j).
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This proves the claim for the first range, i.e.,

(4.4) W (j) ≤ L(j) for j ≥ t0.

Next we consider the range 0 ≤ j ≤ t0. Note if j ≤ n0 then W (j) = δ(j) + αj ≤
δ(n0) + αj by Equation (4.1), so W (j) ≤ δ(t0) + αj since δ(t0) ≥ δ(n0) by Equa-
tion (4.2). But if j ∈ [n0, t0] then W (j) = δ(j) + αj ≤ δ(t0) + αj by Equation (4.2).
So we conclude W (j) ≤ δ(t0) + αj for all 0 ≤ j ≤ t0.

Hence in this range

W (j) ≤ δ(t0) + αj

= δ(t0) + αt0 + α(j − t0)
= W (t0) + α(j − t0) = K(j).

Thus we have

(4.5) W (j) ≤ K(j) for 0 ≤ j ≤ t0

Hence Equations (4.4), and (4.5) establish the claim, demonstrating that

(4.6) F (j) ≥ W (j) for all j ≥ 0,

where

F (j) =

{
K(j) if 0 ≤ j ≤ t0
L(j) if j ≥ t0.

We now use this to define the elements xm and ym. From the definition of W+(n, φ)
(which we are denoting W (n)), we know that whenever j ≥ 0 and u, v ∈ X have the
rays u[0,∞) and v[0,∞) equal, it follows that the rays φj(u)[W (j),∞) = φj(v)[W (j),∞).
Equivalently if x and y are the elements in φ-spacetime which agree on the ray
{(i, 0) ∈ Z2 : i ≥ 0}, then

(4.7) j ≥ 0 and i ≥ W (j) implies x(i, j) = y(i, j).

Moreover for each j ≥ 0, there exist uj, vj ∈ X such that uj[0,∞) = vj[0,∞) but

φj(uj)(W (j)− 1) 6= φj(vj)(W (j)− 1).

In particular this means that for m ∈ N there exist elements x̂m, ŷm ∈ U which are
equal on the ray {(i, 0) ∈ Z2 : i ≥ 0}, but such that

(4.8) x̂m(W (t0(m))− 1, t0(m)) 6= ŷm(W (t0(m))− 1, t0(m)).

(Note that the dependence of t0 = t0(m) on m is now salient so we return to
the more cumbersome notation.) We use translates of x̂m and ŷm by the vectors
(W (t0(m)), t0(m)) = (δ(t0(m)) + αt0(m), t0(m)) to define xm, ym ∈ U . More pre-
cisely, define

xm(i, j) = x̂m(i+W (t0(m)), j + t0(m))

and
ym(i, j) = ŷm(i+W (t0(m)), j + t0(m)).

Note that xm and ym agree on the ray {(i, 0) ∈ Z2 : i ≥ 0}.
We proceed to check properties (1), (2), and (3) of the lemma’s conclusion.
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From Equation (4.8) and the definition of xm and ym we have

xm(−1, 0) = x̂m(W (t0(m))− 1, t0(m)) 6= ŷm(W (t0(m))− 1, t0(m)) = ym(−1, 0),

and so (3) follows.
To check (1), suppose −m ≤ j ≤ 0 and i ≥ αj. Let i′ = i + W (t0) and j′ =

j + t0 and so xm(i, j) = x̂m(i′, j′) and ym(i, j) = ŷm(i′, j′). Hence if we show that
x̂m(i′, j′) = ŷm(i′, j′), then we have that xm(i, j) = ym(i, j), which is the statement
of (1). This in turn follows from Equation (4.7) if we show j′ ≥ 0 and i′ ≥ W (j′).
We proceed to do so.

Note that since −m ≤ j ≤ 0 and since, by construction, n0(m) and t0(m) satisfy
m < n0(m) < t0(m)), we have

0 ≤ t0(m)−m ≤ t0(m) + j = j′

To show i′ ≥ W (j′) observe that since i ≥ jα, it follows that i′ = i + W (t0) ≥
jα + W (t0) = (j′ − t0)α + W (t0) = K(j′). Since j′ = j + t0(m) ≤ t0(m) the
definition of F (equation 4.3) shows K(j′) = F (j′), and we may apply Equation (4.6)
to conclude i′ ≥ W (j′). Then by Equation 4.7 applied to x̂m and ŷm at (i′, j′) we have
x̂m(i′, j′) = ŷm(i′, j′), so xm(i, j) = ym(i, j). This completes the proof of property (1).

