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Abstract. Aiming at a simultaneous extension of Khintchine’s and Fursten-
berg’s Recurrence theorems, we address the question if for a measure pre-
serving systen{X,X,u,T) and a setA € X of positive measure, the set

of integersn such thatu(ANT"ANTZAN...NTXA) > u(AK L —¢is
syndetic. The size of this set, surprisingly enough, depends on the length
(k+ 1) of the arithmetic progression under consideration. In an ergodic
system, forkk = 2 andk = 3, this set is syndetic, while fdc> 4 it is not.

The main tool is a decomposition result for the multicorrelation sequence
LE)F(T™) F(T2"X)... f(TK"%) du(x), wherek andn are positive integers
andf is a bounded measurable function. We also derive combinatorial con-
sequences of these results, for example showing that for a set of inkEegers
with upper Banach density*(E) > 0 and for alle > 0, the set

{nez: d*(EN(E+n)N(E+2n)N(E+3n)) >d*(E)* - ¢}
is syndetic.

1. Introduction
1.1. Ergodic theory results

We begin by recalling two classical results of early ergodic theory. Let
(X,X,u,T) be a measure preserving probability system with an invertible

* The first author was partially supported by NSF grant DMS-0245350 and the third
author was partially supported by NSF grant DMS-0244994.
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measure preserving transformation (For brevity, we call(X,X,u,T) a
systen) Let A € X be a set of positive measure. The Poincaré Recurrence
Theorem states that

1(ANT"A) > 0 for infinitely many values of n.

The Khintchine Recurrence Theorem [K] states that the meas(#en
T"A) is ‘large’ for many values off. Before stating the result precisely, we
need a definition:

Definition 1.1. A subset E of the integeis syndeticif Z can be covered
by finitely many translates of E.

In other wordsE hasbounded gapsneaning that there exists an integer
L > 0 such that every interval of lengthcontains at least one element of
E.

In [K], Khintchine strengthened the Poincaré Recurrence Theorem, show-
ing that under the same assumptions:

For everye >0, {n€ Z: u(ANT"A) > u(A)?>— €} is syndetic.
More recently, Furstenberg proved a Multiple Recurrence Theorem:

Theorem (Furstenberg [F1]).Let(X,X,u,T) be a system, letAX be a
set withu(A) > 0and let k> 1 an integer. Then

N-1

1
liminf ——— ANT"ANT2AN---NTKA) >0.
NmﬂmN—Mn;w“( MTANTEAN ) >

The liminf is actually a limit; see [HK]. (See also [Z2].)

In particular, there exist infinitely many integersuch thap (AN T"AN
T2'AN---NTK"A) > 0. Furstenberg’s Theorem can thus be considered as
a far reaching generalization of the Poincaré Recurrence Theorem, which
corresponds t& = 1. Our interest is in the existence of a theorem that has
the same relation to the Khintchine Recurrence Theorem as Furstenberg’s
Theorem has to the Poincaré Recurrence Theorem. More precisely, under
the same assumptions we ask if the set

{neZ: u(ANT AN NTHA) > p(AF ¢} (1.1)

is syndetic for every positive integ&rand everye > 0. While it follows
from Furstenberg’s Theorem that for some constaatc(A) > 0, the set
{neZ: u(ANT"AN---NTK"A) > ¢} is syndetic, we are asking if this can
be strengthened to make the set in (1.1) syndetic for every positive integer
kandc = p (A — ¢ for everye > 0.

Under the hypothesis of ergodicity, the answer is positivekfer2 and
k = 3 and surprisingly enough, is negative forlalt 4. Under the assump-
tion of ergodicity, we generalize the Khintchine Recurrence Theorem:
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Theorem 1.2.Let (X, X, 1, T) be an ergodic system and letcAX be a set
of positive measure. Then for evary- 0, the subsets

{(neZ: u(ANT"ANT™A) > u(A?>—¢} (1.2)
and
{neZ: u(ANT"ANTPANTHA) > u(A)*—¢} (1.3)

of Z are syndetic.

While ergodicity is not needed for Khintchine’s Theorem, it is essential
in Theorem 1.2. Theorem 2.1 provides a counterexample in the general
(nonergodic) case.

For arithmetic progressions of lengthb, the result analogous to Theo-
rem 1.2 does not hold. Using the result of Ruzsa contained in the Appendix,
in Section 2.3 we show

Theorem 1.3.There exists an ergodic systéX, X, u, T) such that for all
integers? > 1, there exists a set A A(¢) € X with u(A) > 0and

L(ANTANTZANTIANTYA) < u(A)/2 (1.4)
for every integer £ 0.

In fact, we find the slightly better upper boupdA) —€°9%(" for some set
A of positive arbitrarily small measure and some positive constant

1.2. Combinatorial results

We recall a definition:

Definition 1.4. Theupper Banach densitf a subset E o¥. is:

d*(E) = lim sup—\EﬁM M+N-1]|.
N—+opez N

Note that the limit exists by subadditivity and is the infimum of the
sequence. Furstenberg used his Multiple Recurrence Theorem to make the
beautiful connection between ergodic theory and combinatorics and prove
Szemerédi’'s Theorem:

Theorem (Szemerédi [S]).A subset of integers with positive upper Ba-
nach density contains arithmetic progressions of arbitrary finite length.

Using a variation of Furstenberg’s Correspondence Principle (Proposition 3.1)
and Theorem 1.2, we immediately deduce:
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Corollary 1.5. Let E be a set of integers with positive upper Banach den-
sity. Then for everg > O, the sets

{nez:d*(EN(E+n)N(E+2n)) >d*(E)*—¢}
and
{nezZ:d"(EN(E+n)N(E+2n)N(E+3n)) >d*(E)*—¢}
are syndetic.

Roughly speaking, this means that given a Eewith positive upper
Banach density, for ‘many’ values of E contains ‘many’ arithmetic pro-
gressions of length 3 (or of length 4) with differenee(The differenceof
the arithmetic progressiofa,a+n,...,a+ kn} is the integen > 0.)

The following result follows from the proof of Theorem 1.3 and shows
that the analogous result does not hold for longer progressions:

Corollary 1.6. For every positive integef, there exists a set of integers
E = E(¢) with positive upper Banach density such that

d*(EN(E+n)N(E+2n)N(E+3n)N(E+4n)) <d*(E)"/2
for every nonzero integer n.

1.3. Nilsequences

We now explain the main ideas behind the ergodic theoretic results of Sec-
tion 1.1.

Fix an integerk > 1. Given an ergodic systerfX,X,u,T) and a set
A € X of positive measure, the key ingredient for our ergodic results is the
analysis of the sequence

p(ANT ANT2AN---NTXA) .

More generally, for a real valued functidne L*(u), we consider thenul-
ticorrelation sequence

It (k,n) = / F(x)- F(T™) ... F(T¥%) dp(x) . (L.5)

Whenk = 1, Herglotz’s Theorem states that the correlation sequence
I+(1,n) is the Fourier transform of some positive finite measwre o on
the torusT:

It (1,n) ::/f-foT”d/,L:?r(n) ::/Tez”i”tdc(t).

By decomposing the measuseinto its continuous part© and its discrete
partcd, we can write the sequentg(1,n) as the sum of two sequences

l1(1,n) = o°(n) + o9(n) .

The sequencéa®(n)} tends to 0 in uniform density:
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Definition 1.7. Let {a, : n € Z} be a bounded sequence. We say that a
tends to zero in uniform densjtand we writeUD-Lim a, = 0, if

1 M+N-1

lim sup— ZA an|=0.
N_>+°°MEZM n= | |

Equivalently, UD-Lima, = 0 if and only if for anye > 0, the set{n
Z : |an| > €} has upper Banach density zero (cf. Bergelson [Ber], defini-
tion 3.5).

The sequencec/r\d(n)} is almost periodicand hence there exists a com-
pact abelian groufs, a continuous real valued functignon G, anda € G

such thaiod(n) = ¢(a") for all n.

The compact abelian groupis an inverse limit of compact abelian Lie
groups. Thus any almost periodic sequence can be uniformly approximated
by an almost periodic sequence arising from a compact abelian Lie group.

We find a similar decomposition for the multicorrelation sequehgésn)
for k > 2. The notion of an almost periodic sequence is replaced by that of
anilsequencewhich we now define:

Definition 1.8. Let k> 1 be an integer and let X G/A be a k-step nil-
manifold. Let¢ be a continuous real (or complex) valued function on G
and let ac G and ec X. The sequencgp(a”-e)} is called abasick-step
nilsequenceA k-step nilsequencis a uniform limit of basic k-step nilse-
guences.

(For the precise definition of a nilmanifold, see section 4.1.) Note that
a 1-step nilsequence is the same as an almost periodic sequence. Examples
of 2-step nilsequences are given in Section 4.3.

While an inverse limit of compact abelian Lie groups is a compact
group, an inverse limit ok-step nilmanifolds is not, in general, the ho-
mogeneous space of some locally compact group (see Rudolph [R]). This
explains why the definition of a nilsequence is not a direct generalization
of the definition of an almost periodic sequence.

The general decomposition result is:

Theorem 1.9.Let (X,X,u,T) be an ergodic system, letd L*(u) and
let k> 1 be an integer. The sequen¢k (k,n)} is the sum of a sequence
tending to zero in uniform density and a k-step nilsequence.

We explain how Theorems 1.9 and 1.2 are related.

Definition 1.10.Let {a, : n € Z} be a bounded sequence of real numbers.
Thesyndetic supremuraf this sequence is

synd-sup, := sup{c eR:{neZ:ay,>clis syndetic} :
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In Section 4.3, we show that the syndetic supremum of a nilsequence is
equal to its supremum.
We use the following simple lemma several times:

Lemma1l.11.Let {ay} and {b,} be two bounded sequences of real num-
bers. IfUD-Lim(a, — by) = 0, thensynd-sug@, = synd-sufi,.

Therefore, the syndetic supremums of the sequefieésNT"ANT2"A)}
and{u(ANT"ANTZ"ANT3"A)} are equal to the supremums of the associ-
ated nilsequences and we are reduced to showing that they are greater than
or equal tou(A)® andu(A)4, respectively. This is carried out in Section 8,
completing the proof of Theorem 1.2.

1.4. Conventions and notation

Given a systen{X,X,u,T), in general we omit ther-algebra from our
notation and writé X, i, T).

For a system(X, u,T), afactor is used with two meanings: it is B-
invariant sube-algebray or a system, v,S) and a measurable map:
X — Y such thattry = v andSow = mo T. These two definitions coincide
under the identification of the-algebray of Y with the invariant subs-
algebrar—1(Y) of X.

