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Abstract. Recurrence properties of systems and associated sets of in-
tegers that suffice for recurrence are classical objects in topological dy-
namics. We describe relations between recurrence in different sorts of
systems, study ways to formulate finite versions of recurrence, and de-
scribe connections to combinatorial problems. In particular, we show
that sets of Bohr recurrence (meaning sets of recurrence for rotations)
suffice for recurrence in nilsystems. Additionally, we prove an extension
of this property for multiple recurrence in affine systems.

1. Topological recurrence

Van der Waerden’s classic theorem [37] states that any finite coloring of
the integers contains arbitrarily long monochromatic progressions. This has
led to numerous refinements and strengthenings, with some of these obtained
via the deep connections to topological dynamics introduced with the proof
of Furstenberg and Weiss [19]. A direction that has been studied extensively
is what restrictions can be placed on the step in the arithmetic progression,
and in dynamics this corresponds to what sets arise as sets of recurrence.
Recurrence properties of systems and the associated sets of recurrence are
classical notions both in topological dynamics and in additive combinatorics,
and have numerous classically equivalent characterizations.

Part of this article is a review of these connections, many of which are
scattered throughout the literature, and we point out numerous open ques-
tions. Part of this article is new, particularly connections to objects that
have recently shown to play a role in topological dynamics, such as nilsys-
tems. For both single and multiple recurrence, the class of nilsystems (see
Section 4 for definitions) plays a natural role. This is reflected in work in the
ergodic context on multiple convergence along arithmetic progressions [21].
In the topological context, a higher order regionally proximal relation was
introduced in [23], where the connection to nilsystems was made. Further
deep connections between these notions and that of topological recurrence
were made in [25]. Nilsystems have also been used to construct explicit ex-
amples of sets of multiple recurrence, for example in the work of [14, 25].
Thus the relation between recurrence and its connections with nilsystems
have become a natural direction for further study.
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Our main focus is how to formulate finite versions of recurrence related
to van der Waerden’s Theorem. One way is to fix a length for the pro-
gressions and then characterize the sets of recurrence for this fixed length.
We then study classifying dynamical systems by their recurrence properties
along arithmetic progressions of this length, seeking necessary or sufficient
conditions for such recurrence. In various guises, this problem has been
studied by dynamicists and we consider this point of view in Section 2.

In particular, we study a question asked by Katznelson [26]: if R is a
set of recurrence for all rotations, is it a set of recurrence for all minimal
topological dynamical systems? (See Section 3 for the definitions.) We give
a partial answer to this question, showing that it holds when one restricts
to the class of nilsystems (Theorem 4.1) and its almost proximal extensions.
We then turn to the similar questions for multiple recurrence. In this setting,
we show (Theorem 5.13) that if R is a set of s-recurrence for s-step affine
nilsystems, then it is also a set of t-recurrence for all t ≥ s for the same class
of systems. A summary of these implications is given in Figure 1.

A second way to finitize van der Waerden’s Theorem is by fixing the
number of colors and studying the associated sets of recurrence. This point
of view has largely been ignored by dynamicists and we take this approach
in Section 7, where we mainly pose further directions for study.

Throughout this article, we assume that (X,T ) denotes a (topological dy-
namical) system, meaning that X is a compact metric space and T : X → X
is a homeomorphism. While our primary focus is on topological recurrence,
there are also measure theoretic analogs, where the underlying space is a
probability measure preserving system (X,B, µ) endowed with a measur-
able, measure preserving transformation T : X → X. Combinatorially, this
corresponds to Szemerédi’s Theorem and the connection to ergodic theory
has been well studied. While the measure theoretic and topological settings
give rise to similar results, there are some differences and we point out some
of the known measure theoretic analogs and pose some related questions.

2. Variations on recurrence

2.1. Single recurrence. Throughout, we focus on minimal systems (X,T ),
meaning that no proper closed subset of X is T -invariant.

Definition 2.1. We say that R ⊂ N is a set of (topological) recurrence if for
every minimal system (X,T ) and every nonempty open set U ⊂ X, there
exists n ∈ R such that U ∩ T−nU 6= ∅.

Notation. If x ∈ X and U ⊂ X is an open set, we write

N(x, U) = {n ∈ N : Tnx ∈ U}

for the return times of the point x to the neighborhood U and

N(U) = {n ∈ N : U ∩ T−nU 6= ∅}
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for the return times of the set U to itself. In case of ambiguity, we include
the transformation in our notation and write NT (x, U) or NT (U).

Thus R ⊂ N is a set of recurrence if for every minimal system (X,T ) and
every nonempty open set U ⊂ X, there exists n ∈ R such that n ∈ N(U).

We recall a standard definition:

Definition 2.2. A subset of integers is syndetic if the differerence between
two consecutive elements is bounded.

We have the following classical equivalences (see, for example [19, 18, 17,
3, 4, 30]). We omit the proofs, as simple recurrence is a special case of the
more general result for multiple recurrence (Theorem 2.5):

Theorem 2.3. For a set R ⊂ N, the following are equivalent:
(i) R is a set of recurrence.
(ii) For every system (X,T ) and every open cover U = (U1, . . . , Ur) of

X, there exists j ∈ {1, . . . , r} and n ∈ R such that n ∈ N(Uj).
(iii) For every finite partition N = C1 ∪ · · · ∪ Cr of N, there is some cell

Cj containing two integers whose difference belongs to R.
(iv) Every syndetic subset E of N contains two elements whose difference

belongs to R.
(v) For every system (X,T ) and every ε > 0, there exist x ∈ X and

n ∈ R such that d(Tnx, x) < ε.
(vi) For every system (X,T ), there exists x ∈ X such that

inf
n∈R

d(Tnx, x) = 0.

(vii) For every minimal system (X,T ) there exists a dense Gδ set X0 ⊂ X
such that for every x ∈ X0,

inf
n∈R

d(Tnx, x) = 0.

A set R satisfying characterization (iv) is referred to as (chromatically)
intersective in the combinatorics literature.

It is easy to check that the existence of some n ∈ R satisfying any of
properties (i), (ii) or (v) implies that there exist infinitely many n ∈ R with
the same property.

Example 2.4. For S ⊂ N, write S−S = {s′−s : s, s′ ∈ S, s′ > s}. Fursten-
berg [18] showed that if S is infinite, then S − S is a set of recurrence and
this follows immediately from characterization (iii) in Theorem 2.3. More
generally, it is easy to check that if for every n ∈ N there exists Sn ⊂ N such
that |Sn| = n and Sn − Sn ⊂ R, then R is a set of recurrence.

We defer further examples of sets of recurrence until we have defined the
more general notion of multiple recurrence.

There is another equivalent formulation of recurrence due to Katznel-
son [26]. For a set R ⊂ N, the Cayley graph GR is defined to be the graph
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whose vertices are the natural numbers N and whose edges are the pairs
{(m,m + n) : m ∈ N, n ∈ R}. The chromatic number χ(R) is defined to be
the smallest number of colors needed to color GR such that any two vertices
connected by an edge have distinct colors. Katznelson showed that charac-
terization (iii) of Theorem 2.3 for a set of recurrence R is equivalent to the
associated Cayley graph GR having infinite chromatic number.

For the analogous notion of a set of measure theoretic recurrence, where
the underlying space is a probability measure space and the transformation
is a measurable, measure preserving transformation, we have a similar list
of equivalent characterizations, where a finite partition of N is replaced by
sets of positive upper density. As every minimal system (X,T ) admits a
T -invariant measure with full support, a set of measurable recurrence is also
a set of topological recurrence. However, an intricate example of Kriz [27]
shows that the converse does not hold.

2.2. Multiple recurrence. Most of the formulations of single recurrence
generalize to multiple recurrence:

Notation. For ` ≥ 1, we write

N `(U) = {n ∈ N : U ∩ T−nU ∩ T−2nU ∩ · · · ∩ T−`nU 6= ∅}

for the return times of the set U to itself along a progression of length `+ 1.
In case of ambiguity, we include the transformation in our notation and write
N `
T (U).

Theorem 2.5. Let ` ≥ 1 be an integer. For a set R ⊂ N, the following
properties are equivalent:

(i) For every minimal system (X,T ) and every nonempty open set U ⊂
X, there exists n ∈ R such that n ∈ N `(U).

(ii) For every system (X,T ) and every open cover U = (U1, . . . , Ur) of
X, there exists j ∈ {1, . . . , r} and n ∈ R such that n ∈ N `(Uj).

(iii) For every finite partition N = C1 ∪ . . . ∪ Cr of N, there is some
cell Cj that contains an arithmetic progression of length `+ 1 whose
common difference belongs to R.

(iv) Every syndetic set E ⊂ N contains an arithmetic progression of
length `+ 1 whose common difference belongs to R.

(v) For every system (X,T ) and every ε > 0, there exist x ∈ X and
n ∈ R such that

sup
1≤j≤`

d(T jnx, x) < ε.

(vi) For every system (X,T ), there exists x ∈ X such that

inf
n∈R

sup
1≤j≤`

d(T jnx, x) = 0.
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(vii) For every minimal system (X,T ), there exists a dense Gδ-set X0 ⊂
X such that for every x ∈ X0,

inf
n∈R

sup
1≤j≤`

d(T jnx, x) = 0.

Definition 2.6. A set satisfying any of the equivalent properties in Theo-
rem 2.5 is called a set of `-recurrence; in particular, a set of 1-recurrence is
a set of recurrence. A set of `-recurrence for all ` ≥ 1 is a called a set of
multiple recurrence.

When we want to emphasize that we are discussing single recurrence,
instead of just writing a set of recurrence, we say a set of single or simple
recurrence.

The proofs of these equivalences are well known and appear scattered in
the literature (see, for example [19, 18, 17, 3, 4, 29, 30, 12, 7, 15, 9]) and so
we only include brief sketches of the proofs.