To check (2), we assume that j ≥ 0 and i ≥ αmj. Again we let i′ = i + W (t0(m))
and j′ = j + t0(m) and so j′ ≥ t0(m). To show xm(i, j) = ym(i, j), it suffices to show
x̂m(i′, j′) = ŷm(i′, j′) when

j′ ≥ t0(m) and i′ ≥ αmj +W (t0(m))

But αmj + W (t0(m)) = αm(j′ − t0) + W (t0) = L(j′), so we have j′ ≥ t0(m) and
i′ ≥ L(j′).

Since j′ ≥ t0(m) we conclude from the definition of F (Equation (4.3)) that F (j′) =
L(j′). So i′ ≥ F (j′) and hence by Equation (4.6), i′ ≥ F (j′) ≥ W (j′). Since
i′ ≥ W (j′) we have xm(i′, j′) = ym(i′, j′) by Equation 4.7, completing the proof
of (2).

The proof of the analogous result for α−(φ) and δ−(n, φ) is done similarly. �

4.2. Nonexpansiveness of light cone edges.

Theorem 4.4. Suppose φ ∈ End(X, σ) and α+ = α+(φ). In the spacetime U of φ
orient the line u = α+v so that 〈α+, 1〉 is positive. Then this oriented line is not a
positively expansive subspace. Similarly if α− = α−(φ), the line u = α−v (oriented so
that 〈α−, 1〉 is positive) is not a negatively expansive subspace.

Proof. Let U be the φ-spacetime of (X, σ). Replacing φ with σkφm and using part (1)
of Proposition 3.13, without loss of generality we can assume that α+(φ) ≥ 0.

Case 1: bounded deviation. As a first case we assume that the non-negative
deviation function δ is bounded. Say δ(j) < D for some D > 0 and all j ∈ N. Since
δ(j) ≥ 0 and α+ ≥ 0, we have 0 ≤ W+(j, φ)− α+j = δ(j) < D.

If we have two elements x, y ∈ U satisfying x(k, 0) = y(k, 0) for k ≥ 0 then whenever
j ≥ 0 and i ≥ D + α+j, we have i > W+(j). Hence

(4.9) x(i, j) = y(i, j) for all j ≥ 0 and i ≥ D + α+j



20 VAN CYR, JOHN FRANKS, AND BRYNA KRA

(see Equation (4.7)). Thus x and y agree in the part of the upper half space to the
right of the line i = D + α+j.

By the definition of W+(n) = W+(n, φ) for n ∈ N we may choose x̂n, ŷn ∈ U which
agree on the ray {(i, 0) ∈ Z2 : i ≥ 0} such that x̂n(W+(n)− 1, n) 6= ŷn(W+(n)− 1, n).

We want to create new colorings by translating x̂n and ŷn by the vector (W+(n), n).
More precisely for n ≥ 0 we define xn and yn by xn(i, j) = x̂n(i+W+(n), j+n). Note
that xn(−1, 0) 6= yn(−1, 0), since xn(−1, 0) = x̂n(W+(n)−1, n) 6= ŷn(W+(n)−1, n) =
yn(−1, 0).

For all j ≥ −n and i ≥ D + α+j, we claim that

xn(i, j) = yn(i, j).

To see this define i′ = i + W+(n) and j′ = j + n and so xn(i, j) = x̂n(i′, j′) and
yn(i, j) = ŷn(i′, j′). Then

i′ = i+W+(n)

≥ D + α+j +W+(n)

= D + α+j′ + (W+(n)− α+n)

= D + α+j′ + δ(n)

≥ D + α+j′.

Hence x̂n(i′, j′) and ŷn(i′, j′) are equal by Equation 4.9 whenever i ≥ D+ α+j and
j ≥ −n (since j′ ≥ 0 when j ≥ −n). But xn(i, j) = x̂n(i′, j′) and yn(i, j) = ŷn(i′, j′)
so xn(i, j) = yn(i, j). Thus xn and yn agree at (i, j) if i ≥ D + α+j and j ≥ −n.