In a slight abuse of vocabulary, we say tha a factor ofX. If f is an
integrable function oiX, we denote the conditional expectationfadn the
factoryY by E(f | Y). We write E(f | Y) for the function onY defined by
E(f |Y)=E(f|Y)ox. This expectation is characterized by

forallge L™(v), /f'goﬂdNZ/E(f [Y)-gdv.
X Y

Throughout the article, we implicitly assume that the term “bounded
function” means bounded and measurable.

1.5. Outline of the paper

In Section 2, we construct two examples, the first showing that ergodicity

is a necessary assumption for Theorem 1.2 and the second, a counterexam-
ple for progressions of length 5 (Theorem 1.3). In Section 3, we use a
variant of Furstenberg’s Correspondence Principle to derive combinatorial
consequences of the ergodic theoretic statements. The bulk of the paper is
devoted to describing the decomposition of multicorrelation sequences and
proving Theorem 1.2. We start by reviewing nilsystems and construction
of certain factors in Section 4, and then in Section 5 explicitly describe the
limit of an average along arithmetic progressions in a nilsystem. In Sec-
tion 6, we introduce technical notions needed for the decomposition and in
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Section 7 we complete the proof of the decomposition. Section 8 combines
these results and proves Theorem 1.2.

Acknowledgments We thank |. Ruzsa for the combinatorial construction
(contained in the Appendix) which is the starting point for the construction
of the counterexample of Theorem 1.3. We also thank E. Lesigne for point-
ing us to the version of the Correspondence Principle we use and A. Leib-
man for useful explanations about nilsystems.

2. Combinatorial and ergodic counterexamples

In this sectiongc denotes a universal constant, with the understanding that
its value may change from one use to the next. ingtdenote the Haar
measure on the tordB=R/Z.

2.1. A counterexample for a nonergodic system

In order to show that ergodicity is necessary in Theorem 1.2, we use the
following result of Behrend:

Theorem (Behrend [Beh]).For every integer L> 0, there exists a sub-
setA of {0,1,...,L— 1} having more than exp(—c,/logL) elements that
does not contain any nontrivial arithmetic progression of ler@th

Theorem 2.1.There exists a (nonergodic) systéX, i, T) and, for every
integer? > 1, there exists a subset A of X of positive measure so that

L(ANTANTZA) < Zu(A) . (2.1)

NI =

for every nonzero integer n.

We actually construct a sé& of arbitrarily small positive measure with
L (ANTNANT2NA) < u(A)~clogk®) for every integen = 0 and a positive
universal constart.

Proof. Let X = T x T, endowed with its Haar measuge= my x my and
with the transformatiom given by T(X,y) = (X,y+X). Let A be a subset
of {0,1,...,L—1}, not containing any nontrivial arithmetic progression of
length 3. Define

1
+

i) 2.2)

I
B=J[5- o
Saa

which we consider as a subset of the torus and\sefl x B.
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For every integen # 0 we haveT"(x,y) = (X,y+ nx) and
u(ANT"ANT?A)
= /[ 16 1a(y+mLaly-+ 209 dme(y) dme ()

_//M y)1s(y +X)1g(y+ 2x) dmp(y) dmyp(x) .

We now bound this last integral. Lrty € T be such that the expression
in this integral is nonzero. The three poipty + x andy + 2x belong toB
and we can write

j

;Jra +X=_——+b;y+2x= £Jrc
Y=o &y oL oY oL

for integerd, j, k belonging toA anda,b,c € [0,1/4L) (mod 1). Then

i—2j+k _ 11
e Bk, S
2L a+2b—ce (550

and thus — 2j + k = 0. The integers, j, k form an arithmetic progression

in A and so the only possibility is that they are all equal, giving that the
three pointsy,y+ X,y + 2x belong to the same subinterval Bf Therefore,

xe (—1/(8L),1/(8L)) (mod 1) and, for everyn # 0,

w(ANTANTZA) =[] 1a(y)1a(y-+x)La(y-+ 20 dmr(y) dmy ()

~M(B)
=T

We havemr(B) = |A|/(4L). By Behrend’s Theorem, we can chooseof
cardinality on the order df exp(—c,/logL). By takingL sufficiently large,
an easy computation gives the bound (2.101

2.2. Quadratic configurations

Out next goal is to show that the results of Theorem 1.2 do not hold for
arithmetic progression of length 5. We start with a definition designed to
describe certain patterns that do not occur.

Definition 2.2. Aninteger polynomiais a polynomial taking integer values
on the integers. When P is a honconstant integer polynomial of degg&e
the subset

{P(0),P(1),P(2),P(3),P(4)}

of Z is called aquadratic configuration of 5 termaritten QC5 for short.
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Note that any QCS5 contains at least 3 distinct elements. An arithmetic pro-
gression of length 5 is a QC5, corresponding to a polynomial of degree
1.

We mimic the construction in Theorem 2.1 for this setup:

Lemma 2.3.LetA be a subset of0,1,...,L — 1} not containing any QCS5.
For j € A, letlj C T be the interval

R I I

=0t e
and let B be the union of the intervalgfor j € A. Let xy,z< T be such
that the five points

a =x+iy+i’z (mod1),i=0,1,...,4

. -1
belong to B. TheRy belongs (mod 1) to the mterval(I, 1).
Proof. We consideray,...,a4 as real numbers belonging to the interval
[0,1); by the definition ofB, they actually all belong t¢0,1/4). Fori =
0,...,4, letjj € E be the integer such that € I ;.
The five elementsy, ..., a4 of T satisfy the relations

a3=ap—3a+3a, (mod 1 anday=a; —3a,+3az3 (mod 1) .

The real numbeag — 3a; + 3a, belongs to the interval

4L - 16L’ 4L 4L

and this interval is contained {r-3/4,1). Asag = ap— 3a; +3a; (mod 1)
andaz € [0,1/4), the equalityag = agp — 3a; + 3a2 holds inR and thus
azed.

Moreoverag € |j, and, for everyj # jo—3j1+ 3j2, the intervall; has
empty intersection with the intervdl We get thatjz = jo — 3j1+ 3j2. By
the same computation we have that j1 — 3j2+ 3js.

From these two relations it follows that there exists an integer polyno-
mial Qwith jj =Q(i) fori=0,...,4. This polynomial must be constant, for
otherwise{ jo, ..., j4} would be a QC5 im.. Therefore the five point, i =
0,...,4 belong to the same subintervabf B. Since ¥ = —3ap+4a; — a,

(mod 1), we have that@e (71,4 ). O

J:<Jo—311+312 3 jo—3j1+3])2 1)

The next counterexample relies on a combinatorial construction communi-
cated to us by Imre Ruzsa; his construction is reproduced in the Appendix.

Theorem 2.4 (I. Ruzsa)For every integer > 0 there exists a subséit of
{0,1,...,L—1} having more than exp(—c,/logL) elements that does not
contain any QC5.
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2.3. Counterexample for longer progressions in ergodic theory.

Proof (Proof of Theorem 1.3)Ve first define a particular system. Recall
that T denotes the torus amdy its Haar measure. Definé = T x T and
U= Mg X M.

Leta € T be an irrational and leX be endowed with the transformation
T given by

T(Xy)=(X+a,y+2X+ ) .

It is classical that this system is ergodic. This also follows from the discus-
sion in Section 4.2.

Let A be a subset of0, ...,L— 1} not containing any QCH® the subset
of T defined in Lemma 2.3 andl =T x B.

For every integen and every(x,y) € X we have

T(x,y) = (X4 nat,y+ 2nx+ne) .
Thus forn # 0 we have

L(ANTPANTZANTANTA)
= // 18(y)1s(y + 2nx+ o) 1g(y + 4nx+ 4n’ar)
TxT

1g(y + 6nx+9n?0) 1g(y+ 8nx+ 16n%cr) dmp(x) dmp(y)

Letx,y € T andn # 0 be such that the expression in the last integral is not
zero. By Lemma 2.3, @ belongs (mod 1) to the interval( 7%, ). Since
y € B, we have

mr(B) _ A
2L 3212
By Ruzsa’s Theorem, we can choaoseof cardinality on the order of

Lexp(—cy/logL). By choosingL sufficiently large, an easy computation
gives the bound (1.4).0

L(ANTPANTZANTIANTHA) <

2.4. Counterexample for longer progressions for sets of integers with
positive density.

Proof (Proof of Corollary 1.6)Let (X,u,T) andA be the system and the
subset ofX defined in Section 2.3. Fix somec X and defineE = {me
Z: T™x e A}.

It is classical that the topological dynamical systenT) is uniquely
ergodic; this also follows from the discussion in Section 4.2 and Theo-
rem 4.1. Since the boundary Afhas zero measure, we haVdE) = u(A).

By the same argument (EN (E+n)N(E+2n)N(E+3n)N(E+4n)) =
w(ANTPANTZ2ANT3"ANTAA). The same argument as in the proof of
Theorem 1.3 gives the announced resuliil
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3. Translation between combinatorics and ergodic theory
3.1. Correspondence principle

In order to obtain combinatorial corollaries of our ergodic theoretic results,
we need the following version of Furstenberg’s Correspondence Principle:

Proposition 3.1.Let E be a set of integers with positive upper Banach den-
sity. There exist an ergodic syst¢¥, X, u, T) and a set Ac X with u(A) =
d*(E) such thatu(T™AN---NT™A) < d*((E+m)N---N(E+my)) for

all integers k> 1 and all my,...,mg € Z.

The observation that it suffices to prove the ergodic theoretic results for
ergodic systems was transmitted to us by Lesigne (personal communica-
tion); the proof we give is almost entirely contained in Furstenberg [F2].

Proof. We proceed as in the proof of Lemma 3.7 of [F2].

Let {0,1}” be endowed with the product topology and the shift iap
given by (TX)n = X,1 for all n € Z. Definee € {0,1}% by settinge, = 1
if n € E ande, = 0 otherwise. LeK be the closure of the orbit @&under
T, meaning the closure dfT™e: me Z}. SetA= {xe X: xp=1}. Itisa
clopen (closed and open) subseXoflt follows from the definition that for
every integen, we haveT"ec Aif and only ifn € E.

By definition of d*(E), there exist two sequencdd/i} and {N;} of
integers, withN; — +oo, such that

ilim Ni‘Eﬂ Mi,M; +N; — 1” —d"(E) .