Proof. (i) =⇒ (vii) For ε > 0, define Ωε to be

{x ∈ X : there exists n ∈ R such that d(Tnx, x) < ε, . . . d(T `nx, x) < ε}.
Then Ωε is an open subset ofX. Let U ⊂ X be an open ball of radius δ < ε/2.
By hypothesis, there exists n ∈ R such that U ∩ T−nU ∩ · · · ∩ T−`nU 6= ∅.
This intersection is included in Ωε and so Ωε is dense in X. Then X0 =⋂
m∈N Ω1/m is a Gδ set that satisfies the statement.
(vii) =⇒ (vi) This is immediate by applying (vii) to a minimal closed

invariant subset of X.
(vi) =⇒ (v) Obvious.
(v) =⇒ (ii) Let ε be the Lebesgue number of the cover U , meaning that

any open ball of radius ε is contained in some element of this cover. Let
x ∈ X and n ∈ R be associated to ε as in (v). Let j ∈ {1, . . . , r} be such
that the ball of radius ε around x is included in Uj . Then all of the points
x, Tnx, . . . , T `nx belong to this ball and thus to Uj .

(ii) =⇒ (iii). This is a standard application of the topological version of
Furstenberg’s Correspondence Principle. Given the partition N = C1 ∪ · · · ∪
Cr, there exist a system (X,T ), a partition X = U1 ∪ · · · ∪ Ur of X into
clopen sets, and a point x ∈ X such that for every n ∈ N, we have Tnx ∈ Uj
if and only if n ∈ Cj .

(iii) =⇒ (iv) Choose r ∈ N such that (E− 1)∪ (E− 2)∪ . . .∪ (E− r) ⊃ N
and then chose a partition N = C1 ∪ · · · ∪ Cr such that Cj ⊂ E − j for
j ∈ {1, . . . , r}.

(iv) =⇒ (i) Choose x ∈ X and set E = {n : Tnx ∈ U}. �

As for single recurrence, the existence of some n ∈ R satisfying any of
properties (i), (ii), or (v) immediately implies the existence of infinitely many
n ∈ R with the same property.

It is easy to verify that a set of (single or multiple) recurrence must satisfy
several necessary conditions: it must contain infinitely many multiples of
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every positive integer (consider the powers of the transformation) and it can
not be lacunary (by constructing an irrational rotation that fails to recur).
Furthermore, the family of sets of recurrence has the Ramsey property (see
Section 6).

The classic theorem of van der Waerden shows that N is a set of multiple
recurrence. Furstenberg [18, Theorem 2.16] shows that N(x, U) is a set
of multiple recurrence for any open set U and point x ∈ U . This is also
a particular case of a more general theorem of Huang, Song, and Ye [25],
reviewed in Theorem 5.8.

There are many other known examples of sets of multiple recurrence:
any IP-set (a set which contains all the finite sums of an infinite set of
integers, see Definition 3.9), the set {p(n) : n ∈ N}, where p(n) is any non-
constant polynomial with p(0) = 0, the shifted primes {p − 1: p is prime}
and {p + 1: p is prime}, as well as other examples in the literature (see for
example [19, 36, 6, 4, 5, 13])

There are also examples in the literature that show that sets of multiple
recurrence are different than sets of single recurrence. For example, Fursten-
berg [18] gives an example of a set of single recurrence that is not a set of
double recurrence and Frantzikinakis, Lesigne and Wierdl [14] give examples
of sets of `-recurrence that are not sets of (` + 1)-recurrence. We give a
more general characterization of such sets in Section 5.2. We note that all of
the examples constructed in this way are large, in the sense that they have
positive density.

However, there are characterizations of single recurrence for which we do
not have a multiple analog:

Question 2.7. Is there an equivalent characterization of multiple recurrence
analogous to Katznelson’s characterization in terms of the chromatic number
of an associated graph? For example, is being a set of multiple recurrence
equivalent to infinite chromatic number for some associated hypergraph?

Along similar lines, we do not know of a simple construction, like that of
the difference set, that suffices to produce multiple recurrence:

Question 2.8. Is there a sufficient condition, analogous to that given in
Example 2.4, that suffices for being a set of multiple recurrence?

2.3. Simultaneous recurrence. More generally, we can study recurrence
for commuting transformations and not just powers of a single transforma-
tion:

Definition 2.9. The set R ⊂ N is a set of `-simultaneous recurrence if for
any compact metric space X endowed with ` commuting homeomorphisms
T1, . . . , T` : X → X such that the system (X,T1, . . . , T`) is minimal and any
nonempty open set U ⊂ X, there exists n ∈ R such that

U ∩ T−n1 U ∩ . . . ∩ T−n` U 6= ∅.
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A set of `-simultaneous recurrence for all ` ≥ 1 is a called a set of simul-
taneous recurrence.

Taking T1 = T, T2 = T 2, . . . , T` = T `, it is obvious that any set of simul-
taneous recurrence is also a set of multiple recurrence. We do not know if
the converse holds:

Question 2.10. Does there exist a set of multiple recurrence that is not a
set of simultaneous recurrence?

All of the examples of sets of multiple recurrence given in Section 2.2 are
also known to be sets of simultaneous recurrence.

All parts of Theorem 2.5 have natural analogs for simultaneous recurrence.
To ease the notations, we restrict ourselves to ` = 2. It is easy to check that
the analog of condition (iii) holds: namely, R is a set of recurrence if for
every partition N = C1 ∪ . . .∪Cr, there exists x, y ∈ N and n ∈ R such that
(x, y), (x+n, y), (x, y+n) all lie in the same cell Cj for some j ∈ {1, . . . , r}.
One can give similar formulations for the other equivalences in Theorem 2.5
for simultaneous recurrence.

Unsurprisingly, we do not know how to address the analogs of Ques-
tions 2.7 and 2.8 for simultaneous recurrence.

2.4. Pointwise recurrence.

Definition 2.11. A set R ⊂ N is a set of pointwise recurrence if for every
minimal system and every x ∈ X,

inf
n∈R

d(Tnx, x) = 0.

The analog for multiple pointwise recurrence is not defined, as one can
construct an example (such as using symbolic dynamics) of a minimal system
(X,T ), as open set U ⊂ X, and x ∈ U such that N2(x, U) = ∅. In particular,
N is not a set of pointwise multiple recurrence. However, in a minimal system,
there is always a dense set of points that are multiply recurrent.

Recall that by characterization (vii) of Theorem 2.3, if R is a set of re-
currence then this property holds for x in a dense Gδ of X. Comparing
the definition of pointwise recurrence with characterization (vi) of recur-
rence in Theorem 2.3 makes this property seem natural. However, being a
set of pointwise recurrence turns out to be a significantly stronger assump-
tion. Sárkőzy [33] (using number theoretic methods) and Furstenberg [18]
(using dynamics) showed that the set of squares is a set of recurrence, but
Pavlov [32] showed that it is not a set of pointwise recurrence. Similarly,
it follows from results in Pavlov that if one takes S to be a sufficiently fast
growing sequence, then S − S is not a set of pointwise recurrence (but as
noted in Example 2.4, it is a set of recurrence).

Notation. For t ∈ R, we use ‖t‖ to denote the distance of t to the nearest
integer. For t ∈ T = R/Z, ‖t‖ denotes the distance to 0.
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Example 2.12. One can check directly that for every α ∈ T, the set R =
{n ∈ N : ‖n2α‖ ≥ 1/4} is not a set of pointwise recurrence by using an affine
nilsystem (see Example 5.11). In [14], the authors show, in particular, that
R is a set of measurable recurrence, and thus also of recurrence. We briefly
outline their method. If α is irrational, by Weyl equidistribution, for every
non-zero t ∈ [0, 1), the averages

1

N

N∑
n=1

e2πikn
2αe2πint

converge to 0 as N → ∞ for every non-zero integer k. It follows that the
averages

1

N

N∑
n=1

1I(n
2α)e2πint,

where I = [1/4, 3/4], converge to 0 for t 6= 0 when N → ∞ and that the
limit is 1/2 when t = 0. By the spectral theorem, it follows that for any
ergodic measure preserving system (X,B, µ, T ) and A ∈ B with µ(A) > 0,

1

N

N∑
n=1

1I(n
2α)µ(A ∩ TnA)→ 1

2
µ(A)2,

and the positivity of the limit implies the recurrence.
A generalization of this example is given in Corollary 5.10.

We ask if there exist equivalent characterizations of pointwise recurrence:

Question 2.13. Is there a combinatorial analog of pointwise recurrence?
Are there sufficient conditions for being a set of pointwise recurrence?

While simple recurrence does not imply multiple recurrence (see further
discussion in Section 5.2), this may hold under the stronger notion of point-
wise recurrence:

Question 2.14. Does pointwise recurrence imply multiple recurrence?

We give a partial answer to this question in Section 3.4.

3. Recurrence for families of systems

3.1. Questions for families of systems. We define the notion of a set of
`-recurrence for a given system in the obvious way:

Definition 3.1. If F is a family of systems, a set R ⊂ N is a set of recurrence
for the family F if for any minimal system (X,T ) in the family F and any
nonempty open set U ⊂ X, there exists n ∈ R such that U ∩ T−nU 6= ∅.
The notions of a set of `-recurrence and a set of multiple recurrence for the
family F are defined in the same way.
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We can take the family F to be rotations, nilsystems, distal systems, or
any other class of systems. While it is obvious that a set of recurrence in some
class is a set of recurrence for a sub-class, we are interested in the converse.
Broadly stated, we ask: for which classes of systems does recurrence or
multiple recurrence imply the same property in some larger class?

Furthermore, we are interested in relations between the various notions of
recurrence. We have different types of recurrence, including single, multiple,
and pointwise recurrence, all of which are distinct notions. For which classes
of systems do these properties coincide?

We study these questions for distal systems in Section 3.4 and for nilsys-
tems in Sections 4 and 5.

While the equivalent formulations of multiple recurrence that are dynam-
ical in nature carry over for the restriction to particular families of systems,
we do not have combinatorial equivalences for classes of systems, and it is
natural to ask if there are combinatorial versions of recurrence for particular
classes of systems.

3.2. Bohr recurrence. We start with the simplest types of systems:

Definition 3.2. A set of recurrence for minimal translations on a compact
abelian group is called a set of Bohr recurrence.

Thus R is a set of Bohr recurrence if for all k ∈ N, all α1, . . . , αk ∈ T, and
all ε > 0, there exists n ∈ R such that ‖α1n‖ < ε, . . . , ‖αkn‖ < ε. It follows
immediately that there are infinitely many n ∈ R satisfying this condition.