Since U is compact we can choose convergent subsequences (also denoted xn and
yn). Say limxn = x̂ and lim yn = ŷ. Then clearly x̂(−1, 0) 6= ŷ(−1, 0) and x̂(i, j) =
ŷ(i, j) for all i > D + α+j. So x̂ and ŷ agree on the half space H+ = {(i, j) : i >
D + α+j}. This implies the oriented line u = α+v is not positively expansive. The
case of the line u = α−v is handled similarly.

Case 2: unbounded deviation. We consider the elements xm, ym guaranteed by
Lemma 4.3, and recall that they satisfy properties (1)-(3) of the lemma.

Since U is compact, by passing to subsequences, we can assume that both sequences
converge in U , say to x̂ and ŷ. Clearly x̂(−1, 0) 6= ŷ(−1, 0). We claim the colorings
x̂ and ŷ agree on the half space H+ = {(i, j) : i > αj} of Z2. It then follows that the
oriented line u = αv is not positively expansive (see Definition 2.6).

To prove the claim, note that if (i, j) ∈ H+, −m0 ≤ j ≤ 0 and m ≥ m0 then
xm(i, j) = ym(i, j). Hence the limits satisfy x̂(i, j) = ŷ(i, j) whenever (i, j) ∈ H+ and
j ≤ 0. But also if j > 0 and i > αj, then for some n0 > 0 we have i ≥ (α + 1

n0
)j

and it follows that xm(i, j) = ym(i, j) whenever m > n0. Hence the limits satisfy
x̂(i, j) = ŷ(i, j).

The case of the line u = α−v is handled similarly. �

4.3. Expansive subspaces. We want to investigate which one-dimensional sub-
spaces in a spacetime are expansive. Since the horizontal axis in a spacetime is always
positively expansive for an endomorphism and expansive for an automorphisms, we
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restrict our attention to lines in R2 = {(u, v)} given by u = mv where m ∈ R. (We
write the abscissa as a function of the ordinate for convenient comparison with the
edges of A(φ) which are u = α+v and u = α−v.)

Proposition 4.5. Suppose L is a line in R2 given by u = mv and oriented so that
〈m, 1〉 is positive. Then:

(1) If m > α+(φ), then L is positively expansive.
(2) If m < α−(φ), then L is negatively expansive.

Moreover if φ is an automorphism and if m > max{α+(φ),−α−(φ−1)} or if m <
min{α−(φ),−α+(φ−1)}, then L is expansive.

Proof. We first consider (1). We show that if U is the spacetime of φ and x, y ∈ U
agree on the right side of u = mv, then they also agree on the left side. This
implies that the oriented line L is positively expansive. Since m > α+(φ), the vector
〈α+(φ), 1〉 is not parallel to L and points in the direction from the right side of L to
the left side.

Let W+(n) = W+(n, φ) so

lim
n→∞

W+(n)

n
= α+(φ)

(see Equation (3.12)) and hence

lim
n→∞

1

n
〈W+(n), n〉 = 〈α+(φ), 1〉.

It follows that for sufficiently large n, the vector 〈W+(n), n〉 is also not parallel to L
and points in the direction from the right side of L to the left side. Hence, given any
(u0, v0) ∈ Z2 on the left side of L, there exists n0 > 0 such that if u1 = u0 −W+(n0)
and v1 = v0 − n0, then (u1, v1) is on the right side of L. The ray {(t, v1) : u1 ≤ t} in
U lies entirely to the right of L and codes {(u0, v0)}.

It follows that if x, y ∈ U agree to the right of L, then they also agree at (u0, v0).
Since (u0, v0) is an arbitrary point to the left of L, it follows that L is positively
expansive. The proof of (2) is analogous.

To show the final statement, note the the reflection R : R2 → R2 given by R(u, v) =
(u,−v) has the property that it switches the spacetimes U(φ) and U(φ−1), i.e., it
induces a map R∗ : U(φ)→ U(φ−1) given by R∗(η) = η ◦R.