In the proof of Lemma 3.7 in [F2], it is shown that there exists an invariant
probability measurer on X such thatv(A) is equal to the above limit and
thus is equal ta*(E). By using the ergodic decomposition efunderT,
we have that there exists an ergodic invariant probability megsume X
with u(A) > d*(E).

Letmy,...,mg be integers. The s8&t™AN---NT™AIs a clopen set. Its
indicator function is continuous and by Proposition 3.9 of [F2], there exist
two sequence$K; } and{L;} of integers, withL; — +oo, such that

Ki+Li—1
w(T™AN---NT™A) = lim f Z( Irman.nrva(T"e)
L S

1
=lim =|(E+m) -0 (E+m) N{K;,... Ki+Li— 1}
1

<d*((E+m)N---N(E+my)) .

By using this bound wittk = 1 andm; = 0, we have thaui(A) < d*(E)
and thusu(A) =d*(E). O

Using the modified correspondence principle and Theorem 1.2, we im-
mediately deduce Corollary 1.5.
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3.2. Combinatorial consequence for progressions of leBgthd4

Szemerédi’'s Theorem can be formulated in a finite version:

Theorem (Szemerédi [S])For every integer k> 1 and everyd > 0, there
exists Nk, §) such that for all N> N(k, 8), any subset E of1,...,N} with
at leastdN elements contains an arithmetic progression of length k.

Similar to the finite version of Szemerédi’s Theorem, we can derive a
finite version, albeit a somewhat weaker one, of Corollary 1.5. We begin
with a remark.

Write | x| for the integer part of the real numberFrom the finite ver-
sion of Szemerédi’s Theorem, it is not difficult to deduce that every subset
E of {1,...,N} with at leastSN elements contains at leagt(k, §)N?|
arithmetic progressions of lengkhwherec(k, 0) is some constant. There-
fore the sekE contains at leastc(k, 5 )N | progressions of lengtkwith the
same difference.

In view of Corollary 1.5, it is natural to ask the following question:

Question. Is it true that for every > 0 and every > 0, there existdl(¢, 9)
such that for everil > N(¢, 8), every subseE of {1,...,N} with |E| > 6N
elements contains at least— £)53N arithmetic progressions of length 3
with the same difference and at leést- £)5*N arithmetic progressions of
length 4 with the same difference?

We are not able answer this question but can prove a weaker result with
a relatively intricate formulation:

Corollary 3.2. For all real numberss > 0 ande > 0 and every integer K-
0, there exists an integer (4,¢,K) > 0 such that for all N> M($, €,K)
and every subset E {1,...,N} with |E| > SN there exist:

e a subinterval J of(1,...,N} with length K and an integer s 0 such
that

EN(E-9)N(E—-29NJ| > (1-¢€)8K. (3.1)

e a subinterval Jof {1,...,N} with length K and an integer s> 0 such
that

IEN(E-S)N(E-28)N(E-35)nJ|>(1-¢)8'K. (3.2

Statement (3.1) means tHan J contains at leagtl — €) 53K starting points

of arithmetic progressions of length 3 includedBn all with the same
difference. Statement (3.2) has the analogous meaning for progressions of
length 4.

1 Recently Ben Green gave a positive answer to this question for progressions of length
3 (preprint available at http://www.arxiv.org, math.CO/0310476).
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Proof. We only prove the result for progressions of length 3, as the proof
for progressions of length 4 is identical.

Assume that the result does not hold. Then there éxis0, € > 0,K >
0, a sequencéN; } tending to+co and for every a subseE; of {1,...,N;}
with |Ei| > 8N; such that for every subintervdlof lengthK of {1,...,N;},
relation (3.1) (withE; substituted foE) is false.

We can assume th&t > K for everyi. By induction, we build a se-
quence{M;} of positive integers wittM; 1 > 2M; 4+ 2N; andM; 1 > M; +
N; + Ni.1 for everyi. Define the seE to be the union of the setd; + E;.
We haved*(E) = limsup |Ei|/N; > 6.

Fix an integers > 0. By construction, for every integé there exist
i and an interval of lengthK, included in[M; + 1,M; + N;], such that
EN[M,M+K —1] c ENJ. We deduce that

SUBEN(E—s)N(E—25)N[M,M+K—1]|
M

=sup sup |EN(E-s)N(E-25)NJ|. (3.3)
i JC[Mi+1,Mi+Ni]
=K

By construction, if for some integen € E we havem+sc E, m+2sc€ E
andme [M; + 1, M; + Ni], then the integem+ s andm+ 2s also belong to
the same interval. Therefore, forC [M; + 1, M; + N;],

Eﬂ(E—S)ﬂ(E—ZS)ﬁJ: (Eiﬂ(Ei —S)ﬂ(Ei —ZS)ﬂ(J—Mi))—i-Mi .
Putting this into Equation (3.3), we have that
SUBEN(E—s)N(E—25)N[M,M+K—1]|
M

=sup sup |[EN(E-9N(E-29nl|<(1-¢)8K
i1 N
[1l=K

by definition of the setk;.
We deduce that for every> 0, we haved* (EN (E —s) N (E—29)) <

(1—€)82 and Corollary 1.5 provides a contradiction

The answer to the similar question for longer arithmetic progressions is
negative: there exist significant subsetg df...,N} that contain very few
arithmetic progressions of length5 with the same difference.

Proposition 3.3.For all integers? > 0, there existsd > 0 such that for
infinitely many values of N, there exists a subset Elof.. N} with |E| >

oN that contains no more thaibﬁéN arithmetic progressions of length
with the same difference.
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We give only the main ideas of the proof, as it lies a bit far from the
main focus of this paper.

Let L andB be as in the proof of Theorem 1.3 (Sections 2.2 and 2.3).
Let a be an irrational which is well approximated by a sequefig/q; }
of rationals withg; prime and define:

F={neN:nPfacB (mod1}.

LetN be one of the primeg; andE =F N {1,...,N}.
Then|E|/N is close tom(B). Let s be a positive integer.
Let the integen be such that the arithmetic progressionn+s,...,n+
4s} is included inE. By Lemma 2.3, Bso. belongs modulo 1 to the interval
(20> a0)- Note thatn ands are smaller thaiN = q;. By approximatingo
by p,kqJ and using the primality ofjj we see that the number of possible
values ofn for a givensis bounded beN/L for some positive constanot
ThereforeE contains fewer thaoN/L progressions of length 5 with the
same difference. Fdr sufficiently large we get the announced bound. Once
again, the bound we actually findds ¢°9(9)N for some constart> 0. 0O

4. Preliminaries
4.1. Nilsystems

We review some definitions and properties needed in the sequel. The nota-
tion introduced here is used throughout the rest of this paper.

Let G be a group. Fog, h € G we write[g,h] = g~*h~1gh. WhenA and
B are two subsets d& we write [A, B] for the subgroup oG spanned by
{[a,b] :a€ A, b e B}. The lower central series

G=G1D5G;D---DGjDGj11D...
of G is defined by
GlzGandeH: [G,Gj]for j>1.

Letk > 1 be an integer. We say th@tis k-step nilpotenif Gy;1 = {1}.

Let G be ak-step nilpotent Lie group and let be a discrete cocompact
subgroup. The compact manifokl= G/A is called ak-step nilmanifold
The groupG acts naturally orX be left translation and we writ@, X) —

g- xfor this action. There exists a unique Borel probability meaguoa X
invariant under this action, called thtaar measuref X.

The fundamental properties of nilmanifolds were established by Mal-
cev [M]. We make use of the following property several times, which ap-
pears in [M] for connected groups and is proved in Leibman [Lei2] in a
similar way for the general case:

— For every integer p> 1, the subgroups Gand AG;j are closed in G. It
follows that the group\; = A NG; is cocompact in G
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Lett be a fixed element dB and letT : X — X be the transformation
x—t-x. Then(X,T) is called ak-step topological nilsysteand (X, i, T)
is called ak-step nilsystem

Fundamental properties of nilsystems were established by Auslander,
Green and Hahn [AGH] and by Parry [Pal]. Further ergodic properties were
proven by Parry [Pa2] and Lesigne [Les] when the gr@uis connected,
and generalized by Leibman [Lei2].

We summarize various properties of nilsystems that we need:

Theorem 4.1.Let (X = G/A, u, T) be a k-step nilsystem with T the trans-
lation by the element4¢ G. Then:

1. (X,T) is uniquely ergodic if and only ifX, i, T) is ergodic if and only
if (X, T) is minimal if and only if(X,T) is transitive (that is, if there
exists a point x whose orbfiT"x: n € Z} is dense).

2. LetY be the closed orbit of some poir¢ X. Then'Y can be given the
structure of a nilmanifold, ¥=H/I", where H is a closed subgroup of
G containing t and" is a closed cocompact subgroup of H.

3. For any continuous function f on X and any sequences of inté¢lykiis
and{N;} with N — 4o the averages

1 Mi+Ni-1
— f(T"x
N n:th (T"%)

converge for all xc X.
Assume furthermore that

(H) Gis spanned by the connected component of the identity and the ele-
mentt.

Then:

4. The groups G j > 2, are connected.

5. The nilsysteniX, i, T) is ergodic if and only if the rotation induced by
t on the compact abelian group/G;A is ergodic.

6. If the nilsystem(X, u,T) is ergodic then its Kronecker factor is 2
G/GaA with the rotation induced by t and with the natural factor map
X=G/A —-G/GA =Z.

For connected groups, parts 1, 2 and 3 of this theorem can be deduced
from [AGH], [F3] and [Pal], while parts 4 and 6 are proved in [Pal]. When
G is connected and simply connected and, more generally, @heam be
imbedded as a closed subgroup of a connected simply connlectegh
nilpotent Lie group, all parts of this theorem were proved in [Les]. In the
case that the group is simply connected, the result follows from Lesigne’s
proof. The general case for parts 1, 2, 3, 4 and 6 follow from [Lei2]. The

proof of part 4 was transmitted to us by Leibman (personal communication)
and we outline it here.
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Proof. (Part 4) Assume that property (H) holds and &, be the con-
nected component of the identity 1 & The second commutat@s; is
spanned by the commutators of the generatofs.@incelt,t] = 1, there-

fore we haveG; = [G(g),G]. Forh € G, the mapg +— [g,h] is continuous
from G(g) to Gz and maps 1 to 1. Thus its range is included in the connected
component of 1 irG,. We get thaG, is connected.