We can also define a set of Bohr recurrence in terms of Bohr0 sets:

Definition 3.3. A set E ⊂ N is a Bohr0 set if it contains a set of integers
of the form

{n ∈ N : ‖α1n‖ < ε, . . . , ‖αkn‖ < ε},

where k ∈ N, α1, . . . , αk ∈ T and ε > 0. The minimum value of k such that
this occurs is called the dimension of the Bohr0 set.

It follows immediately from the definitions that a set is a set of Bohr
recurrence if and only if it is a Bohr∗0 set, meaning it has nonempty intersec-
tion with any Bohr0 set. Thus a set of Bohr recurrence is a set of multiple
pointwise recurrence for translations on a compact abelian group, with no
assumption of minimality required.

A well known question, asked in particular by Katznelson (see also the
discussion in [35]) is:

Question 3.4 (Katznelson [26]). Is a set of Bohr recurrence a set of recur-
rence?

This question leads us to multiple sub-questions about what types of ex-
tensions preserve sets of recurrence and of multiple recurrence.
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3.3. Recurrence and proximal extensions. We start with the classic
notion of a proximal extension (see, for example, [1]):

Definition 3.5. Let (X,T ) be a system. The points x1, x2 ∈ X are proximal
if

inf
n∈N

d(Tnx1, T
nx2) = 0.

A set F ⊂ X is proximal if every pair of points in F is proximal.
We say that the factor map π : (X,T )→ (Y, S) is a proximal extension if

the fiber π−1({y0}) of every y0 ∈ Y is proximal.

In fact, this property holds under weaker assumptions:

Claim 3.6. Let π : (X,T )→ (Y, S) be a factor map and assume that (Y, S)
is minimal and that some y0 ∈ Y has a proximal fiber. Then π is a proximal
extension.

Proof. Assume that the fiber of y0 ∈ Y is proximal. For x, x′ ∈ X, let
δ(x, x′) = infn∈N d(Tnx, Tnx′) and for y ∈ Y , let

φ(y) = sup
x,x′∈π−1({y})

δ(x, x′).

Then δ is an upper semicontinuous function on X × X and satisfies
δ(Tx, Tx′) ≥ δ(x, x′) for all x, x′ ∈ X. Thus the function φ on Y is up-
per semicontinuous and satisfies φ(Sy) ≥ φ(y). Since φ(y0) = 0, we have
that φ(S−ny0) = 0 for every n ∈ N. By minimality of (Y, S), we have that
φ(y) = 0 for every y ∈ Y . �

Properties similar to the following lemma appear in different places in the
literature. We provide a proof for completeness.

Lemma 3.7. Let π : (X,T )→ (Y, S) be a proximal extension between min-
imal systems. Then for every ` ≥ 1 and all x0, . . . , x` lying in the same
fiber, there exists a sequence of integers (ni) such that each of the sequences
(Tnix0), . . . , (Tnix`) converge to x0.

Proof. We proceed by induction on `. Assume that ` = 1, and let y0 ∈ Y ,
x0, x1 ∈ π−1({y0}), and ε > 0. By proximality, there exists a sequence
of integers (ni) such that the sequences (Tnix0) and (Tnix1) converge to
the same point a ∈ X. By minimality of (X,T ), there exists m ∈ N with
d(Tma, x0) < ε/2. By continuity of Tm, for every sufficiently large i and
k = 0, 1, we have d(Tni+mxk, x0) < ε. The result follows for ` = 1.

Assume that ` > 1 and that the result holds with `− 1 substituted for `.
Let y0 ∈ Y , x0, . . . , x` ∈ π−1({y0}), and ε > 0. By the induction hypothesis,
there exists a sequence of integers (ni) such that the sequences (Tnixk),
0 ≤ k ≤ ` − 1, converge to x0. Passing to a subsequence, we can assume
that the sequence (Tnix`) converge to a point a ∈ X. For every i, we have
π(Tnix`) = π(Tnix0) and, passing to the limit, π(a) = π(x0) = y0. By
applying the result for ` = 1 to the points x0 and a, we obtain the existence
of m ∈ N with d(Tmx0, x0) < ε/2 and d(Tma, x0) < ε/2. By continuity
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of Tm, for every sufficiently large i and every k with 0 ≤ k ≤ `, we have
d(Tni+mxk, x0) < ε, completing the proof. �

Proposition 3.8. Let π : (X,T ) → (Y, S) be a proximal extension between
minimal systems, ` ≥ 1, and R be a set of `-recurrence for (Y, S). Then R
is a set of `-recurrence for (X,T ).

In particular, this proposition applies to almost 1-1 extensions and as-
ymptotic extensions between minimal systems. For example, a set of Bohr
recurrence is a set of multiple recurrence for Sturmian systems, as Sturmian
systems are almost 1-1 extensions of rotations.

Proof. Let ε > 0. By characterization (vi) in Theorem 2.5 of sets of `-
recurrence, there exists y0 ∈ Y such that

inf
n∈R

sup
1≤k≤`

d(Skny0, y0) = 0

and thus there exists a sequence (ni) in R such that Skniy0 → y0 for 1 ≤
k ≤ `.

Let x0 ∈ X with π(x0) = y0. Passing to a subsequence, we can assume
that

for 1 ≤ k ≤ `, the sequence (T knix0) converges in X.
Letting xk denote the limit of this sequence, we have that π(xk) = y0

The points x0, x1, . . . , x` belong to the fiber π−1({y0}) and this fiber is
proximal by hypothesis. By Lemma 3.7, there exists a sequence of integers
(mj) such that the sequences (Tmjxk), 0 ≤ k ≤ `, converge to x0.

Choose j such that

d(Tmjxk, x0) < ε for 0 ≤ k ≤ `.
Let δ > 0 be such that for x, x′ ∈ X, d(x, x′) < δ implies d(Tmjx, Tmjx′) < ε
and let i be such that d(T knix0, xk) < δ for 1 ≤ k ≤ `. We have that
d(Tmj+knix0, T

mjxk) < ε and d(Tmj+knix0, x0) < 2ε.
Letting z = Tmjx0, we have that d(x0, z) < ε and d(T kniz, x0) < 2ε

for 1 ≤ k ≤ `. By characterization (v) in Theorem 2.5 restricted to such
systems, R is a set of `-recurrence for X. �

Recall that π : (X,T ) → (Y, S) is a distal extension if all x0 6= x1 ∈ X
in the same fiber satisfy infn d(Tnx0, T

nx1) > 0. Proposition 3.8 does not
generalize to distal extensions (see the remarks after Corollary 5.10), even
for simple recurrence, as can be seen by taking an extension of the trivial
system. However, for the class of nilsystems, this is possible (Theorem 4.1).

3.4. Pointwise recurrence in a distal system. Recurrence forces struc-
ture in return times and this is captured in the notion of IP-sets (see [18, 4]
for background):

Definition 3.9. An IP-set is a set of integers that contains an infinite se-
quence of integers (pi)i∈N, the generators, and all the finite sums

∑k
j=1 pij ,
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where the summands are distinct generators and k = 1, 2, . . .. An IP∗-set is
a set of integers that has nontrivial intersection with every IP-set. A point
x ∈ X is said to be IP∗-recurrent if for every open neighborhood U of x,
{n ∈ N : Tnx ∈ U} is an IP∗-set.

It is easy to check that the return times of any recurrent point contains
an IP-set and conversely that for any IP-set, there is a dynamical system
and a recurrent point whose return times contain this IP-set. Furthermore,
Furstenberg [18] shows that pointwise recurrence and IP-sets are closely re-
lated: for a distal system, every point is IP∗-recurrent. Thus:

Proposition 3.10. Every IP-set is a set of pointwise recurrence for distal
systems.

Question 3.11. Is it true that every set of pointwise recurrence for distal
systems is an IP-set?

We believe that there should be a counterexample.
In a distal system, pointwise recurrence implies the multiple version:

Proposition 3.12. A set of pointwise recurrence for distal systems is a set
of pointwise multiple recurrence for distal systems.

Proof. Let ` ≥ 1, T̃ denote the transformation T × T 2 × · · · × T ` of X`,
and X̃ the closed orbit of the point x̃ = (x, x, . . . , x) ∈ X` under T̃ `. Then
(X̃, T̃ ) is transitive and distal, and so it is minimal.

Since R is a set of pointwise recurrence, for every ε > 0 there exists n ∈ R
with d̃(T̃nx̃, x̃) < ε, that is, d(Tnx, x) < ε, . . . , d(T `nx, x) < ε. �

More generally, the same result holds for an almost distal system, meaning
a system in which every pair of points is either asymptotic (in this context,
one sided asymptotic) or distal (see [8, Theorem 3.10] for more on almost
distal systems).

It is easy to check that if R is a set of pointwise recurrence for a distal min-
imal system, then we have a seemingly stronger property. Let (X1, T1), . . . ,
(Xk, Tk) be distal systems and for 1 ≤ j ≤ k, let Uj be a nonempty,
open subset of Xj . Then there exist n ∈ R such that T−nj Uj ∩ Uj 6= ∅
for j = 1, . . . , k. To see this, choose xj ∈ Uj for each j and define x =
(x1, . . . , xk) ∈ X1× . . .×Xk and let T = T1× . . .×Tk. Proceeding as in the
proof of Proposition 3.12, we have the statement.

4. Recurrence in nilsystems

4.1. Nilsystems. Let G be a nilpotent Lie group. The commutator of a, b ∈
G is defined to be [a, b] = aba−1b−1 and for A,B ⊂ G, we let [A,B] denote
the group spanned by {[a, b] : a ∈ A, b ∈ B}. The commutator subgroups Gj
of G are defined inductively, with G1 = G and for integers j ≥ 1, we have
Gj+1 = [G,Gj ]. For an integer s ≥ 1, if Gs+1 = {1G} then G is said to be
s-step nilpotent.
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Let s ≥ 1 be an integer, G be an s-step nilpotent Lie group, and Γ
be a discrete cocompact subgroup of G. Then the compact nilmanifold
X = G/Γ is an s-step nilmanifold. Viewing elements of X as points rather
than congruence classes, we write eX for the image of the identity 1G in X
and write (g, x) 7→ g · x for the natural action of G on X. Let T : X → X
be the transformation x 7→ τ · x for some fixed element τ ∈ G. Then (X,T )
is an s-step nilsystem. Thus a 1-step nilsystem is exactly a translation on a
compact abelian group.