If L is the line i = mj, then our convention for the orientation of L was chosen so
that

L+ = {〈u, v〉 : 〈u, v〉 ∈ L and v > 0}.
Hence the convention implies that R(L+) is the set of negative vectors in R(L) and
the positive vectors in R(L) are R(L−) where L− = −L+. Note that H+(L) consists
of the vectors above the line L so R(H+(L)) is the set of vectors below R(L). (see
Definition 2.7 and the paragraph preceding it). But since R reverses the orientation
of L we have H+(R(L)) = R(H+(L). It follows that L is positively (resp. nega-
tively) expansive in U(φ) if and only if R(L) is positively (resp. negatively) expansive
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in U(φ−1), i.e. R acting on non-vertical lines preserves positive expansiveness and
negative expansiveness.

Now consider the line L given by i = mj in U(φ), and so R(L) is the line i = −mj
in U(φ−1). By part (2), if −m < α−(φ−1) (or equivalently if m > −α−(φ−1)), then
the line R(L) is negatively expansive in U(φ−1). Hence m > −α−(φ−1) implies that
L is negatively expansive in U(φ). If we also have m > α+(φ) then by part (1), the
line L is also positively expansive and thus it is, in fact, expansive. The case that
m < min{α−(φ),−α+(φ−1)} is handled similarly. �

5. Asymptotic behavior

5.1. The asymptotic light cone. The edges of the light cone C(φ) are given by
the graphs of the functions i = W+(j, φ) i = W−(j, φ). Since these functions have
nice asymptotic properties, so does the cone they determine, which motivates the
following definition:

Definition 5.1. The asymptotic light cone of φ is defined to be

A(φ) = {(u, v) ∈ R2 : α−(φ)v ≤ u ≤ α+(φ)v}.

This means A(φ) is the cone in R2 which does not contain the i-axis and which is
bounded by the lines u = α+(φ)v and u = α−(φ)v. We view A(φ) as a subset of R2

rather than of Z2, as we want to consider lines with irrational slope that may lie in
A(φ) but would intersect C(φ) only in {0}.

We begin by investigating the deviation of the function W+(n, φ) from the linear
function nα+(φ). Observe that the asymptotic light cone A(φ) is a subset of the light
cone C(φ), as an immediate corollary of part (3) of Lemma 4.2.

Corollary 5.2. The set of integer points in the asymptotic light cone A(φ) is a subset
of the light cone C(φ).

If φ ∈ Aut(X) it is natural to consider the relationship between C(φ) and C(φ−1), or
between A(φ) and A(φ−1). The spacetime U(φ) of φ is not the same as the spacetime
U(φ−1) of φ−1, but there is a natural identification of U(φ) with the reflection of
U(φ−1) about the horizontal axis j = 0. In general, it is not true that A(φ−1) is
the reflection of A(φ) about the u-axis (Example 2.10 is one where this fails). On
the other hand, if (X, σ) is a subshift, there is at least one line in the intersection of
A(φ−1) with the reflection of A(φ) about the u-axis.

To see this, note that the cone A(φ−1) has edges which are the lines

(5.1) u = α+(φ−1)v and u = α−(φ−1)v,

while the cone obtained by reflecting A(φ) about the u-axis has edges given by

(5.2) u = −α−(φ)v and u = −α+(φ)v.

Hence the line u = mv lies in the intersection A(φ−1) and the reflection of A(φ) in
the line u-axis if

m ∈ [α−(φ−1), α+(φ−1)] ∩ [−α+(φ),−α−(φ)].



THE SPACETIME OF A SHIFT ENDOMORPHISM 23

If these two intervals are disjoint, then either

α+(φ−1) < −α+(φ) or − α−(φ) < α−(φ−1).

Either of these inequalities contradict part (5) of Proposition 3.13.
In a different vein, the cone A(φ) is a conjugacy invariant:

Proposition 5.3. Suppose (Xi, σi) is a shift for i = 1, 2 and φi ∈ End(Xi). Suppose
further that h : X1 → X2 is a topological conjugacy from σ1 to σ2. If

φ2 = h ◦ φ1 ◦ h−1,
then A(φ1) = A(φ2).