We proceed by induction for the commutator subgroups of higher order.
Assume that the-th commutator subgrou@, is connected. Proceeding
as above, using the connectednes&gfwe have that fog € G, andh €
G, [9,h] belongs to the connected component of G 1. ThusGpy 1 is
connected. O

We also use (in Section 5.2) a generalization of part 5 of Theorem 4.1
for two commuting translations on a nilmanifold, but it is just as simple to
state it for/ commutating translations:

Theorem 4.2 (Leibman [Lei2], Theorem 2.17)Let X= G/A be a k-step
nilmanifold endowed with its Haar measute Let 4, ... ,t, be commuting
elements of G and let T..., T, be the associated translations on X. Assume
that

(H) G is spanned by the connected component of the identity and the ele-
mentsty,...,t.

Then the action oZ‘ on X spanned by4T..., T, is ergodic if and only if
the induced action on G5,A is ergodic.

We return to the case of a single transformation. Oétu, T) be an
ergodic kstep nilsystem. There are several ways to reprexeas a nil-
manifold G/A. For our purposes, we reduce to a particular choice of the
representation.

Assume thaiX = G/A and lett € G be the element defining. The
connected componel@, of the identity inG projects to an open sub-
set ofX. By ergodicity, the subgroufG q),t) of G spanned by andt
projects ontaX. Substituting this group foG andA N (G(g),t) for A, we
have reduced to the case that hypothesis (H) is satisfied.

Let A’ be the largest normal subgroup®fincluded inA. Substituting
G/A’ for G andA /A’ for A, hypothesis (H) remains valid and we have
reduced to the case that

(L) A does not contain any nontrivial normal subgroup of G.

4.2. Two examples

We start by reviewing the simplest examples of 2-step nilsystems.
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42.1. LetG=7ZxTx T, with multiplication given by
(kX y)* (K, X,y) = (k+ K, x+X,y+y +2kx) .

ThenG is a Lie group. Its commutator subgroup{i3} x {0} x T andG is
2-step nilpotent. The subgroup= 7Z x {0} x {0} is discrete and cocom-
pact. LetX denote the nilmanifol&/A and we maintain the notation of the
preceding Section, with one small modification. HEre T, m= my is the
Haar measure dff, and the factor mapg : X — Z is given by(k,x,y) — X;

it is thus more natural to use additive notation Zor

Let a be an irrational point i, a= (1, a,a) andT : X — X the trans-
lation bya. Then(X,u,T) is a 2-step nilsystem. Note that hypotheses (H)
and (L) are satisfied. Sinae is irrational the rotatiorfZ,m, T) is ergodic
and(X,u,T) is ergodic by part 6 of Theorem 4.1.

We give an alternate description of this system. The rtlap,y) —
(x,y) from G to T? induces a homeomorphism Xfonto T. Identifying X
with T? via this homeomorphism, the measurdecomes equal toy x
my, and the transformatiofi of X is given for(x,y) € T2 = X by

TXYy) =(X+a,y+2x+o).

This is exactly the system used in the construction of the counterexample
in Section (2.3).

4.2.2. We also review another standard example of a 2-step ergodic nil-
system. LetG be the Heisenberg grouR x R x R, with multiplication
given by

%Y,2)*(X,Y,Z) = (x+X,y+Y,z+Z +xy) . (4.1)

Then G is a 2-step nilpotent Lie group. The subgrodp= Z x Z x Z
is discrete and cocompact. LEt= G/A and letT be the translation by
t = (t1,t2,t3) € G with t1,t, independent ove® andt; € R. We have that
(G/A,T) is a nilsystem. Hypothesis (H) is obviously satisfied sitces
connected. Here the compact abelian gr@jt,A is isomorphic toT?
and the rotation off by (ty,t,) is ergodic. Therefore the systei@/A, T)
is uniguely ergodic.

Note that hypothesis (L) is not satisfied B/and A. The reduction
explained above consists here in taking the quotienG@&nd A by the
subgroupA’ = {0} x {0} x Z. We get thatX is the quotient 0oflG/A’ by
A /A" whereG/A" = R x R x T with multiplication given by (4.1) and
AJA' =7 x Z x {0}.

4.3. Nilsequences

For clarity, we repeat some of the definitions given in the introduction. Let
X = G/A be ak-step nilmanifold ¢ be a continuous function ax, e € X
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andt € G. The sequencéan} given bya, = ¢ (t"-e) is called &-stepbasic
nilsequenceWe say that a bounded sequencelissaep nilsequendéit is
a uniform limit of k-step basic nilsequences.

Let X, e, t and¢ be as above and I¥tbe the closed orbit &f. By part 2
of Theorem 4.1(Y, T) can be given the structure of a nilsystem. Since this
system is transitive, it is minimal by part 1 of the same theorem S-et
SURycz @ ande > 0. Theset = {xeY: ¢(x) > S—e} isanonempty open
subset off. By minimality of (Y, T), the se{ne€ Z: t"-ec U} is syndetic
and thus synd-sum, > S— €. Therefore for every basic nilsequeni, },
we have

synd-su@, = supay, .
nez
This property passes to uniform limits and is therefore valid for every nilse-
qguence.

The Cartesian product of twk-step nilsystems is again kastep nil-
system and so the family of badkestep nilsequences is a subalgebra of
£, Therefore the family ok-step nilsequences is a closed subalgebra of
£, This algebra is clearly invariant under translation and invariant under
complex conjugation.

We give two examples of 2-step nilsequences, arising from the two ex-
amples of 2-step nilsystems given above.

4.3.1. Let(X,T) be the nilsystem defined in Section 4.2.1. We identify
X with T x T. Lete = (0,0). For every integen, we haveT "e = (na, iPar).
Letk and/ be two integers and lgt be the function oiX given by¢ (x,y) =
exp(2zi(kx+ ¢y)). The sequence

{exp(27i(kn+(n?)a) }

is a 2-step nilsequence.

4.3.2. Let(X,T) denote the system defined in Section 4.2.2. We use the
first representation of this system.

We first define a continuous function &h Let f be a continuous func-
tion onRR, tending sufficiently fast to O at infinity. FgK,y,z) € R3, define

v(X,Y,2) ;= exp(2riz) Ezexp(zmkx)f(y—k K) .
Ke

Theny is a continuous function dR® and an immediate computation gives
that for all (x,y,z) € R® and for all(p,q,r) € Z3,

1//((X,y, Z) * (p)qu)) = l[/(X,y,Z) :

Therefore the functiony on G = R? induces a continuous functiaf on
the quotientX of G by A = Z3. Let e be the image 0f0,0,0) in X. For
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every integen we havep (t"-e) = y(t") andt" = (nty, ntp, ntz + ”(”—gl)tltz).

Therefore the sequende,} given by

nin—1

) tito) Z exp(2ziknty) f (Nt + k)
keZ

an = exp(2xintz) exp(27i

is a 2-step nilsequence.

4.4, Construction of certain factors

In this Section{X,u, T) is an ergodic system.

We review the construction of some factors in Host and Kra [HK]. These
are the factors that control the limiting behavior of the multiple ergodic
averages associated to the expressig(s n). We begin recalling some
well known facts about the Kronecker factor.

4.4.1. The Kronecker factor and the ergodic decompositiqn ofu  Let
(Z(X),m,T) denote the Kronecker factor 0K, 1, T) and letr : X — Z(X)
be the factor map.

When there is no ambiguity, we wriiinstead ofZ(X). We recall that
Z is a compact abelian group, endowed with a BarellgebraZ and Haar
measuram. The transformatio : Z — Z has the forme — oz for some
fixed elementx of Z.

Forse Z, we define a measuge on X x X by

| 100100 dustxX) = [E(F12)@) - B(F'| 2)(s20u(2) . (42)
XxX Z

For everys € Z the measurgi is invariant undefl x T and is ergodic for
m-almost evens. The ergodic decomposition of x 1 underT x T is

u><u=/zusdm(5)-

4.4.2. The factors|Z We recall some constructions of Sections 3 and 4
in [HK]. For an integek > 0, we writeX!K = X2 and T/ : XK — XK for
the mapT x T x ... x T, taken & times.

We define a probability measuge on XX, invariant underT by
induction. Seu[% = u. Fork > 0, let.# K be thes-algebra ofT K-invariant
subsets oKX . Thenuk+1 is the relatively independent squareiof over
7K. This means that if’,F” are bounded functions oxl¥,

[ FOOF" ) b0 ) o= [ B(F | M) B(R | M)l
X [k+1] XK (4 3)



Multiple recurrence and nilsequences 21

wherex = (X,x") is an element oiXk+1, considered under the natural
identification ofX %+ with XK % XK,
For a bounded functiom on X we can define

-1 2
Il 1l := (/x[kJ rL f(Xj)dH[k](X)> (4.4)
|=

because this last integral is nonnegative. It is shown in [HK] that for every
integerk > 1, || - [k is @ seminorm oh. ().

The seminorms define factors®f Namely, the suliz-algebraZy_1(X)
of X is characterized by

for f € L®(u), E(f|Zk_1(X)) =0if and only if ||| f|[x =0. (4.5)

The factorzy(X) is the factor ofX associated t&(X). This gives that
Zy(X) is the trivial factor,Z;(X) is the Kronecker factor. When there is no
ambiguity, we writeZ, andZy instead oz, (X) andZ(X).

4.4.3. The factors associated to the measuxesFor eacls € Z such that

(X x X, us, T x T) is ergodic, for each integér> 1, a measuréus) on

(X x X)¥ can be defined in the way that! was defined fromu. Further-
more, a seminornf - ||sx on L*(us) can be associated to this measure, in
the same way that the seminoim || is associated tau{. In Section 3

of [HK], it is shown that under the natural identification @€ x X)X with
Xk we have

plt = [ (g ¥dm(s).

It follows from definition (4.4) that for every € L*(u),

k+1 k
IS = [11F o fligams)

From this we immediately deduce:

Proposition 4.3.Let k> 2 be an integer and let f be a bounded function
on X. If f has zero conditional expectation @, then for m-almost every
se Z the function f f, considered as a function diX x X, us), has zero
conditional expectation ofx_1(X x X, us, T x T).

4.4.4. Inverse limits of nilsystemsWe say that the systerfX,T) is an
inverse limitof a sequence of factof§X;, T)} if {X;};cn is an increasing
sequence of sub-algebras invariant under the transformatiosuch that
Vjen Xj = X upto null sets. If each systefX;, T) is isomorphic to &-step
nilsystem, then we say théx, T) is aninverse limit of k-step nilsystems
Theorem 10.1 of [HK] states that for every ergodic syst&iyu, T) and
every integek > 1 the systenzy(X) is an inverse limit ok-step nilsystems.
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4.5. Arithmetic progressions

We continue assuming thaX, u,T) is an ergodic system. From Theo-
rem 12.1 of [HK] and the characterization (4.5) of the fadgr, we have:

Theorem 4.4.Let k> 2 be an integer andf f1,..., fkx bounded functions
on X. If at least one of these functions has zero conditional expectation on
Zk—1 then for all sequencegVi; } and{N;} of integers with N— oo,

fim = /fo X) F1(T™) f2(T2%) ... fi(TK™) de(x) = 0.