We note that we do not assume that G is connected, as this excludes some
interesting examples, such as the affine nilsystems defined in Section 5.3.

In the next theorem, which is the main result of this section, we answer
Question 3.4 for the class of nilsystems:

Theorem 4.1. Let R ⊂ N be a set of Bohr recurrence. Then for every
integer s ≥ 1, R is a set of recurrence for minimal s-step nilsystems.

It immediately follows that the result also holds for inverse limits of nil-
systems, and it follows for proximal extensions of these systems by Propo-
sition 3.8. Particular examples are Sturmian or Toeplitz systems, but also
more complicated constructions such as almost one to one extensions of
infinite-step nilsystems (see [11]).

The rest of this section is devoted to two proofs of Theorem 4.1. The first
one uses measure theoretic arguments; it is shorter than the second one but
unfortunately requires an additional hypothesis. The second proof is more
technical and is completely topological, and has the possible advantage that
it may be generalized.

We start by recalling some properties of nilsystems, referring to [2, 31, 28]
for background and further details. Let (X = G/Γ, T ) be an s-step nilsystem.
Henceforth we assume that (X,T ) is minimal.

Let dG denote a right invariant distance on the group G that defines its
topology, and assume that X is endowed with the quotient distance, which
we denote as dX .

For j = 1, . . . , s, we have that Gj and GjΓ are closed subgroups of G.
Let G0 denote the connected component of 1G in G. Then G0 is an open,
normal subgroup of G. By the assumption of minimality, we can assume
that G = 〈G0, τ〉 and we make this assumption in the sequel. This in turn
implies that the commutator group G2 is connected and included in G0.

Set Z = G/G2Γ. Then Z is a compact abelian group. The natural pro-
jection X → Z is a factor map of (X,T ) to Z, endowed with the translation
by the image α of τ in Z, and the system Z endowed with this translation
is minimal.

4.2. Measure theoretic proof of Theorem 4.1 under an additional
assumption. Maintaining the same notation, we continue to assume that
the s-step nilsystem (X,T ) is minimal. Thus it is uniquely ergodic and its
invariant measure is the Haar measure µ of X. Let mZ denote the Haar
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measure of Z = G/G2Γ. Recall that α is the image of τ in Z and let S
be the translation by α on Z. Then π : (X,µ, T )→ (Z,mZ , S) is a measure
theoretic factor map, and more precisely (Z,mZ , S) is the Kronecker factor of
(X,µ, T ). We use additive notation in Z, and assume that this abelian group
is endowed with a translation invariant distance dZ defining its topology.

The following result is proven for connected G in [2], using the theory of
representations of nilpotent Lie groups. An elementary proof for the case of
2-step nilsystems is given in [24].

Theorem ([2], [24]). If G is connected or if s = 2, then the spectral measure
of any function f ∈ L2(µ) with E(f | Z) = 0 is absolutely continuous.

This means that if E(f | Z) = 0, then the finite measure σf on T defined
by

σ̂f (n) =

∫
Tnf · f dµ for n ∈ Z

is absolutely continuous with respect to Lebesgue measure on T. This implies
in particular that σ̂f (n)→ 0 when n→ +∞.

Proposition 4.2. Let (X = G/Γ, T ) be a minimal s-step nilsystem. The
statement of Theorem 4.1 holds if G is connected, as well as for s = 2 without
any further assumptions.

Proof. Let R ⊂ N be a set of Bohr recurrence and let U be a nonempty, open
subset of X. We want to show that there exists n ∈ R with U ∩ T−nU 6= ∅.
It suffices to show that this set has positive measure.

By minimality of (X,T ), the Haar measure µ has full topological support
and thus µ(U) > 0. Set ε = µ(U)2/4. Define

g = E(1U |Z) and f = 1U − g

and note that 1 ≥ ‖g‖L2(mZ) ≥ ‖g‖L1(mZ) = µ(U). We have E(f | Z) = 0
and thus there exists n0 ∈ N such that∣∣∣∫ Tnf · f dµ

∣∣∣ < ε for every n ≥ n0.

On the other hand, writing gt(z) = g(z+ t) for t ∈ Z, there exists δ > 0 such
that ‖gt − g‖L2(mZ) < ε for every t ∈ Z with dZ(t, 0) < δ. In particular,

‖Sng − g‖L2(mZ) < ε for every n such that dZ(nα, 0) < δ.

Since R is a set of Bohr recurrence, there exists n ∈ R with n ≥ n0 and
dZ(nα, 0) < δ. For this value of n, since E(Tn1U |Z) = Sng, we have

µ(U ∩ T−nU) =

∫
f · Tnf dµ+

∫
g · Sng dmZ

≥− ε+ ‖g‖2L2(mZ) − ‖g‖L2(mZ)‖Sng − g‖L2(mZ)

≥µ(U)2 − 2ε ≥ µ(U)2/2 > 0. �
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4.3. Topological proof of Theorem 4.1. We start by recalling some fur-
ther facts about nilsystems (again, [2, 31, 28] are sources for background).

Let (X,T ) be a minimal s-step nilsystem, where T is the translation by
τ ∈ G. Recall that we assume that G = 〈G0, τ〉. If needed, we can represent
this system as a quotient G/Γ where G0 is simply connected and thus we
can assume this property without loss of generality. Set Γ0 = Γ ∩ G0. In
this case, G0 can be endowed with a Mal’cev basis. Using this basis, we
can identify G0/G2 with Rp for some integer p ∈ N, such that the subgroup
Γ0/(Γ0 ∩ G2) corresponds to Zp, and thus G0/G2Γ0 is identified with Tp.
Furthermore, the abelian group Gs can be identified with Rr for some r ∈ N,
such that Γ∩Gs corresponds to Zr, inducing the identification of Gs/(Γ∩Gs)
and Tr. Finally, Gs−1/Gs is an abelian group, and is nontrivial if X is not
an (s− 2)-step nilsystem. In this case, this group can be identified with Rq
for some q ∈ N, and such that the subgroup (Γ∩Gs−1)/(Γ∩Gs) corresponds
to Zq.

Moreover, the distance dG on G can be chosen such that these identifica-
tions are isometries when the quotient groups are endowed with the quotient
distances and Rp, Tp, Rr, Tr and Rq are endowed with the Euclidean dis-
tances. We caution the reader that under this identification, groups such as
Tp and Rr are written with additive notation, while groups such as G0/GjΓ
and Gs are written with multiplicative notation.

Assume now that s ≥ 2. Define

(1) G̃ := G/Gs, Γ̃ := Γ/(Γ ∩Gs), and X̃ := G̃/Γ̃.

Then G̃ is an (s−1)-step nilpotent group, Γ̃ is a discrete cocompact subgroup,
X̃ is an (s − 1)-step nilmanifold, and the quotient map G → G̃ induces a
projection π : X → X̃. Thus we can view X̃ as the quotient of X under the
action of Gs. Let τ̃ be the image of τ in G̃ and T̃ be the translation by τ̃ on
X̃. Then (X̃, τ̃) is an (s− 1)-step nilsystem and π : X → X̃ is a factor map.

Maintaining this notation:

Lemma 4.3. Let (X,T ) be a minimal s-step nilsystem and assume that X
is connected and that G0 is simply connected. Then for every ε > 0, there
exists C := C(ε) such that for every w ∈ Gs, there exist h ∈ Gs−1 and
γ ∈ Γ ∩Gs with

dG(h, 1G) < C ; dG([h, τ ], wγ) < ε.

Proof. Since X is connected, it follows that G = 〈G0,Γ〉 and there exists
τ0 ∈ G0 and γ0 ∈ Γ such that τ = τ0γ0. (If G is connected, we have τ0 = τ
and γ0 = 1G.)

Recall that Γ0 = Γ ∩ G0. Since G = 〈G0, τ〉, we have that G = 〈G0, γ0〉
and thus Γ = 〈Γ0, γ0〉.

Recall also that Z := G/(G2Γ) = G0/(G2Γ0) = Tp, and that the image
α of τ in G/(G2Γ) is an ergodic element. Let β be the projection of τ0
to G0/G2 = Rp. Then the projection of β in G0/(G2Γ0) is equal to the
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projection α of τ in G/(G2Γ). It follows that the coordinates (β1, . . . , βp) of
β are rationally independent.

Let πs : Gs → Gs/(Γ ∩Gs) be the quotient map. We claim:

Claim. The map f : h 7→ πs([h, τ ]) takes Gs−1 to a dense subset of Gs/(Γ∩
Gs).

Assuming the claim, there exists C > 0 such that the image under f of the
ball BG(1G, C) ∩Gs−1 is ε-dense in Gs/(Γ ∩Gs), and this is the statement
of the lemma.

To prove the claim, note that the map g 7→ [g, γ0] induces a group ho-
momorphism F : Gs−1/Gs → Gs. Using additive notation and writing in
coordinates,

for 1 ≤ i ≤ r,
(
F (x)

)
i

=

q∑
j=1

Fi,jxj

and, since [Gs−1 ∩ Γ, γ0] ⊂ Gs ∩ Γ, F maps (Gs−1 ∩ Γ)/(Gs ∩ Γ) to Gs ∩ Γ,
we have that the coefficients Fi,j are integers.

The commutator mapGs−1×G0 → Gs induces a homomorphism Φ: Gs−1/Gs×
G0/G2 → Gs. Using additive notation and writing in coordinates,

for 1 ≤ i ≤ r,
(
Φ(x, y)

)
i

=

q∑
j=1

p∑
k=1

Φi,j,kxjyk.

Since the commutator map takes (Gs−1 ∩ Γ)× Γ0 to Gs ∩ Γ, it follows that
the coefficients Φi,j,k are integers.

We remark that for g ∈ Gs−1, we have that [g, τ ] = [g, τ0].[g, γ0]. The com-
mutator map g 7→ [g, τ ] : Gs−1 → Gs induces a homomorphism Ψ: Gs−1/Gs →
Gs, with (using multiplicative notation) Ψ(x) = Φ(x, τ)F (x). In coordinates
(using additive notation),

for 1 ≤ i ≤ r,
(
Ψ(x)

)
i

=

q∑
j=1

(
Fi,j +

p∑
k=1

Φi,j,kβk
)
xj .