Proof. Since h is a block code, there is a constant D > 0, depending only on h, such
that for any n ∈ Z the ray [n,∞) h-codes [n + D,∞) and the ray (−∞, n] h-codes
(−∞, n −D]. It follows that W+(m,φ1) ≤ W+(m,φ2) + 2D. Switching the roles of
φ1 and φ2 and considering h−1, for which there is D′ > 0 with properties analogous
to those of D, we see that W+(m,φ2) ≤ W+(m,φ1) + 2D′. By the definition of α+

(see Equation 3.12),

α+(φ1) = lim
n→∞

W+(n, φ1)

n
= lim

n→∞

W+(n, φ2)

n
= α+(φ1).

The proof that α−(φ1) = α−(φ2) is similar, and thus the asymptotic light cones of φ1

and φ2 are identical. �

5.2. A complement to Theorem 4.4. In Theorem 4.4 we showed that lines in
the spacetime of an endomorphism φ which form the boundary of its asymptotic
light cone A(φ) are nonexpansive subspaces. In this section we want to show that
in many instances, given an arbitrary Z2-subshift Y and a nonexpansive subspace
L ⊂ R2 for Y , there is a Z2-subshift isomorphism Ψ from Y to the spacetime U of
an automorphism φ ∈ Aut(X, σ) for some shift (X, σ) such that Ψ(L) is an edge
of the asymptotic light cone A(φ). In particular this holds if Y has finitely many
nonexpansive subspaces. Hence in that case every nonexpansive subspace in Y is (up
to isomorphism) an edge of an asymptotic light cone for some automorphism.

To do this it is useful to introduce the notion of expansive ray which incorporates
both the subspace and its orientation

By a ray in R2 we mean a set ρ ⊂ R2 such that there exists w 6= 0 ∈ R2 with

ρ = ρ(w) = {tw : t ∈ [0,∞)}.
The space of all rays in R2 is naturally homeomorphic to the set of unit vectors in
R2, which is the circle S1.

Definition 5.4. Let Y be a Z2-subshift. We say ρ is an expansive ray for Y if the
line L containing ρ with orientation given by L+ = ρ∩(L\{0}) is positively expansive
(see Definition 2.7 and the paragraph preceding it).
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The concept of expansive ray is essentially the same as that of oriented expansive
line introduced in §3.1 of [5]. We emphasize that this concept is defining one-sided ex-
pansiveness for the line L containing ρ. Which side of L codes the other is determined
by the orientation of ρ and the orientation of Z2.

To relate this to our earlier notions of expansive (Definition 2.6) observe that if
L is the subspace containing ρ, then L is expansive if and only if both ρ and −ρ
are expansive rays. In this terminology, Theorem 4.4 says that the rays ρ+(φ) :=
{〈α+v, v〉 : v ≥ 0} and ρ−(φ) := {〈α−v, v〉 : v ≤ 0} are nonexpansive rays. We note
that it is not in general the case that −ρ+(φ) and −ρ−(φ) are nonexpansive rays.

The following lemma is essentially contained in [3], but differs from results there in
that we consider one-sided expansiveness. In particular note the following result im-
plies that being positively expansive is an open condition for oriented one-dimensional
subspaces of the R2 associated to a Z2-subshift. Similarly being negatively expansive
is an open condition.

Lemma 5.5. If E ⊂ S1 is the set of expansive rays for a Z2-subshift Y , then E is
open.

Proof. We show that the set N of nonexpansive rays is closed. Suppose that ρn =
{twn : t ≥ 0}∞n=1 is a sequence of rays in R2 with lim

n→∞
wn = w0 6= 0 so that ρ0 is the

limit of the rays ρn, n ≥ 1. If the rays ρn are nonexpansive we must show that ρ0 is
nonexpansive.

Let Ln be the line containing wn with the orientation such that wn ∈ L+
n and let

H+(Ln) be the component of R2 \Ln such that for all w′ ∈ H+(Ln) the ordered basis
{wn, w′} is positively oriented and let H−(Ln) be the other component of R2 \ Ln.
Define the linear function fn : R2 → R by fn(u) = u · vn where vn is a unit vector in
H+(Ln) which is orthogonal to wn. Then we have the following:

• Ln = ker(fn)
• A vector u is in H+(Ln) if and only if fn(u) > 0 and in H−(Ln) if and only if
fn(u) < 0.
• lim
n→∞

fn(v0) = f0(v0) = 1.