Corollary 4.5. Let k> 2 be an integer and letof f1,..., fx be bounded
functions on X. If at least one of these functions has zero conditional ex-
pectation orZy then

/ Fo ) F1(T™) f2(T2%) ... fu(T¥™) dt (%)
converges to zero in uniform density.

Proof. Let {M;} and{N;} be two sequences of integers, with — -co.
Formralmost evens € Z, one of the functiongy® fo, ..., fk® fx has zero
conditional expectation ofix (X x X, us, T x T) by Proposition 4.3 and thus
the averages ofM;,...,M; + N, — 1} of

/ fo(X) fo(X) F1(T™) F2(T™) ... fil(TK™) fie(TX™) dus(x, X)

converge to zero by Theorem 4.4 applied to the systém X, us, T x T)
and to the function$p ® fo,. .., fk® fx. Integrating with respect tewe get

1 Mi+N;— 2
/fo X) (T (TX) du(x)) 0

and the result follows. O

Recall that for a bounded measurable functfoon X and an integer
k> 1, we defined

((k,n) /f F(TA%) dp () .

Even more generally, one can consider the same expressiok with
distinct bounded function$, ..., fc. However, this gives no added infor-
mation for the problems we are studying and so we restrict to the above
case.

Corollary 4.6. Let k> 1 be an integer, let f be a bounded function on X
and let g=E(f | Zx). Then k(k,n) —I4(k,n) converges to zero in uniform
density.
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Letk, f andgbe as in this Corollary. We considgas a function defined
on Zy. Note that the function$ andg have the same integral.

Since the systerdy is an inverse limit of a sequence kistep nilsys-
tems, the functiom can be approximated arbitrarily well Lrt-norm by its
conditional expectation on one of these nilsystems. We use this remark in
the proof of Theorem 1.2 in Section 8.

5. The limit of the averages

In this sectionk > 1 is an integer(X = G/A,u,T) is an ergodick-step
nilsystem and the transformatidnis translation by the elemenht G. We

keep the notation of Section 4.1 and assume that hypotheses (H) and (L)
are satisfied.

Recall that we leG; denote thej-th commutator ofG and thatA; =
A NGj. We have thaG = Gy, but sometimes it is convenient to use both
notations in the same formula.

For f € L*(u), we first study the averages of the sequdnfle n). This
establishes a short proof of a recent result by Ziegler [Z1]. We use some al-
gebraic constructions based on ideas of Petresco [Pe] and Leibman [Leil].

We explain the idea behind this construction. It is natural to define an
arithmetic progression of length+ 1 in G as an element o8 of the
form (g,hg,h?g,...,h*g) for someg, h € G. Unfortunately, these elements
do not form a subgroup @&**1. However such elements do span the sub-
groupG (defined in the next section), which could thus be catlexigroup
of arithmetic progressions of lengthikl in G.

Similarly, one is tempted to define an arithmetic progression of length
k+1in X as a point inX“** of the form(x,h-x,h?-x,...,hk-x) for some
x € X andh € G. Once again, it is more fruitful to take a broader definition,
calling an arithmetic progression ¥ia point from the seX (again defined

bilolw), which is the image of the gro@under the natural projection on
XK+,

5.1. Some algebraic constructions
Define the mag : G x G1 x Gy x - -+ x G — G¢+1 by

: _ ? o6 0
i(9.01.92,---,0) = (0.9, 99G, - -, 99 " 8" - 9

and letG denote the range of the mgp
G= J(GxG1xGpx - xGy) .
Similarly, we define a map* : Gy x Gy x - -- x G — GX by

k k k
17(91,92,...,0k) = (gl,gigz,.--,ggl)g:%) '-'QEK)) :
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Finally we define

G*: j*(G]_XGzX---XGk)
= {(hy,hy,...,hg) € G*: (1,hy,hp,....hy) € G} .

The following results are found in Leibman [Leil]:

Theorem 5.1.

1. G is a subgroup of &1,
2. The commutator groufG), of G is

(G)2=GNG5™ = j(Gax Gy x Gy x Gz x -~ x Gy) .
It follows from part 1 that
3. G* is a subgroup o6
Moreover, forg € G, (hy,hy,....h¢) € G1 x Gy x - x Gy and
(917927"'7gk) = j*(hlahZa---ahk) >

we have

(07'919,.9 %020, ...,0'%kg) = j* (9 g, 07 heg,...,g @) (5.1)

It follows that

4. For(g91,92,.--,0) € G* andg € G, we have

(97019,0 2020, . ..,g gkg) € G

The mapsj and j* are injective, continuous and proper (the inverse image
of a compact set is compact). It follows tiaandG* are closed subgroups
of GKt1 andGX, respectively, and thus are Lie groups.

We also define the two elements

f=(Lt,t2,.. tYandt® = (t,t,...,1)

of G and the element
= (12,19

of G*. Write T andT4 for the translatlons biyandt* onXk+1, respectively,
andT* for the translation by* on X,
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5.2. The nilmanifolcK.

DefineA = GnAKk+L,
ThenA is a discrete subgroup (ﬁ and it is easy to check that =
J(A X AL X Ag X -+ + X A). ThereforeA is cocompact irG. We write

X=G6/A
and letji denote the Haar measure of this nilmanifold. Note ¥t imbed-

ded inXk*1 in a natural way. SincBandt* belong toG, this nilmanifold is
invariant under the transformatioiisand T4.

Lemma5.2.The nllmanlfoIdX is ergodic (and thus uniquely ergodic) for
the action spanned by and T*.

Proof. Since the group&;, j > 1, are connected an@ satisfies condi-

tion (H), it follows that the grouf is spanned by, t* and the connected
component of the identity. By Theorem 4.2, it suffices to show that the ac-
tion induced byT andT4 onG/(G)2A is ergodlc

By part 2 of Theorem 5.1, the map

(91,92, .-,0k) — (91 mod Gp,g2 mod Gy)

induces an isomorphism frof@/(G), onto G/G, x G/G,. Thus the com-
pact abelian grouf/(G),A can be identified witls/GA x G/GoA, and
the transformations induced ByandT# are IdxT andT x T, respectively.
The action spanned by these transformations is obviously ergodic.

5.3. The nilmanifold¥y.

Forx € X we define
Xy = { (X1, X2 - - %) € XK (X, X, %, ., %) € X}

Clearly, for everyx € X the compact seX, is invariant under translations by
elements of5*. We give to each of these sets the structure of a nilmanifold,
quotient of this group.

Fix x € X and leta be a lift of x in G. The point(x,X,...,x) (k times)
clearly belongs toXy. Let (Xg,X%2,...,X) € Xy. The pomt(x xl,xz, )
belongs toX and we can lift it to an element cﬁ that we can write
(9,9%1,9%; - --,9%) With g € Gand(g1, Gz, .-, ) € G*. Writing 2 =a g
andh; =algid ta~* for 1 <i <k, we haved € A, (1,hy,hy,...,hy) be-
longs toG by Remark 4 above and

(gagglagg27"'7gg<) = (l,hl,hz,...,hk)'(a,a,a,...,a)'(A,A,A,...,A) .

This gives that(xy, Xz, ..., X) is the image ofx,x,...X) under translation
by (h1,hy, ..., hy), which belongs t&s*.
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Therefore the action d&* on Xy is transitive. The stabilizer ak, X, ...,Xx)
for this action is the group

A= {(ama Latat,...,aka ) (A, Az, ..., ) € AKNGT) .

AX¥NG* is a discrete subgroup &* and it is easy to check that it is equal
to j* (A1 x Az X -+ x Ax) and thus is cocompact @". It follows thatAy is
a discrete and cocompact subgrouizof L

We can thus identify, with the nilmanifoldG*/Ay. Let fix denote the
Haar measure ofy.

Lemma 5.3./1:/X6x®ﬁxdu(x).

Proof. Let ji’ be the measure defined by this integral. This measure is con-
centrated orX. By Lemma 5.2 it suffices to show that it is invariant under
T andT4. N

_ Recall thafT* is the translation b§* = (t,t2,...,t¥), which belongs to

G* and thus this transformation preservgsandjiy for everyx. Therefore,

for everyx € X, the measuréy ® [ix is invariant undeff = Id xT* and so

[’ is invariant under this transformation.

Let x € X. Consider the image gix underT x --- x T (k times). This
measure is concentrated &y and by remark 4 in Section 5.1, it is easy
to check that it is invariant undé&*. Thus it is equal to the Haar measure
firx. Therefore the image a% ® [ix underT is 8ty ® fitx. It follows that
i’ is invariant undef4. 0O

5.4. The limit of the averages.

Given this background, we give a short proof of Ziegler's result [Z1]:

Theorem 5.4 (Ziegler [Z1]). Let fi, f5,..., fx be continuous functions on
X and let{M;} and{N;} be two sequences of integers such thatN+-co.
For u-almost every x X,

1 M;i+N;—1
N %memU%ynUW)
H/mmu@mmmmehwm(M)
asi— oo

Proof. For x € X, the point(x,x,...,X) belongs to the nilmanifol&. By
part 3 of Theorem 4.1 applied to the nilsystély, T*) and this point, the
averages in Equation (5.2) converge everywhere to some funitibinere-
fore we are left with computing this function.
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Let f be a continuous function oX. We have

[ 100000 du()
Mi+N;— k
—lim [~ ZA 0[] 6T
_ .+N. 1M.+N. 1 k ,
= lim / ey > ™ ij(TJ”““x)du(x).

The point (x,x,...,X) belongs toX and for alln and m, its image un-
der T"(T4)™ is the point(T™x, T™Mx, ..., TX™Mx), By Lemma 5.2 X is
uniquely ergodic for the action spannedbwandT4 and the average in the
last integral converges everywhere to

/)Zf(xo)fl(xl)... () AL (X0, X0, -+ %) -

Using Lemma 5.3, we have

/Xf(x)q)(x)du(x):/j x0) F1(x1) - .. Fe(%) At (X0, X0, - - -, %)
:/x / fa(x1). .. fu(x) diix(Xq, . . ,xk)> du(x)

and the result follows. O

Corollary 5.5. For u-almost every x X, the nilsysteniXy, fix, T*) is er-
godic.