Let π : Gs 7→ Gs/(Γ ∩ Gs) = Tr. We have that f(Gs−1) is the range of
π◦Ψ. If this range is not dense in Tr, then it is included in a proper subtorus,
and there exist integers λ1, . . . , λr, not all equal to 0, such that the range of
Ψ is included in the group H defined by

z ∈ H if and only if
r∑
i=1

λizi ∈ Z.

In coordinates,

for every x ∈ Rq,
r∑
i=1

λi

q∑
j=1

(
Fi,j +

p∑
k=1

Φi,j,kβk
)
xj ∈ Z
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and thus

(2) for 1 ≤ j ≤ q,
r∑
i=1

λi
(
Fi,j +

p∑
k=1

Φi,j,kβk
)

= 0.

Since the coefficients Fi,j are integers,

for 1 ≤ j ≤ q,
p∑

k=1

( r∑
i=1

λiΦi,j,k

)
βk ∈ Z.

Since the coordinates βk of β are rationally independent, it follows that

(3) for 1 ≤ j ≤ q and 1 ≤ k ≤ p,
r∑
i=1

λiΦi,j,k = 0.

This means that the range of Φ is included in the proper closed subgroup
H of Gs = Rr, and thus [G0, Gs−1] ⊂ H.

Furthermore, plugging (3) into (2), we have that

for 1 ≤ j ≤ q,
r∑
i=1

λiFi,j = 0.

This means that the range of F is included in H, that is, [γ0, Gs−1] ⊂ H.
As G = 〈Γ0, G0〉 and for every x ∈ Gs−1 the map g 7→ [g, x] is a group

homomorphism, then [G,Gs−1] = [G0, Gs−1].[γ0, Gs−1] and [G,Gs−1] ⊂ H,
a contradiction. �

We use this lemma to complete the topological proof:

Proof of Theorem 4.1. We proceed by induction on s. If s = 1, there is
nothing to prove. Henceforth we assume that s ≥ 2 and that the statement
holds for (s − 1)-step nilsystems. Let R be a set of Bohr recurrence and
let (X = G/Γ, T ) be a minimal s-step nilsystem that is not an (s − 1)-step
nilsystem; we maintain the notation used in Lemma 4.3.

Let X0 denote the connected component of eX in X. Then there exists
k ∈ N such that T kX0 = X0, and the system (X0, T

k) is a minimal s-step
nilsystem. On the other hand, the set R0 = {n ∈ N : kn ∈ R} is a set of Bohr
recurrence. Substituting X0 for X and R0 for R, we reduce to the case that
X is connected. We can assume without loss that G0 is simply connected.

Let U be a nonempty open subset of X; we want to show that there exists
n ∈ R such that U ∩ T−nU 6= ∅. Without loss, we can assume that U is the
open ball B(eX , 3ε) centered at eX and of radius 3ε for some ε > 0.

Let π : X → X̃ be the factor map defined just after (1). Since (X̃, T̃ ) is
an (s−1)-step nilsystem, it follows from the induction hypothesis that there
exist arbitrarily large n ∈ R with π−1

(
B(eX , ε)

)
∩ T̃−nπ−1

(
B(eX , ε)

)
6= ∅.

It follows that for these values of n, there exist x ∈ X and v ∈ Gs with
dX(x, eX) < ε and dX(Tnx, v · eX) < ε. Lifting x to G, we obtain g ∈ G and
γ ∈ Γ with

dG(g, 1G) < ε and dG(τng, vγ) < ε.
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We claim that it suffices to show that if n is sufficiently large, there exists
h ∈ Gs−1 and θ ∈ Gs ∩ Γ such that

(4) dG(h, 1G) < ε and dG([h−1, τn], v−1θ) < ε.

To see this, writing y = h · x, we have that y is the projection of hg in X
and that

dX(y, eX) ≤ dG(hg, 1G) ≤ dG(h, 1G) + dG(g, 1G) < 2ε.

Furthermore,

dX(Tny, eX) ≤ dG(τnhg, θγ) = dG(h[h−1, τn]τng, θγ)

≤ ε+ dG([h−1, τn]τng, θγ) = ε+ dG(τng[h−1, τn], θγ)

≤ 2ε+ dG(vγ[h−1, τn], θγ) = 2ε+ dG([h−1, τn]vγ, θγ)

= 2ε+ dG([h−1, τn], v−1θ) < 3ε,

where we used the right invariance of the distance dG, the fact that [h−1, τn] ∈
Gs, and that Gs is included in the center of G. This proves the claim.

We are left with finding h ∈ Gs−1 and θ ∈ Gs satisfying (4). Let C
be as in Lemma 4.3 applied with ε and v−1. Let K be the closed ball
{h ∈ G : dG(h,1G) ≤ C} in G and let the Lie algebra g of G be endowed with
a norm ‖ · ‖. Let L be a closed ball in g centered at 0 such that {exp(ξ) : ξ ∈
L} ⊂ K. Recalling that the exponential map exp is a diffeomorphism from g
ontoG0, we have that the restriction of the exponential map to L is Lipschitz,
as is the reciprocal map. Thus there exists a constant C ′ > 0 such that for
every ξ ∈ L,

C ′−1‖ξ‖ ≤ dG(exp(ξ),1G) ≤ C ′‖ξ‖.
Thus Lemma 4.3 provides h′ ∈ Gs−1 and θ ∈ Gs∩Γ such that dG(h′,1G) < C
and dg([h

′, τ ], v−1θ) < ε. Writing h′ = exp(ξ) for some ξ ∈ L and setting
h = exp(−ξ/n), it follows that h−n = exp(ξ) = h′ and

dG(h,1G) ≤ C ′‖ξ/n‖ = C ′‖ξ‖/n ≤ C ′2dG(h′,1G)/n ≤ C ′2C/n.
Thus if n ∈ R is larger than CC ′2/ε, we have that dG(h, 1G) < ε. Since
h ∈ Gs−1, we have [h−1, τn] = [h−1, τ ]n = [h−n, τ ] = [h′, τ ] and h satisfies
the announced properties. �

In this proof, we actually showed that for every small open subset U ⊂ X
and all sufficiently large n, T−nU almost contains a fiber of the projection
π : X → X̃. This leads to a natural question: is there a way to formulate
such a dilation property that can be used to prove the analog of Theorem 4.1
for more general systems?

5. Multiple recurrence in nilsystems

5.1. Nils-Bohr0 sets. For multiple recurrence in nilsystems, Nils-Bohr0 sets,
introduced in [22], play the role played by Bohr0 sets for recurrence in com-
pact abelian groups; the complex exponentials are replaced by nilsequences
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or by generalized polynomials. In this section we adapt results of Huang,
Song, and Ye [25] for our purposes.

Definition 5.1 (see [22]). Let s ≥ 1 be an integer. The set E ⊂ N is a
Nils-Bohr0 set if there exist an s-step nilsystem (X,T ), x0 ∈ X, and an
open neighborhood U ⊂ X of x0 such that

{n ∈ N : Tnx0 ∈ U} ⊂ E.

Note that in this definition we can restrict without loss to the case that
(X,T ) is minimal.

A set R ⊂ N is a Nils-Bohr∗0 set if it has nonempty intersection with all
Nils-Bohr0 sets.

Theorem 5.2 (Huang, Song, and Ye [25, Theorem A]). Let s ∈ N. If E ⊂ N
is a Nils-Bohr0 set, then there exist a minimal s-step nilsystem (X,T ) and
a nonempty open set U ⊂ X such that E ⊃ N s(U).

We use this to show:

Corollary 5.3. Let s ∈ N. For R ⊂ N, the following are equivalent:
(i) R is a set of s-recurrence for minimal s-step nilsystems;
(ii) R is a set of pointwise recurrence for minimal s-step nilsystems;
(iii) R is a Nils-Bohr∗0 set.

If R satisfies any of these three equivalent conditions, then R is actually
a set of multiple pointwise recurrence for minimal s-step nilsystems. More-
over, in this case, properties (i) and (ii) remain valid for non-minimal s-step
nilsystems, as the closed orbit of any point is a minimal s-step nilsystem.

Proof. By Theorem 5.2, every set of s-recurrence for minimal s-step nilsys-
tems is a Nils-Bohr∗0 set.

By definition, Nils-Bohr∗0 sets are exactly sets of pointwise recurrence for
minimal s-step nilsystems.

Since every minimal s-step nilsystem is distal, it follows from the proof of
Proposition 3.12 that a set of pointwise recurrence for this class of systems
is also a set of multiple pointwise recurrence for these systems and this
implies (i). �

We summarize what this means. Let s, ` ≥ 1 be integers and let R ⊂ N.
If s ≤ `, the set R is a set of `-recurrence for (minimal) s-step nilsystems if
and only if it is a set of s-recurrence for (minimal) s-step nilsystems if and
only if it is a Nils-Bohr∗0 set.

However, we do not know what happens for s > `, other than for ` = 1:
if R is a set of Bohr recurrence then it is a set of recurrence for all minimal
nilsystems (Theorem 4.1). As Bohr recurrence is equivalent to multiple Bohr
recurrence, the multiple analog of Katznelson’s question (Question 3.4) is
easily seen to be false. However, we conjecture:
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Conjecture 5.4. Let s ≥ 1 and let R be a set of s-recurrence for s-step
nilsystems. Then R is a set of s-recurrence for all t-step nilsystems for any
t ≥ s.

For s = 1, this is the content of Theorem 4.1. For s > 1, the conjecture is
supported by explicit computations in the affine case: a set of s-recurrence
for affine s-step systems is also a set of s-recurrence for any t-step affine
system with t ≥ s, and this is carried out in Section 5.3. However, we do
not know how to carry out these computations for a general nilsystem, but
believe that some analog of the topological proof of Theorem 4.1 should be
possible.

5.2. Multiple recurrence and regionally proximal relations. Let s ≥
1 be an integer. The regionally proximal relation RP[s](X,T ) introduced
in [23] for minimal systems (X,T ) generalizes the regionally proximal relation
of Auslander [1]. In [23] we showed that the relation RP[s](X,T ) is the
identity if and only if the system is a system of order s, meaning it is an
inverse limit of s-step nilsystems; assuming in addition that the system is
distal, this relation is an equivalence relation and the quotient is the maximal
factor of order s of X. The assumption of distality was removed in [34].