By Proposition 2.8 we know there exist ηn, η
′
n ∈ Y and zn ∈ Z2 such that ηn(v) = η′n(v)

for all v ∈ H−(Ln) but ηn(zn) 6= η′n(zn). By shifting ηn and η′n we may assume
lengths |zn| are bounded. Choosing a subsequence we may assume {zn} is constant,
say, zn = z0 ∈ Z2. Since Y is compact we may further choose subsequences {ηn}∞n=1

and {η′n}∞n=1 which converge, say to η0 and η′0 respectively. Clearly η0(z0) 6= η′0(z0).
Now if y ∈ H−(L0)∩Z2 then f0(y) < 0 so fn(y) < 0 for sufficiently large n and hence
y ∈ H−(Ln) ∩ Z2. It follows that η0(y) = η′0(y).

Since η0 and η′0 agree on H−(Ln)∩Z2 but disagree at z0 we conclude that H−(Ln)∩
Z2 does not code H+(Ln) ∩ Z2 so ρ0 is a nonexpansive ray. �

Proposition 5.6. Suppose Y is a Z2-subshift and E is the set of expansive rays for
Y (thought of as a subset of S1). Suppose C is a component of E and ρ1, ρ2 are the
endpoints of the open interval C. Then there exists a shift (X, σ) with automorphism
φ ∈ Aut(X) and an isomorphism Ψ: Y → U(φ) from Y to the spacetime of φ such
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that the lines L1 := span(Ψ(ρ1)) and L2 := span(Ψ(ρ2)) are the two edges of the
asymptotic light cone A(φ) of φ.

Proof. We consider C as an open interval (ρ1, ρ2) in the circle S1 of rays in R2. There is
a Z2-subshift isomorphism Ψ0 : Y → Y0, where Y0 is a Z2-subshift with 〈1, 0〉 ∈ Ψ0(C).
Thus the horizontal axis is an expansive subspace for the Z2-subshift Y0. We may
recode Y0 to Y1 by an isomorphism Ψ1 : Y0 → Y1 such that the horizontal axis H0 in
Z2 codes the positive half space {〈i, j〉 ∈ Z2 : j > 0} (this follows from Lemma 3.2
in [3] where we recode Y0 such that “symbols” in Y1 are vertically stacked arrays of
symbols from Y0 of an appropriate height). We let Ψ: Y → Y1 be the composition
Ψ1 ◦Ψ0.

Let X denote the set of colorings of Z obtained by restricting elements η ∈ Y1 to H0.
We could equally well describe X as the colorings of Z obtained by restricting elements
of Y to the horizontal row H−1 := {〈i, j〉 ∈ Z2 : j = −1} and define φ : X → X by
φ(x) = x′ if there is η ∈ Y1 such that x = η|H0 and x′ = η|H−1 . Then clearly
φ ∈ Aut(X) and Y1 is U(φ), the spacetime of φ.

Note that the ray ρ+(φ) := {〈α+v, v〉 : v ≥ 0} lies in the light cone A(φ) of φ (and in
the upper half space of R2). If m > α+(φ) and ρm is the ray ρm := {〈mv, v〉 : v ≥ 0},
then by Proposition 4.5 ρm is an expansive ray. Since by Theorem 4.4 ρ+(φ) is not
an expansive ray, it follows that Ψ(ρ2) = ρ+(φ).

Letting ρ−(φ) := {〈α−v, v〉 : v ≤ 0}, a similar proof shows that Ψ(ρ1) = ρ−(φ).
Hence the lines L1 and L2 form the edges of the asymptotic light cone A(φ). �

We are not able to show which lines can arise as the edges of the asymptotic light
cone:

Question 5.7. Does there exist a subshift of finite type X and an automorphism
φ ∈ Aut(X) such that some edge of the asymptotic light cone of φ has irrational
slope? If so, what set of angles is achievable? More generally, for a subshift of finite
type X or for a general shift X, what are all of the components of the expansive
subspaces?