Proof. Recall thaffl * preservegiy for everyx. Let.# be a countable family
of continuous functions oX that is dense irg’(X) in the uniform norm.
By Theorem 5.4, there exists a sub¥gbf X, with p(Xp) = 1, such that

1N 1k k
M) — [ [ 109) dixa 3. %)
NI I i)

asN — +oo for everyx € X and for all functionsfy, f,,..., fx € .%#. Since

% is dense, the same result holds for arbitrary contlnuous functions. It
follows that forx € Xo, the orbit of (x,X,...,x) underT* is dense in the
support of the measuig. Since the support of this measuré(;§ we have

that the action off * on X, is transitive. By Theorem 4. J(,Xx,ux, ) is
ergodic. O
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Corollary 5.6. Let fy, f2,..., fx be continuous functions on X and g }
and {N;} be two sequences of integers such that-N+-c. For p-almost
every xe X and for every(g:, 9o, ...,0) € G*,

1 M;i+N;—1
N Zw f1(T"g1-X) f2(T?"g - X) ... fi(T*"g - X)
| n=M,;
—>/ fa(xa) f2(x2) . .. fi(X) diix (X1, X2, ..., %) (5.3)
asi— o

Proof. Let x € X be such that the nilsysteiiX, fix, T*) is ergodic. For
every (91,0, ...,0¢) € G*, the point(gy - X, g2 - X,. .., gk - X) belongs toXy

and the convergence in Formula (5.3) follows from the unique ergodicity
of (X, T%). O

6. Using the Cartesian square

In this section, we begin the proof of Theorem 1.9. We first construct a
nilsystem in order to replace the sequehgdé, n) (defined in 1.5) by an-
other sequencés (k,n) so that the difference between the two sequences
tends to 0 in uniform density. In the next section, we complete the proof of
Theorem 1.9 by showing that the sequedgg, n) is a nilsequence.

To pass from the convergence results obtained in the preceding section
to a more precise description of the sequefigék,n)}, we consider the
Cartesian square of the groups, manifolds, etc. studied in the previous sec-
tion. This enables passage from the uniform Cesaro convergence results to
uniform density convergence results.

6.1. The group H.

Define
H :{(g,h)erG:hg’ler},

H is a closed subgroup @ x G and is ak-step nilpotent Lie group. By
induction, its commutator subgroups, j > 1, are given by

Hj = {(g,h) € Gj xGj:hg '€ Gj1} .

We build the group$i andH* from H in the same way that the grou@s
andG* were built fromG (in Section 5.1), using the maps

i H x Hyx Hypx -+ x Hg — H*L

and
i H1><H2><---><H|<—>Hk7
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defined analogously to the mapsnd j*. By part 1 of Theorem 5.1 is
a subgroup oH*"! and thusH* is a subgroup oHX. These subgroups are
closed and thubl andH* are Lie groups.

The groupH* is included in(G x G)X. We identify this last group with
G* x GK in the obvious way and considét as a subset oB¥ x GX. For
((91,h1),(92,h2), ..., (G, hk)) € H1 x Hz x - x Hg, we have

i* ((917 h1)7 (927 h2)7 ey (gk7 hk)) = (j*(gl)927 cee 7gk)) j*(hl) hZ) ey hk()6) 1)
In a similar way, we considetl as a subset dB*1 x Gk+1, .

6.2. The nilmanifolds XXs and Xsxy).

Recall the ergodic decomposition

uxuz/zusdm(S)

of u x punderT x T, wheremis the Haar measure of the Kronecker factor
Z of X.

By part 6 of Theorem 4.17 is equal toG/GA and the factor map
m: X — Zis the natural projectio®/A — G/G,A. Whenf is a bounded
function onX andg € G, we write f o g for the functionx+— f(g-x) on X.

We have
E(fog|Z)(2) =E(f | Z)(%(9)2) .
Therefore it follows from definition (4.2) ofis that for everys € Z, this
measure is concentrated on the closed subset
Xs={(x,y) € X x X: m(y)m(x) "t =s} (6.2)

of X x X. It also follows that for alk € Z, all bounded functiong$, f’ on X
and all(g,h) e H,

/fog(x) /o h(x) dus(x, X) :/f(x) #(X) ds(x,X)

This means that the measuytgis invariant under translation by elements
of H.

Letse Z. By its definition (6.2), the seXs is invariant under the action
of H by translation and this action is transitive. We gkgthe structure of
a nilmanifold, quotient of this group. Write

O=HNAxA)={(A,A)eAxA: VA e} .

This group is discrete and cocompactHnLeta € G be a lift ofsin G and
let ex be the base point of (that is, the image iiX of the unit element 1
of G). Then the stabilizer il of the point(ex,a-ex) of Xsis

.= {(A,al’'a™’): (A,1)) € O}
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and this group is a discrete cocompact subgroup.afhus we can identify
Xs with the nilmanifoldH /®,. Since the measungs is concentrated oXg
and is invariant under the actiondf, it is equal to the Haar measure of this
nilmanifold.

Let s e Z be such thailus is ergodic forT x T. Then the nilsystem
(Xs, us, T x T) is ergodic (note thaf x T is the translation by the element
(t,t) of H).

Thek-step nilpotent Lie groupl, its subgroupd, and its element,t)
satisfy properties (H) and (L) (see Section 4.1) that were used,farandt
in the preceding Section. Therefore all the constructions of this Section can
be carried out witlH, ®; and(t,t) substituted foiG, A andt. In particular,
we can define the nilmanifolds, its Haar measurgs and, for(x,y) € Xs,
the nilmanifoldXs () and its Haar measuﬁg(xﬁy). Note thatXs is included
in (X x X)k1, We identify this set withX**1 x Xk+1 in the natural way
and consideKs as contained ixX¥1 x X1, Similarly, Xsxy) is included
in XK x XK,

We rewrite Corollary 5.6 for this situation. We consider only the case
that all the functions oiXs are equal tdf ® f for some functionf on X.

Corollary 6.1. Let f be a continuous function on X and {&f; } and {N;}
be two sequences of integers with-N 4-c. For m-almost every s Z, for
us-almost everyx,y) € Xsand for every((gs, 92, .., 9), (h1,ha,....h)) €
H*,

1 Mi+N -1 k

N n:th JIlf(T"”gj-><)1‘(Tj”hj'y)

converges as+ o to

k
/ﬂlf(xj)f(yj)dﬁs(xvy)((xl,xz,...,xk),(yl,yz,...,yk)) .
=

In order to use this result, we need a more precise description of the
measureﬁs(x7y) and thus of the groupgd andH*.

6.3. The group&* andG
Clearly,H* c G* x G*. Define

G ={g=(91.%,..-.0) €G": (1, 1,...,1),(01,02,--.,0k)) € H*} .
ThenG* is a closed subgroup a8 and thus is a Lie group. By Equa-
tion (6.1), the injectivity ofj*, and the above description of the grous

we have -
G = j*(szng XGk+1) .
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Moreover, wherg = (g1,02,...,09«) € G* we have(g,g) € H*. It follows
that
H*={(g,n) e & xG": hgte G} (6.3)

and thatG* is a normal subgroup d*.
The following Lemma is taken from [Leil]:

Lemma 6.2.For g € G and (1,02, ..., g«) € G*, we have
([9179]7 [9279]7‘ K [gk>g]) € é* .

Proof. Let (hy,hy,...,hg) € G1 x Gz x --- x Gk be the inverse image of
(01,02,...,0«) underj*. For 1< ¢ <k, we haveg,h;] € Gy;1 and thus
(hy,g7th,g) € H,. We get that

((91,92,--,%), (077010,9 7020, .-, 9" 0k9))
= (j*(he,hg,... . hw), j* (g Tg, g7 heg, ..., g i)
=i*((h1,97*MQ), (h2,g *h20),...., (e, g *hig)) € H*
and the result follows from characterization (6.3Y0f. O

In particular, it follows that

if (917927 <o 7gk) € é* andg € Gv
then(gag >, 9%g ?,...,0ag 1) € G*. (6.4)
We also define

G = {(g,9M,ghy,...,gh): g€ G, (hy,hy,....h) € G}
= j(GXGzXG3X---XGk+1).

It follows frgm Remark (6.4) tha6 is a subgroup of5X1, It is clearly
included inG. By using the normality o&5* in G* and Lemma 6.2, we have

thatG is a normal subgroup db. As j is a proper mapG is closed inG¢*?
and is a Lie group.

6.4. The nilmanifol& and the nilmanifold¥,.

DefineA := GNAKL Itis a discrete subgroup & and it is easy to check
thatA = j(A x A2 X Az X --- X Axt+1). ThusA is cocompact ir6. We write

X =G/A

and letfi denote the Haar measure of this nilmanifofdis imbedded in
X**1in a natural way an& c X sinceG c G.
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Lemma 6.3.The nilmanifoldX and its Haar measur@ are invariant un-
der translation by any element af = A¥1 N G.

Proof. Letx= (X,X1,Xp,...,%) € X and letA € A. We show thaf. - x (with
the obvious interpretation) belongsXo

The pointx is the image inX of an elemenyg of G. ThusA -x is the
image inX of the elemenflg= (AgA~ )l of G and thus also of the element
AQA~ ! SinceG is a normal subgroup d, this last element belongs &

and -x e G. -
LetA € A. The measurg is invariant under the action & and thus its

image under translation by is invariant under the action &fGA ! = G.
Since this measure is concentratednt is equal tog. 0O

Forx € X we write
Ko = { (X2, %, ) € XK1 (%X, %, ., %) € X} .

Let x € X. Proceeding as in Subsection 5.3 we note thiat= G* N Ak =
J*(A2 x Az x -+- X A1) is a discrete cocompact subgroupGf and that
for everyx € X, the compact seX, can be identified with a nilmanifold,
quotient of the grouG* by some conjugatAX of the groupA*.

Let [ix be the Haar measure 5.

Lemma 6.4.ﬁ:/6x®ﬁxdu(x).
X

Proof. The proof is similar to the proof of Lemma 5.3. The measure de-
fined by the integral above is concentratedXand thus it suffices to prove
thatX is invariant unde. It is clearly invariant under translation by ele-
ments of the forn{1,g;, 92, .- ., Ok) with (g1,02,...,0k) € G* and so we are

reduced to showing that is invariant under translation big,g,g,...,9)
(k+1 times) for eveng € G.