Many results of this section are implicit or explicit in the work of Huang,
Shao, and Ye [25]. We extract, rephrase, and adapt them here for complete-
ness and our purposes, so as to give a framework for constructing explicit
examples of sets of recurrence.

Notation. We write E(X,T ) for the Ellis semigroup of the system (X,T ).

The next lemma appears as a comment in [1, page 71], but also can be
deduced from the more general Theorem 15 in Chapter 7 in the same book.

Lemma 5.5. Let (X,T ) be a minimal system and (Z, S) be a distal system.
Then each closed (T × S)-orbit in X × Z is minimal.

Proof. Let W denote the closed orbit of (x0, z0) in X × Z under T × S.
The projection of W on Z is transitive and thus is minimal by distality.
Therefore, without loss we can assume that (Z, S) is minimal.

Let σ denote the transformation p 7→ S ◦ p of E(Z, S). Then (E(Z, S), σ)
is minimal. Let K be a minimal (T × σ)-invariant subset of X × E(Z, S).
The projection K → X is onto and there exists p0 ∈ E(Z, S) such that
(x0, p0) ∈ K. Then p0 is a bijection of Z and there exists z1 ∈ Z such that
p0(z1) = z0. The image of K under the map (x, p) 7→ (x0, p(z1)) is a closed
minimal (T × S)-invariant subset of X × Z and contains (x0, z0), and thus
is equal to W . �

Lemma 5.6. Let (X,T ) be a minimal system and (x0, x1) ∈ RP[s](X,T ).
Let (Z, S) be a minimal system of order s and W be a closed (T × S)-
invariant subset of X ×Z. Then for z ∈ Z, we have (x0, z) ∈W if and only
of (x1, z) ∈W .
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Proof. By Lemma 5.5, without loss we can assume that W is minimal.
Let z0 ∈ Z be such that (x0, z0) ∈W . We claim that (x1, z0) ∈W .
As in Lemma 5.5, σ : E(Z, S)→ E(Z, S) denotes the map p 7→ S ◦ p and

(E(Z, S), σ) is minimal. Let K be a closed and minimal (T × σ)-invariant
subset of X ×E(Z, S). The first projection π1 : K → X is a factor map and
thus by [34], the map π1×π1 maps RP[s](K) onto RP[s](X) and there exists
p0, p1 ∈ E(Z, S) such that

(x0, p0) ∈ K, (x1, p1) ∈ K, and
(
(x0, p0), (x1, p1)

)
∈ RP[s](K).

Let z2 ∈ Z be such that p0(z2) = z0. The map π : (x, p) 7→ (x, p(z2)) from K
to X ×Z satisfies π ◦ (T × σ) = (T × S) ◦ π and thus its range is a minimal
(T × S) invariant subset of X × Z. This set contains (x0, z0) and thus is
equal to W .

Let z1 = p1(z2). We have (x1, z1) = π(x1, p1) ∈W .
On the other hand, π × π maps RP[s](K) to RP[s](W ) and thus(

(x0, z0), (x1, z1)
)
∈ RP[s](W ).

Since the second projection (x, z) 7→ Z is a factor map from W to Z,
(z0, z1) ∈ RP[s](Z). Since Z is a system of order s, z0 = z1 and (x1, z0) ∈W
and the claim is proven.

Exchanging the roles of x0 and x1, we have the equivalence. �

Lemma 5.7. Let (X,T ) be a minimal system, (x0, x1) ∈ RP[s](X,T ), and
U be an open neighborhood of x1 ∈ X. Then for every Nils-Bohr0 set E,
N(x0, U) ∩ E is syndetic.

Proof. Let (Z, S) be a minimal system of order s, z0 ∈ Z, and V be an
open neighborhood of z0 ∈ Z. We have to show that N(x0, U)∩N(z0, V ) is
syndetic.

Let W be the closed (T × S)-orbit of (x0, z0) in X × Z. By Lemma 5.5,
(W,T ×S) is minimal and, by Lemma 5.6, (x1, z0) ∈W . We have that (U ×
V )∩W is an open neighborhood of (x1, z0) inW and thus NT×S

(
(x0, z0), U×

V
)

= NT (x0, U) ∩NS(z0, V ) is syndetic. �

Theorem 5.8 (Huang, Song, and Ye [25, Theorem E]). Let (X,T ) be a
minimal system, (x0, x1) ∈ RP[s](X,T ), and U be an open neighborhood of
x1 ∈ X. Then N(x0, U) is a set of s-recurrence.

Proof. Let (X,T ) be a minimal system, V be a nonempty open subset of X,
and let µ be an invariant ergodic measure on X. By [25, Theorem A(2)],
there exist a Nils-Bohr0 set E and a set of uniform upper density zero F
such that N s(V ) ⊃ E \F . By Lemma 5.7, E∩N(x0, U) is syndetic and thus
is not included in F ; it follows that N s(V ) ∩N(x0, U) 6= ∅. �

We use this to construct explicit examples of various sets of recurrence:

Example 5.9. If (X,T ) is a minimal system and x0, x1 ∈ X are proximal,
then (x0, x1) ∈ RP[s](X,T ) for every s ∈ N (see [23]). Thus if U is an open
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neighborhood of x1, then N(x0, U) is a set of multiple recurrence. If x0 /∈ U ,
then this set is not a set of pointwise recurrence.

In Frantzikinakis, Lesigne, and Weirdl [14], the authors build examples of
sets of s-recurrence that are not sets of (s+ 1)-recurrence; the framework is
measurable dynamics but the same constructions also work in the topological
setting. We give a more general framework that gives further insight into
the behavior of these examples using Theorem 5.8.

Corollary 5.10. Let (X,T ) be a minimal s-step nilsystem and let (x0, x1) ∈
RP[s−1](X,T ). Let U be an open neighborhood of x1 in X with x0 /∈ U . Then
N(x0, U) is a set of (s− 1)-recurrence, is not a set of s-recurrence (even for
s-step nilsystems), and is not a set of pointwise recurrence.

Proof. Since (x0, x1) ∈ RP[s−1](X,T ), by Theorem 5.8, N(x0, U) is a set of
(s−1)-recurrence. On the other hand, N(x0, X \U) is a Nils-Bohr0 set that
does not intersect N(x0, U), and thus this last set is not a Nils-Bohr∗0 set.
By Corollary 5.3, it is not a set of s-recurrence and is not a set of pointwise
recurrence. �

This leads to various examples of sets of recurrence and non-recurrence.
We begin with a simple observation. If (X,T ) is a minimal 2-step nilsystem
and Y is its maximal equicontinuous factor, then X is an isometric extension
of Y . If x0, x1 ∈ X are distinct points with the same projection in Y ,
then (x0, x1) ∈ RP[1](X,T ). Thus if U is an open neighborhood of x1 and
x0 /∈ U , then N(x0, U) is a set of Bohr recurrence and thus of Bohr multiple
recurrence. However, it is not a set of double recurrence for (X,T ).

More generally, we have the examples from [14]:

Example 5.11. The set S = {n ∈ N : ‖nβ‖ > ε} is not a set of recurrence
for any β ∈ T and 0 < ε < 1/2. More generally, it was shown in [14] that
for any s ≥ 1, ε > 0, and any β ∈ T, the set S = {n ∈ N : ‖nsβ‖ > ε} is a
set of (s− 1)-recurrence and is not a set of s-recurrence.

We explain how to prove this result using the current machinery. For
rational β the result is obvious and so we assume that β is irrational. Let
(Ts, T ) be the s-step affine nilsystem defined in Section 5.3, where Tx =
Mx + α and α is to yet be determined. Set a = (0, 0, . . . , 0) ∈ Ts and
b = (1/2, 0, . . . , 0) ∈ Ts. Then for every n ∈ N, we have that Tna =
(Id +M + . . .+Mn−1)α. By formula (5) giving the entries of Mn, we can
choose α with αs irrational such that (Tna)1 = nsβ. As in the proof of
Theorem 5.13, the maximal (s − 1)-step factor of (Ts, T ) is (X̃, T̃ ), where
X̃ is the quotient of Ts under the subgroup {(t, 0, . . . , 0) : t ∈ T}. Thus a
and b have the same projection on X̃ and so (a, b) ∈ RP[s−1](Ts, T ). Setting
U = {x ∈ Ts : ‖x1‖ < ε}, we have that U is an open set containing a and
b /∈ U . The statement now follows from Corollary 5.10.

On the other hand, the set {n ∈ N : ‖nsβ‖ < ε} is exactly N(a, U), and
so as already remarked, it is a set of multiple recurrence.
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We remark that all of these examples are large sets, in the sense that they
have positive density. However, there are many examples of sets of multiple
recurrence of density zero, such as any IP-set [18] the set of values of a
polynomial [6], the set of shifted primes [13], or a set containing arbitrarily
long arithmetic progressions and such that any integer occurs as a common
difference [16]. Adapting ideas of [16], one can construct zero density sets of
(s− 1)-recurrence that are not sets of s-recurrence.

5.3. Lifting multiple recurrence in affine systems.

Definition 5.12. For s > 1, let M be an s× s matrix with integer entries.
Assume that M is unipotent, meaning that (M − Id)s = 0, and let α ∈ Ts.
Define T : Ts → Ts by T (x) = Mx+α (operations are always mod 1). The
system (Ts, T ) is called an affine system on Ts.

The system (Ts, T ) is minimal if the projection of α on Ts/ ker(M − Id)
generates a minimal rotation on this torus [31].

The system (Ts, T ) can be represented as a nilsystem. Namely, let G
denote the group of transformations of Ts spanned byM and the translations
Sβ : x 7→ x + β for β ∈ Ts and let Ts be identified with the subgroup
{Sβ : β ∈ Ts} of G. For j ≥ 2, Gj ⊂ Ts and more precisely

Gj = Range(M − Id)j−1.

Therefore, G is an s-step nilpotent Lie group, and the stabilizer of 0 is
Γ = {Mn : n ∈ Z}. Then Ts is identified in the natural way with G/Γ.

We prove Conjecture 5.4 for affine systems:

Theorem 5.13. Let 1 ≤ r ≤ s − 1 be an integer. If R ⊂ N is a set of
r-recurrence for all (s − 1)-step minimal affine systems, then it is a set of
r-recurrence for s-step minimal affine systems.