Hochman [14] points out that, as there are only countably many shifts of finite type,
this set must be countable (and, in particular, cannot contain all irrational slopes).
If X is not required to be a subshift of finite type, then Hochman’s results show that
for the first question, the only constraint on the light cone for an automorphism (of
an infinite subshift) comes from −∞ < α− ≤ α+ <∞.

5.3. Asymptotic spread. Let `(n, φ) be the minimal length of an interval J ⊂ Z
which contains 0 and φn-codes {0} and let L(φn) be the minimal length of an interval
J0 ⊂ Z which is symmetric about 0 and φn-codes {0}. It is straightforward to see
that both `(n, φ) and L(φn) are subadditive sequences.

Definition 5.8. Define the asymptotic spread A(φ) of φ ∈ End(X) to be

(5.3) A(φ) = lim
n→∞

`(n, φ)

n
.

We say φ is range distorted if A(φ) = 0.
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Note that since the sequence `(n, φ) is subadditive, Fekete’s Lemma implies that
the limit in (5.3) exists.

The asymptotic spread is a measure of both the width of the asymptotic light cone,
as well as how that cone deviates from the vertical.

Remark 5.9. Since the function L(φn) is a subadditive function of n ≥ 0, by Fekete’s
Lemma, the limit

ρ(φ) = lim
n→∞

L(φn)

n
exists. Clearly L(φn) ≤ `(n, φ) ≤ 2L(φn) + 1 and so

ρ(φ) ≤ A(φ) ≤ 2ρ(φ).

In particular, φ is range distorted if and only if

lim
n→∞

L(φn)

n
= 0

Proposition 5.10. If φ ∈ Aut(X) and α+(φ) = α−(φ) = α+(φ−1) = α−(φ−1),
then the line u = α+(φ)v is the unique nonexpansive one-dimensional subspace. In
particular, if φ, φ−1 ∈ Aut(X) are both range distorted, then the vertical axis (u = 0)
is the unique nonexpansive subspace

Proof. The first statement follows immediately from Theorem 4.4 and Proposition 4.5.
The second statement follows from the first, since φ and φ−1 are both range distorted
if and only if α+(φ) = α−(φ) = α+(φ−1) = α−(φ−1) = 0. �

It was shown by M. Hochman [14] that if L is any 1-dimensional subspace of R2,
then there exists a subshift XL and an automorphism φL ∈ Aut(XL) such that L is the
unique nonexpansive subspace for the spacetime of φL. Moreover, the automorphisms
φL in his examples always have infinite order (in particular, when L is vertical, φL is
range distorted and has infinite order). However, the space XL he constructs lacks
many natural properties one might assume about a subshift; for example, it is not a
subshift of finite type and it is not transitive. He asks the following natural question:

Question 5.11 (Hochman [14, Problem 1.2]). Does every nonempty closed set of
one-dimensional subspaces of R2 arise as the nonexpansive subspaces of a Z2-action
that is transitive (or even minimal) and supports a global ergodic measure?

We do not answer this question, but recall it here as, in particular, we do not know
whether a transitive subshift can have a range distorted automorphism of infinite
order. We mention further that, in the special case that L is vertical, Hochman
shows that his example (XL, φL) is logarithmically distorted.

Proposition 5.12. If φ is an endomorphism of a subshift of finite type (X, σ), then
A(φ) is determined by the light cone of φ and is, in fact, the length of the smallest
interval containing 0, α−(φ) and α+(φ).

Proof. It follows from Proposition 3.18 that if σ is a subshift of finite type, then for
all x ∈ X and all sufficiently large n > 0, the interval [W−(n),W+(n)] is an interval
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which codes φn(x)[0] and which is contained in any interval which contains 0 and
codes φn(x)[0]. It follows that if Jn is the smallest interval containing 0,W−(n) and
W+(n), then

A(φ) = lim
n→∞

|Jn|
n
.

Hence A(φ) is the length of the smallest interval containing 0, α−(φ) and α+(φ). �

The following result is essentially the same as Proposition 5.3 of Tisseur’s paper
[24], except that we consider an arbitrary φ ∈ Aut(X, σ) with σ an arbitrary shift
while he considers a cellular automaton defined on the full shift and preserving the
uniform measure on that shift. Our proof is quite short and makes no use of measure.
It makes explicit the connection between the topological entropy of a shift and the
topological entropy of an automorphism of that shift.