Letge Gand letx e X. SinceX is invariant under translation kg, g, g, ..., g),
we have that the image & underg = (g,g,...,9) (k times) isXgx. The
image offi, under translation by is thus concentrated 0. It is invariant

under translation bgG*g~! and this group is equal t6* by (6.4). Thus
this measure is equal @ x.

Taking the integral ovex € X, we have that the measure given by the
integral in the Lemma is invariant und@, 9,9,...,9). O

6.5. Approximating the sequengik (k,n)} up to density zero.

For a bounded functiofion X, an integek > 1 and an integem, we define:

t(k,n) / f(xo0) F(T"q) ... F(TK%) di (X0, X1, - - -, Xk) - (6.5)
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Proposition 6.5.Let f be a bounded function on X and letkl be an
integer. Then the sequengig (k,n) —J¢ (k,n) } converges to zero in uniform
density.

Proof. Given a sequencéM;,M; + N;)} of intervals withN; — +co we
show that for anyf € L*(u),

1 Mi+N;—1

N 2 (km=diem)*~0. (6.6)

n=\WM;

Since the continuous functions are dense, we can restrict to the case that
the functionf is continuous.

Letg=(01,02,...,0«) andh = (hy,hy,... hy) be two elements oB*.

The four elements

((1,...,1),1...), ((g1,---,%),(1,...,1))
((1,...,1),(hy,...,h)) and ((gs, .- ., Gk), (h1,..., )

of G x GK belong toH* by formula (6.3).
We use Corollary 6.1 with these four elements. The four limits given by
this Corollary are the same. Taking differences, we have thatfaimost

everyse Z, for us-almost every(x,y), for everyg andh € G*, the averages
on [M;, M; + N; — 1] of the product

k

(f(x)ﬂf(ﬂngj )~ f<x>ﬂf<ﬂ"x>) ~
(f(y)ﬁf(ﬂ‘hj y)- f<y>ﬂf<ﬂ“y>)

converge to zero.

Let m* be the Haar measure &*. Fix s € Z and (x,y) € Xs. Recall
that[i, is the Haar measure of the nilmanifofd = G* /Ay. LetK c G* be
a fundamental domain of the projecti@t — X.. Then the image of the
measure & - Mm* under this projection is equal to a constant multiplgigf
Similarly, whenL is a fundamental domain for the projectiGri — )?y, the
image of 1 - M under this projection is a constant multiplegf Taking
the integral forg € K andh € L with respect to the measung in the last
convergence we have:

Form-almost evens € Z and forus-almost every(x,y), the averages on
[Mi,Mi +N; —1] of
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(/ f(x)ﬁf(Tj”xj)dﬁx(xl,xz,...,xk) _ f(x)ﬁf(Tj”x))-

(/ f(Y)J]jf(TJ'”yj)dﬁy(yl,yz,...,yk) - f(y)ﬂf('riny))

converge to zero. Since this holds faralmost everys € Z and for us-
almost every(x,y), it holds foru x p-almost every(x,y) € X x X. Taking
the integral with respect ta x u and using Lemma 6.4 we have the con-
vergence (6.6). O

7. J¢(k,n) is a nilsequence

In this Section we show that the sequerde(k,n)} introduced in Sec-
tion 6.5 is a nilsequence.

We first explain the idea behind the construction. Two arithmetic pro-
gressions itX (see the discussion in the beginning of Section 5) are equiva-
lent if one can pass from one to the other using translation by some element
of G. The strategy of the proof is the following;(k,n) is the average of
the function

(X0 X1, - %) = F(X0) F(x1) .. F(%0)

on the set of progressions of the fofmt"x,...,t"x). In Proposition 6.5,

we have shown that up to a small error, one can replace this average by the
average on the set of arithmetic progressions that are equivalent to these.
In Proposition 7.2, we define a continuous functipfy), wherey € Y is

an equivalence class of arithmetic progressions, that is exactly this average.
The transformation ol can be viewed as multiplying the difference of a
progression by, meaning that

(X0, X1, X2, - - -5 Xi) = (X0, T X1, 12X, .., 4%
induces the transformatidhonY.

7.1. The nilsystertY,v,S).

We first build an ergodic nilsystem. Listdenote the grou@/G, letp: G —
K be the natural projection and IEt= p(A).

SinceG/A = G/(ANG) is compact, it follows thaGA is closed inG.
ThusTI is a closed subgroup &f. It is discrete because it is countable and
it is cocompact becausel” is cocompact irG.

LetY denote the nilmanifol& /I", v be its Haar measure= p(f) € K
andSbe the translation bgonY.
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Lemma 7.1.The nilsystenfY, v, S) is ergodic (and thus is uniquely ergodic
and minimal).

Proof. We know thatG is spanned by its connected component of the iden-
tity and the elements® andf. Sincet € G, it follows thatK is spanned
by the connected component of the identity andherefore by part 6 of
Theorem 4.1 we only have to show that the rotation induce® by the
compact abelian grouf/(KzI') is ergodic. We identifyK /(KoI™) with
G/((G)2GA).

We have already noted that the map

q: (97 O1,--- >gk) — (g mod Gz,g]_ mod Gz)

induces an isomorphism froiG/(G), onto (G/G,) x (G/G,). We have
a(G) = {(u,u): ue G/G,} and

q(A) = {(A modGz,A’ modGy): 4,1’ € A} .

Therefore the magg, g1, ...,0) — 019+ modGA induces an isomor-
phism N
K/(KoI') = G/((G)2GA) — G/(GA) -

The image of under this map is equal to the imagetafnder the natural
projectionG — G/G,A. As X is ergodic, the rotation by this element of the
compact abelian grou/GA is ergodic. Therefore, the rotation induced
by SonK/(KzA) is ergodic. O

7.2. Two examples

We give a description of the nilsystef¥, v,S) whenX is each of the two
systems described in Subsection 4.2.

We first study the general case of an ergodic 2-step nilsysierm
G/A,u,T), assuming that hypotheses (H) and (L) are satisfied. The com-
mutator magg, h) — [g, h] is an antisymmetric bilinear map fro@x G to
G, and it is trivial onG, x G and onG x G,. Therefore it induces a bilinear
mapB: G/Gy x G/Gy — Go.

We have:
G= {(9,00,9%0%): 0.01 € G, g2 € Gp}
G = {(h,hhp,htg): he G, h, € Gy} .
LetK' = (G/G;) x G, with multiplication given by

(v, w) % (V, W) = (W, wwB(v,V)) .
Then it is easy to check th&! is a group and that the map
(9-991,9G92) — (91 mod Gz, g2)
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is a group homomorphism frois onto K’. The kernel of this homomor-

phism isG. Therefore we can identify the groufis= G/G andK’. Under
this identification,I” is equal toM x {1}, whereM is the image ofA in
G/Gy under the natural projectidd — G/G,. The elemensof K is (3, 1),
wheref is the image of in G/G;, under the natural projection.

7.2.1. The example of Section 4.2 HlereG/G; = Z x T andG; = {0} x
{0} x T is identified withT. We haveK =Z x T x T, I" = Z x {0} x {0}
ands= (1,,0). The bilinear maB: (Z x T) x (Z x T) — T is given by

B((k,x), (K,X)) =2(kX —Kx)
and multiplication orK is given by
(k,%,y) % (K, X,Y) = (k4K ,x+X,y+Yy 4+ 2(kX =KX)) .

The map(k,x,y) — (x,y+ 2kx) induces a homeomorphism ¥f= K/I"
onto T2, mapping the Haar measureYto the Haar measumar x my of
T2. Under this identification o¥ with T2, the transformatiors takes the
form

S(X,2) = (X+ o, 2+ 200 + 4X) .

Thusy is a factor ofX, with factor map(x,y) — (X, 2y).

7.2.2. The example of Section 4.2.@/e use the reduced representation of
this system. Her& /G, =R xR, K=R xR xT,I' =Z x Z x {0} ands=

(t1,t2). For(x,y) and(x,y') € G/Gz =R xR, B((x,y), (X,Y)) = xy —XYy.
The multiplication inK is given by

(%Y,2) % (X,Y,Z) = (x+X,y+Y,z+Z +xy = Xy) .

7.3. A nilsequence

Proposition 7.2.Let (Y, v,S) be the ergodic nilsystem of Lemma 7.1. Let f
be a bounded function on X and letkl be an integer. Then there exists a
continuous functiow onY such thatdk,n) = ¢ (S'ey) for every integer n,
where g denotes the base pointinY. In particular, the sequddgék, n)}

is a basic nilsequence.

Proof. Define the functiony on G by

k
V(G090 = [[[] 10 %) d00K %0 (7D
X |-

The functiony is clearly continuous and satisfigst") = J¢ (k, n) for every
integern.



Multiple recurrence and nilsequences 37

The measurg is invariant under (left) translation by elements®by
definition, and by left translation by elementstoby Lemma 6.3. Thus the

function v is invariant under (right) translations by element<Gof.
Writing r for the natural projectio® — Y = G/GA, we get that there

exists a continuous functiojonY with v = ¢ or. For every integen we
haver (f") = S"ey and thusJs (k,n) = ¢(S'ey). O

7.4. A decomposition

We are ready to prove Theorem 1.9.

Proof. Assume thak > 1 is an integer and let € L*(u). Without loss of
generality, we can assume thit| < 1.

Let f = E(f | Z«(X)). Then by Corollary 4.6 the sequengig (k,n) —
I+(k,n)} converges to zero in uniform density. Thus it suffices to prove the
theorem for the functiorf substituted forf, meaning that we can assume
that f is measurable with respectZR(X).

Z(X) is the inverse limit of a sequence of ergokllistep nilsystems (see
Section 4.4). Let be a positive integer. There exists a facxdrof z,(X),
which is ak-step nilsystem, such that

I —E(f | X)[la < 1/(k+Dr.

Let f' = E(f | X’). For everyn, |lt(k,n) — I (k,n)| < 1/r. By Proposi-

tion 6.5 and Proposition 7.2 the sequerte(k,n)} can be decomposed as

a sum of ak-step nilsequence and a sequence tending to zero in uniform
density. We thus have

It (k,n) = ar(n) + by (n) + ¢ (n)

where|a; (n)| < 1/r for everyn, UD-Lim by (n) = 0 andc; (n) is an elemen-
tary k-step nilsequence. FSr4 r we have

¢ (n) —cs(n) = (a:(n) —as(n)) + (br (n) — bs(n)) .

We have UD-Lin{b; (n) — bs(n)) = 0 and supla, (n) —as(n)| < 1/r +1/s.