Before proving the theorem, we start with some preliminary simplifica-
tions. There is a change of basis such that M = PM ′P−1, where P has
integer entries and non-zero determinant, and such that M ′ is in Jordan
canonical form. Let α′ be such that Pα′ = α and define T ′ : Ts → Ts to
be T ′x = M ′x+ α′. Then the system (Ts, T ′) is a minimal affine nilsystem,
and the map P : Ts → Ts is a finite to one factor map from this system to
the system (Ts, T ). Thus it suffices to prove the theorem for a system whose
matrix M is in Jordan canonical form.

Furthermore, for notational convenience, we restrict ourselves to the case
that there is a single block in the Jordan form, and we note at the end of
the proof how to generalize this for multiple blocks. Thus, henceforth we
assume that M is an integer matrix with

Mi,j =

{
1 if j = i or j = i+ 1

0 otherwise.

For 2 ≤ j ≤ s, we have

Gj = Range(M−Id)j−1 =
{
x = (x1, . . . , xs) ∈ Ts : xi = 0 for i ≥ s−j+2

}
.



24 BERNARD HOST, BRYNA KRA, AND ALEJANDRO MAASS

Minimality of the system (Ts, T ) is equivalent to the last coordinate αs of α
being irrational.

The matrix M is exactly s-unipotent, meaning that

(M − Id)s = 0 and (M − Id)s−1 6= 0,

and the system (Ts, T ) is exactly an s-step minimal nilsystem, meaning that
it is not an (s− 1)-step nilsystem.

From the form of the matrixM , we deduce that for any n ∈ N, the entries
of Mn satisfy Mn

i,i = 1 for 1 ≤ i ≤ s and

(5) for 1 ≤ i < j ≤ s, Mn
i,j = pj−i(n),

where p1(n) = n and, for 1 ≤ k < s, pk is a polynomial with integer
coefficients whose degree is exactly k such that pk(0) = 0.

Notation. Throughout this proof, C denotes some constant, possibly taking
on different values, where the only dependence is on s,M and α, but not on
n. For other objects, the dependence on n is often left implicit.

Lemma 5.14. Let n ∈ N. For every y ∈ Rs with ys = 0, there exists a
unique x ∈ Rs such that x1 = 0 and (Mn − Id)x = y and we write x = Ay.
Furthermore, if for some k ∈ {3, . . . , s} we have yi = 0 for i ≥ s − k + 2,
then xj = 0 for j ≥ s− k + 3.

Finally, there exists a constant C > 0 such that if for some constant κ > 0
we have |yi| ≤ κ/ni−1 for 1 ≤ i ≤ s− 1, then |xj | ≤ Cκ/nj−1 for 2 ≤ j ≤ s.

It is immediate that the map A is linear, given by a matrix with integer
entries, and we can view it also as a homomophism from G2 to Ts = G,
mapping Gk to Gk−1 for 3 ≤ k ≤ s.

Proof. A real vector x = (0, x2, . . . , xs) satisfies (Mn − Id)x = y if and only
if x2, . . . , xs satisfy the linear system:

y1 = p1(n)x2 + · · ·+ pd−1(n)xs;

... =
...

yi = p1(n)xi+1 + · · ·+ pd−i(n)xs;

... =
...

ys−2 = p1(n)xs−1 + p2(n)xs;

ys−1 = p1(n)xs.

This triangular system has a unique solution since the coefficients p1(n) are
non-zero and the first statement follows. The second statement is obvious.

Since for 1 ≤ k ≤ s the polynomial pk is exactly of degree k and satisfies
pk(0) = 0, there exist constants C1, C2 > 0 such that

C1

nk
≤ pk(n) ≤ C2

nk
for all n ∈ N

and the last statement follows. �
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We use this to complete the proof of Theorem 5.13:

Proof of Theorem 5.13. We proceed by induction on s. Assume that r < s
and that R is a set of r-recurrence for all affine (s− 1)-step nilsystems. We
show that R is a set of r-recurrence for any affine s-step nilsystem.

Let (X̃, T̃ ) be defined as in (1). Recall that X̃ is the quotient of X under
the action of Gs, and so can be identified with G/Gs = Ts−1. Then (X̃, T̃ )

is an (s − 1)-step affine nilsystem, given by the matrix M̃ induced by M ,
and the translation by α̃, the image of α in Ts−1.

Since 1 ≤ r ≤ s − 1, by the induction hypothesis, there exist arbitrarily
large n ∈ R and x̃ ∈ Ts−1 with ‖x̃‖ ≤ ε and ‖T̃ knx̃‖ ≤ ε for 1 ≤ k ≤ r. Lift-
ing to X, there exist x ∈ Ts and w1, . . . , wr ∈ Gs with wk = (wk,1, . . . , wk,s)
for j = 1, . . . r such that

‖x‖ ≤ ε and ‖T knx− wk‖ ≤ ε for 1 ≤ k ≤ r.

We need to show that if n is sufficiently large, there exists y ∈ Gs−r such
that

‖y‖ ≤ Cε and ‖T kn(x+ y)‖ ≤ Cε for 1 ≤ k ≤ r.
For any k ∈ N, we have that T kn(x+y) = T knx+Mkny and so the system

of approximate equations to be solved is

y ∈ Gs−r, ‖y‖ ≤ Cε;

‖Mkny + wk‖ ≤ Cε for 1 ≤ k ≤ r.

Set vk = −
∑k

j=1

(
k
j

)
(−1)k−jwj ∈ Gs for k = 1, . . . , r. Then the system we

need to solve becomes

y ∈ Gs−r;(6)
‖y‖ ≤ Cε;(7)

‖(Mn − Id)ky − vk‖ ≤ Cε for 1 ≤ k ≤ r.(8)

By Lemma 5.14 and by induction on `, for 1 ≤ k ≤ r and 1 ≤ ` ≤ s− 1,
the elements A`vk satisfy

(Mk − Id)`A`vk = vk;

A`vk ∈ Gs−`;

(A`vk)1 = 0 and |(A`vk)i| ≤ C/ni−1 for 2 ≤ i ≤ s.(9)

Define yk ∈ G by

yk = Akvk for 1 ≤ k ≤ r and y = y1 + · · ·+ yr.

Then we claim that for n sufficiently large, y satisfies conditions (6), (7)
and (8).

To see this, by construction, for 1 ≤ k ≤ r, yk ∈ Gs−k ⊂ Gs−r and (6) is
satisfied.
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By (9), all coordinates of yk are bounded in absolute value by C/n, and
thus ‖yk‖ ≤ C/n. It follows that ‖y‖ ≤ C/n and that (7) is satisfied when
n is sufficiently large.

Furthermore, for 1 ≤ k ≤ r,

(Mn − Id)ky

=
k−1∑
`=1

(Mn − Id)ky` +(Mn − Id)kyk +
r∑

`=k+1

(Mn − Id)ky`.

=S1 +S2 +S3.

We analyze these three terms. For 1 ≤ ` < k, since y` ∈ Gs−`, we have that
(Mn−Id)ky` = 0 and thus S1 = 0. By construction, S2 = (Mn−Id)kAkvk =
vk.

For k < ` ≤ r, (Mn − Id)ky` = (Mn − Id)kA`v` = A`−kv` and by (9) all
coordinates of this element are bounded by C/n and thus ‖(Mn− Id)ky`‖ ≤
C/n. It follows that ‖S3‖ ≤ C/n, and (8) holds when n is sufficiently large.

For generalizing to the case where there may be more blocks in the Jordan
matrix M , we note that the proof applies for all sufficiently large n ∈ R.
Thus taking n to be the maximum of these iterates, we deduce the general
case. �

6. The Ramsey property

Definition 6.1. A property is Ramsey if for any set R ⊂ N having this
property and any partition R = A ∪ B, at least one of A or B has this
property.

The Ramsey property is also sometimes referred to as divisible; an equiv-
alent characterization is that its dual is a filter (see [18, 20, 9]).

The following proposition appears in several places in the literature (see
for example [25, Proposition 7.2.4]), but for completeness we give a proof:

Proposition 6.2. The family of sets of `-recurrence has the Ramsey prop-
erty.

Proof. We proceed by contradiction. Assume that R is a set of `-recurrence
and that R = A ∪ B is a partition such that neither A nor B is a set of
`-recurrence. Thus there exist two minimal systems (X,T ) and (Y, S) and
open sets U ⊂ X and V ⊂ Y such that N `

T (U)∩A = ∅ and N `
S(V )∩B = ∅.

Let Z be a minimal subset of the product X × Y . By minimality of the
Z2-action of {Tn × Sm : n,m ∈ Z} on X × Y , we can choose n,m ∈ Z such
that

Z ′ = (Tn × Sm)Z ∩ (U × V ) 6= ∅.
Then Z ′ is a nonempty open set and so by assumption, N `

T×S(Z ′) ∩ R 6= ∅.
But N `

T×S(Z ′) ⊂ N `
S(V ) ∩N `

T (U), a contradiction that R = A ∪B. �
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Figure 1. The horizontal axis represents the step of the
nilsystem and the vertical axis represents the level of re-
currence. The vertical implications are proven in Corollary
5.3 and counterexamples for vertical implications (with step
greater than recurrence) are given by Example 5.11. Horizon-
tal squiggly implications are proven only for affine nilsystems
in Theorem 5.13, while the full horizontal implications are
proven in Theorem 4.1. Counterexamples for the horizontal
implications (with recurrence greater than step) follow from
Corollary 5.3 and Corollary 5.10.

Corollary 6.3. Let R be a set of `-recurrence, (X,T ) a minimal system, and
U be a nonempty open subset of X. Then R∩N `(U) is a set of `-recurrence.

Proof. By definition N \N `(U) is not a set of `-recurrence. Thus R \N `(U)
is not a set of `-recurrence. The result follows from Proposition 6.2. �

In particular, it follows from this corollary and Theorem 5.2 that if R
is a set of `-recurrence and E is a Nils-Bohr0 set, then E ∩ R is a set of
`-recurrence.