Theorem 5.13. If φ ∈ End(X), then

htop(φ) ≤ A(φ)htop(σ),

where A(φ) is the asymptotic spread of φ. In particular, if φ is range distorted then
htop(φ) = 0.

Proof. Let U be the spactime of φ. For z ∈ U , let Rm,n = {(i, j) ∈ Z2 : 0 ≤ i < m, 0 ≤
j < n} and let z|Rm,n denote the restriction of z to Rm,n. Recall that PU denotes the
two dimensional complexity function PU (see Definition 2.5). Then

htop(φ) = lim
m→∞

lim
n→∞

1

n
log(PU(Rm,n)).

Since A(φ) is the length of the smallest interval containing 0, α−(φ) and α+(φ), for
a fixed m there is an interval J in Z with length A(φ)n+ o(n) +m that φj-codes the
block [0,m] for all 0 ≤ j ≤ n. In other words, the interval J × {0} ⊂ U codes Rm,n.
Therefore, for any ε > 0, and m and n sufficiently large,

PU(Rm,n) ≤ PX(A(φ)n+ o(n) +m) ≤ (exp(hσ + ε))A(φ)n+m.

Hence log(PU(Rm,n)) ≤ (A(φ)n+m)(hσ + ε) and

htop(φ) = lim
m→∞

lim
n→∞

log(PU(Rm,n))

n
≤ lim

m→∞
lim
n→∞

(A(φ)n+m)(hσ + ε)

n
= A(φ)(hσ+ε).

Since this holds for all ε > 0, the desired inequality follows.
By definition φ is range distorted if and only if A(φ) = 0, and so the last two

assertions of the proposition are immediate. �

5.4. Distortion and inert automorphisms. Recall that if (ΣA, σ) is a subshift
of finite type, there is a dimension group representation Ψ: Aut(ΣA) → Aut(DA)
mapping automorphisms of the shift to automorphisms of its dimension group DA

(see [18], [25], and [1] for definitions). A particularly important subgroup of Aut(ΣA)
is Inert(ΣA), defined to be the kernel of Ψ. An automorphism φ ∈ Aut(ΣA) is called
inert if Ψ(φ) = Id.

There is one special case when Ψ can be thought of as a homomorphism from
Aut(ΣA) to the group of positive reals under multiplication. This occurs when ΣA is
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an irreducible subshift of finite type and det(I −At) is an irreducible polynomial. In
this setting, one can associate to each φ ∈ Aut(ΣA) an element λφ = Ψ0(φ) in (0,∞)
such that Ψ0 is a homomorphism and λφ = 1 if and only if φ is inert.

To investigate the relationship between being inert and being distorted, we quote
the following important result of Boyle and Krieger:

Theorem 5.14 (Boyle and Krieger [1, Theorem 2.17]). Suppose (ΣA, σ) is an irre-
ducible subshift of finite type and det(I − At) is an irreducible polynomial. Then if
φ ∈ Aut(ΣA) and m is sufficiently large, σmφ is conjugate to a subshift of finite type
and

htop(σmφ) = log(λφ) +mhtop(σ).

Theorem 5.15. Suppose (ΣA, σ) is an irreducible subshift of finite type such that
det(I−At) is an irreducible polynomial, and let φ ∈ Aut(ΣA). If φ and φ−1 are range
distorted, then φ is inert.

Proof. Let λφ = Ψ(φ) and note that by replacing φ with φ−1 if necessary, we can
assume that λφ ≥ 1. Suppose φ is range distorted and so α+(φ) = α−(φ) = 0; we
show that φ is inert. From parts (1) and (2) of Proposition 3.13, we conclude that
α+(σkφ) = α−(σkφ) = k. By Proposition 5.12, it follows that Aσkφ = |k|. Hence by
Theorem 5.13, we have htop(σkφ) ≤ |k|htop(σ). Combining this with the fact from
Theorem 5.14 which says for large k we have htop(σkφ) = log(λφ) + khtop(σ), we
conclude that log(λφ) ≤ 0 or λφ ≤ 1. Since we also have λφ ≥ 1, we conclude that
λφ = 1 and φ is inert. �
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