Thus by Lemma 1.11, synd-sigp(n) — cs(n)| < 1/r +1/s. Since the se-
quence{c;(n) —cs(n)} is a nilsequence, sy, (n) —cs(n)| <1/r+1/s.
Therefore{c;(n)} is a Cauchy sequence & for uniform convergence,

and it converges uniformly to some sequerfog¢n)}. This sequence is

a k-step nilsequence and one can immediately check that the sequence
{It+(k,n) —c(n)} converges to zero in uniform densityd
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8. Proof of Theorem 1.2

Theorem 1.2 follows immediately from the next one, witk= 1a.

Theorem 8.1.Let(X, 1, T) be an ergodic system and f a nonnegative bounded
function on X. Then

synd-sups(2,n) /fdu . (8.1)

synd-sup (3,n) /fdu . 8.2)

Let us summarize the steps already proved Klst equal to either 2 or
to 3. We proceed as in the proof of Theorem 1.9, first repla€ingits con-
ditional expectation oy (X) and then by its conditional expectation on a
k-step nilsystem factor af(X). We note that the operators of conditional
expectation preserve the integral. By Corollary 4.5 and Lemma 1.11 the
first conditional expectation does not change the synd-sup of the sequence
{l+(k,n)}; if the k-step nilsystem is well chosen the second expectation
changes the synd-sup of this sequence by less than any given positive num-
ber. Therefore we are left with showing the theorem under the additional
hypothesis thatX, u,T) is an ergodick-step nilsystem. We use the nota-
tion of Sections 5, 6 and 7.

By Proposition 6.5, the difference between the sequefigék, n)} and
{Js(k,n)} converges to zero in uniform density and thus they have the same
synd-sup by Lemma 1.11. Letbe the function orY defined as in Propo-
sition 7.2 and lety be the function orG defined by Equation (7.1) in the
proof of the same proposition. Sin€é S) is minimal, we have

synd-sus (k,n) = synd-sup (S'ey) = supg (S'ey)

= supg (y) = supy(g) .
yey geG

and we are reduced to showing that
k+1
supy(9) > ([ fdu) (8.3)
geG
for k=2 andk = 3.

8.1. One more reduction.

Recall that the groufsy is connected and closed. SinGds k-step nilpo-
tent, Gk is included in the center @& and so is abelian. By hypothesis (L),
GkNA = {1} and thusGi is compact. More precisely is a torus. We
write my for its Haar measure.
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Let G' = G/(GkAk-1), p: G — G be the natural projection, = p(t)
andA’ = A /Ay_1.

ThenG' is a(k— 1)-step nilpotent Lie group but we actually consider it
as ak-step nilpotent groupA’ is a discrete cocompact subgroupGsf We
write X' = G/ /A’, p' for its Haar measure anff for the translation by’
onX'. (X',u',T') is a(k— 1)-step nilsystem but we actually consider it as
ak-step nilsystem. This system is a facton®f u, T) in a natural way. Let
g: X — X’ be the factor map. For any bounded functioan X we have

E(f[X")(a(x)) = o f(u-x)dme(x) . (8.4)

The hypotheses (H) and (L) are satisfied and thus we can build the groups
— —

G, G,... and the nilmanifolds<’,... associated t& and X', with the
same properties.
~ ~ ~ —
We note that Gx)*"! ¢ G and thus thaG’ = G/(Gy)**2. Also, X' is
the image ofX under the natural projectiod*t* — X’*** and the Haar
measuregi’ is the image ofi under the same map. .
Let f be a bounded function oX, y the function onG associated to

f as abovef’ = E(f | X’) andy’ the function onX’ associated td’. By
Equation (8.4), we have

¥ (p(g0), P(G1),-- -, P(SK))

= ¥(UoGo, U1Gs, . - -, UkGk) dMi(Uo) dmi(Uy) ... dmi(Ug) -
(Gk)kH
In particular, sup-¢ y(g) > SURy & v'(d'). Since f’ is nonnegative and
has the same integral ds we are left with showing inequality (8.3) with
G’ substituted foG, f’ substituted forf andy’ substituted fony. In other
words we can assume without loss tRais (k — 1)-step nilpotent and that
Ax_1 = Gk_1NA istrivial. 3
Note thatG{ 1 is not included inG. For this reason, the same method
cannot be used to reduce the level of the nilmanifold once again.

8.2. The case k 2.

In this case we can assume tlais a compact abelian group and thats
trivial. We haveX = G andp is its Haar measure. The nilmanifoidis the
diagonal{ (x,x,x): x € X} and its Haar measujgéis the image ofs under
the mapx — (X, x,X).

Let f be a bounded function aX and lety be the associated function
onG. For(go,01,02) € G we have

V(G0 91.82) = [ 1(009 (g1 (G2) du ()
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and thus

supw(9) 2 (L, 1,1) = [ 109°du(x > ([ fau)’

geG
and the proof is complete.

8.3. The case k 3.

In this case we can assume ti@at is trivial and thatG, N A s trivial. G,
is connected, compact and included in the centés ahd thus is abelian.
Therefore it is a torus. We writey, for its Haar measure. We have

G={(g.ghgrPu,gh*s®): g.h€ Gue Gy} ;
X ={(xV-xV?-xV3-X): x€ X, VE Gy}

andji is the image ofx x mp under the magx,v) — (X,v-X,v2-x,v3-x).
Let f be a bounded function aX and lety be the assomated function
on G. For(g,gh,ghPu,gh*u®) € G,

w(g,gh,ghtu, gh3u )
—/ / f(ghv-x) f (ghzuvz-x)f(gh3u3v3~x)dmz(v)> du(x) .
We have

supy(9)> [ w(g,ghghfu o) dme(g) dme(h) dme(u
gGG G2><G2><Gg

_ / (/ £(g-%) f (ghv-X) f (ghRuv2 - ) f (ghPUev2  x)
X NJGyxGyx Gy
dmy(v) dmy(g) dmp(h) ) du(x)

:/(/ £(g-x)f (h-x) (hw-x) f (gu? -X) (8.5)
X Gy xGox Gy
dm(g) dmp(h) dmp(w) ) dps ()

Let G, be the dual group of the compact abelian gr@ that is the
group of continuous group homomorphisms fr@ato the circle. Fox € X

we write fAX for the Fourier transform of the functiofy defined onG, by
fx(u) = f(u-x):

for y € Gy, x(7) = | fux)y(u)dme(u).

The inner integral in the double integral (8.5) is equal to

S B = |/t dm

1eG2
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We obtain

.
jggw(g) z/l/f(UX)dmz(U)\ du(x)

/fuxdmz( )dp (x /fdu

and the proof is complete.

Appendix: a combinatorial example by Imre Ruzsa (proof of Theo-
rem 2.4)

We use the definitions of Section 2.2.

Lemma 8.2.Let d> 0 be an integer and@a, . .., a4 five points inRY, all
having the same Euclidean norm and satisfying the relations

ag—3a;+3a,—az3=0, (8.6)
a1 —3ax+3az3—au=0. (8.7)

Then these points are equal.
Proof. By adding relations (8.6) and (8.7), we have that
at2a3=as+2a .
Settings= (ap+ 2a3)/3,a=a; —sandb = ag — s, we have
ap=s—2b;a;=s+a;a=st+atb;az=s+b;au=s—2a. (8.8)

Taking the square of the norm of these vectors and subtrafiilg we
find that the five following numbers are equal:

lal* +2(a,s) ; (8.9)
4l|al> - 4(as) ; (8.10)
Ibl|*+2(b,s) ; (8.11)
4||b||> - 4(b,s) ; (8.12)
llal|?+ ||b]|2 + 2(a,b) + 2(a,s) + 2(b,s) . (8.13)

Equality between (8.9) and (8.10) yields s) = ||al|?/2, and the equality
(8.11) = (8.12) yields(b,s) = ||b||?/2. From equality (8.9)= (8.11), we
have that|al| = ||b||. The common value of the four first numbers is then
2||al|?, and (8.13) is equal to|i&)|? + 2(a,b). As these values are equal,
(a,b) = —||a||? and this is possible only it = —a. Now (a,s) = —(a,s) =
|al|? and so indeed = b = 0. We conclude thaty = a; = a, = ag = ay.

O
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From this point the proof follows the line of Behrend's argument [Beh]
for three-term arithmetic progressions. lnetd, r be positive integers, and
let A be defined to be

d-1
{Xo+xam+- - +xg_ 1P Lix € Z, 0<% < m/4, bei =r}. (8.14)
i=

We claim thatA does not contain any QC5. LBtbe a quadratic integer
polynomial such thaP(0),P(1),...,P(4) belong toA. For j =0,1,...,4
we write

d-1 _ d-1
P(i) = Z)xi,jml with X j € Z, 0 < % j <m/4, %X@ﬂj =r.
j= i=

The integerd?(0),P(1),...,P(4) are related by the equations:
P(0) —3P(1) +3P(2) — P(3) =0 andP(1) — 3P(2) + 3P(3) — P(4) =0
and we have that
d-1 ,
(XO,j — 3Xq,j + 3%, —X37j)mJ =0;
2,
d71< ) _
X1,j— 3%z, +3%3j —xaj)m =0.
2
The left hand side of each of these equations is the valonésome poly-

nomial whose coefficients are integers belonging to the intérval, m).
As mis a root of this polynomial, it is identically zero and

Xo,j — 3X1,j+3%2j —X3j =0andxy j —3xp j +3X3 j — X4,j = 0
for j=0,1,...,d — 1. The five pointsg, a;, ... ,a4 € RY given by

a = (X,0,% 1,5 X d-1)
satisfy relations (8.6) and (8.7) and all have the same Euclidean norm. By

Lemma 8.2 they are equal and tHR(®) = P(1) = --- = P(4); P is constant
and our claim is proven.

Ford, mgiven, letF be the set of integers of the forkg +xym+--- +
Xg—1m@~1 wherex, € Z and 0< x; < m/4 for 0< i < d — 1. If two vec-
tors (Xo, X1, ..., Xd—1) and (X, Xy, ...,x1d — 1) of this form give the same

element ofF, then
d-1

2 (% —x)m =0

and by the same argument as above the ve¢xarsy, . .., Xq—1) and(Xgy, Xq, ..., X;_1)
are equal. Thereforé, has at Ieas(tm/4)d elements and there exigts0 <

r < d(m/4)?, such that the set defined by (8.14) has at legsh/4)9-2d~*
elements. Note that C {0,...,L— 1} for L = mf. Choosingm = 29, we

have a seA of the announced order of magnitudeX
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