Similarly, one can easily check that by passing to the product, a set of
pointwise recurrence for minimal, distal systems is Ramsey:
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Proposition 6.4. The family of sets of pointwise recurrence for minimal
distal systems has the Ramsey property: if A and B are subsets of N such
that A∪B is a set of pointwise recurrence for minimal distal systems, then at
least one of the sets A or B is a set pointwise recurrence for minimal distal
systems

Proof. We assume by contradiction that there exist two distal minimal sys-
tems (X,T ) and (Y, S), x ∈ X, y ∈ Y and ε > 0 such that

for every n ∈ A, dX(Tnx, x) ≥ ε ; for every n ∈ B, dY (Tny, y) ≥ ε.
LetX×Y be endowed with the sum distance dX×Y ((x, y), (x′, y′)) = dX(x, x′)+
dY (y, y′). Since X and Y are distal, the closed (T × S)-orbit W of (x, y) in
X × Y is minimal. Since A ∪B is a set of pointwise recurrence for minimal
distal systems, there exists n ∈ A ∪B such that

ε > dX×Y ((T × S)n(x, y), (x, y)) = dX(Tnx, x) + dY (Sny, y),

a contradiction. �

Question 6.5. Does the family of sets of pointwise (or multiple or simulta-
neous) topological recurrence have the Ramsey property?

7. Large sets and syndetic large sets

7.1. Fixing the number of colors. In the definition of a set of recurrence,
we consider an arbitary, finite partition of the integers and arithmetic pro-
gressions of arbitary length. Restricting the length of the progression leads
to the definition of `-recurrence. Instead, we can restrict the number of cells
in the partition and this is the point of view taken in Brown, Graham, and
Landman [10], where this is studied from a purely combinatorial point of
view. They define:

Definition 7.1. If r ≥ 2 is an integer, a set R ⊂ N is r-large if every
coloring of the integers with r colors contains arbitrarily long monochromatic
progressions with step in R. The set R ⊂ N is large if it is r-large for every
r ≥ 2.

Analogous to Theorem 2.3, this property can be described dynamically:

Proposition 7.2. Let r ≥ 2. The set R ⊂ N is r-large if and only if for
every system (X,T ), every open cover U = (U1, . . . , Ur) of X by r open sets,
and every ` ≥ 2, there exist j ∈ {1, . . . , r} and n ∈ R such that n ∈ N `(Uj).

In particular, a set of integers is a set of multiple recurrence if and only if
it is r-large for every r, meaning it is large.

Thus, a question asked in [10] becomes:

Question 7.3 (Brown, Graham, and Landman [10]). Are all 2-large sets
sets of multiple recurrence?

We rephrase some of the other results from [10], with some minor modifi-
cations, putting them into dynamical language. Their example 5.11 becomes:
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Lemma 7.4. Let α ∈ T and ε > 0. The set S = {n ∈ N : ‖nα‖ > ε} is not
2-large.

Proof. Let α ∈ T, J1 = [0, 1/2) and J2 = [1/2, 1). We define a 2-coloring of
N by Cj = {n ∈ N : nα ∈ Jj} for j = 1, 2. Let ` = 1 + d1/2εe. We show
that there is no monochromatic progression of length ` and with common
difference n ∈ R. Assume, by contradiction, that such a progression P =
{a+ in : 0 ≤ i ≤ `− 1} exists.

Choose β ∈ (−1/2, 1/2] such that β = nα mod 1. Without loss of gener-
ality, we can assume that 0 ≤ β ≤ 1/2 and that P ⊂ C1. For 0 ≤ k < `, let
ak = aα+ kβ mod 1. Then the set X = {ak : 0 ≤ k < `} is contained in J1.
For 0 ≤ k < ` − 1, we have that ak+1 = ak + β mod 1. On the other hand,
0 ≤ ak < 1/2 and 0 ≤ β ≤ 1/2 and thus 0 ≤ ak + β < 1. We deduce that

ak+1 = ak + β for 0 ≤ k < `− 1.

Therefore a`−1 = a0+(`−1)β, and thus β = (a`−1−a0)/(`−1) ≤ 1/2(`−1) <
ε, a contradiction. �

In analogy with Proposition 6.2, the characterization in Proposition 7.2
of large sets leads to a dynamical proof for the following:

Proposition 7.5 (Brown, Graham, and Landman [10]). If r1, r2 ≥ 2 and
S1 ∪ S2 is r1r2-large, then some Si is ri-large for i = 1, 2.

Proof. Assume not. Instead, assume that for i = 1, 2, the set Si is not ri-
large and Ci = {Ci,1, . . . , Ci,ri} is an ri-coloring of N such that there is no
progression of length `i, with step in Si contained in atoms of Ci. Let C1∨C2
be the partition {C1,j∩C2,k : 1 ≤ j ≤ r1, 1 ≤ k ≤ r2} and set ` = max(`1, `2).
Then there exists a progression of length `, with step d ∈ S1 ∪ S2, that is
monochromatic under the partition C1 ∨ C2.

But if d ∈ Si, we have a contradiction of the fact that the progression is
monochromatic for Ci. �

However, we are unable to answer the following:

Question 7.6 (Brown, Graham, and Landman [10]). Does the family of
2-large sets have the Ramsey property?

Proposition 7.7. Let S ⊂ N and r ≥ 2. If d ≥ 1, E is a Bohr0 set of
dimension d and S is 2dr-large for some r ∈ N, then S ∩ E is r-large.

Proof. We proceed by induction on the dimension d of the Bohr0 set E.
Assume that E is a Bohr0 -set of dimension 1. Then E ⊃ E′ := {n : ‖nα‖ <
ε} for some α ∈ T and some ε > 0. Let S be 2r-large for some r ∈ N. Write
S = (S∩E)∪ (S \E). By Lemma 7.4, the second of these sets is not 2-large,
and by Proposition 7.5, S ∩ E is r-large.

Assume that d ≥ 1, that the result holds for Bohr0 -sets of dimension
d, and let E be a Bohr0 -set of dimension d + 1 and S be a 2d+1r-large
set. Then E ⊃ F ∩ E′, where F is a Bohr0 set of dimension d and E′ =
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{n : ‖nα‖ < ε} for some α ∈ T and some ε > 0. As above, we write
S = (S ∩ E′) ∪ (S \ E′). Again, by Lemma 7.4 the second of these sets is
not 2-large and by Proposition 7.5, S ∩ E′ is 2dr-large. By the induction
hypothesis, S ∩ E ⊃ (S ∩ E′) ∩ F is r-large. �

7.2. r-large sets and nilsystems. We are interested if the results of Sec-
tion 5.2 have counterparts for r-large sets. For example, consider the analog
of Corollary 5.10:

Question 7.8. Let (X,T ) be a minimal d-step nilsystem, x0, x1 ∈ X, and
U be an open neighborhood of x1 with x0 /∈ U . Then N(x0, U) is not a set of
multiple recurrence. Does there exist some r ≥ 2 such that N(x0, U) is not
r-large?

This can be answered in the particular case of affine nilsystems, as the
affine nilsystems give rise to polynomials (see Section 5.3):

Proposition 7.9. Let ` ≥ 1, 0 < δ ≤ 1/2, α ∈ T,

(10) R = {n ∈ N : ‖n`α‖ > δ}
and m = d2`−1δ−1e. Then R is not m-large.

Proof. We proceed by contradiction and assume that R is m-large.
To avoid ambiguity, we stress that we consider here α as an element of

T = R/Z. We write α for the real in (−1/2, 1/2] such that α = α mod 1,
β = α/`! ∈ R and β = β mod 1 ∈ T.

Let T = I1 ∪ . . .∪ Im be a partition of T in (half open) intervals of length
1/m. For 1 ≤ j ≤ m, let Cj = {p ∈ N : p`β ∈ Ij}. By hypothesis, there
exists an arithmetic progression P = {a + pn : 0 ≤ p ≤ `} of length ` + 1,
with step n ∈ R, and it is monochromatic under this coloring, meaning that
there exists j, 1 ≤ j ≤ m, such that (a+ pn)`β ∈ Ij for 0 ≤ p ≤ `.

If (u(p)) is a sequence of reals, write (∆u)(p) = u(p+ 1)− u(p). Iterating
this definition, we have that

(∆`u)(p) =
∑̀
k=0

(
`

k

)
(−1)kup+k.

Using this with up = (a+ pn)`β,

n`α = `!n`β = (∆`u)(0) =
∑̀
k=0

(
`

k

)
(−1)kuk.

For every real number x, we write {x} for the difference between x and the
nearest integer. For 0 ≤ p ≤ `, the points up mod 1 belong to the same
half open interval Ij of length 1/m, and thus for 0 ≤ p ≤ ` − 1 we have
{(∆u)(p)} = {up+1 − up} ∈ (−1/m, 1/m). By the same argument and
using induction, {(∆`u)(0)} ∈ (−2`−1/m, 2`−1/m), meaning that {n`α} ∈
(−2`−1/m, 2`−1/m). Thus ‖n`α‖ < 2`−1/m < δ, a contradiction. �
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7.3. Syndetic large sets.

Definition 7.10. Recall that a set E ⊂ N is syndetic if there exists r ≥ 1
such that every interval of length r contains at least one element of E. The
smallest integer r with this property is called the syndeticity constant of E.

Definition 7.11. Let r ≥ 2. A set S of integers is r-syndetic large if
every syndetic set with syndeticity constant less than or equal to r contains
arbitrarily long arithmetic progressions with step in S.

The following proposition is a finite version of the equivalence between
characterizations (iii) and (iv) of multiple recurrence in Theorem 2.5:

Proposition 7.12. (i) Every r-large set is r-syndetic large.
(ii) Every (2r − 1)-syndetic large set is r-large.

Proof. By using a cover of N obtained by translates of an r-large set S and
the associated partition of N, the first statement follows.

For the second statement, assume that S is (2r − 1)-syndetic large set.
Let ` ≥ 2 be an integer and let N = C1 ∪ · · · ∪ Cr be a r-coloring of N. We
want to build a monochromatic progression of length ` and step in S.

Define E ⊂ N such that for n > 0 and 1 ≤ i ≤ r, rn + i ∈ E if and only
if n ∈ Ci. Then each subinterval of N of the form (nr, (n + 1)r] contains
a unique point of E, and the congruence class modulo r of this integer is
given by the color of n. In particular, the difference between two consecutive
points of E is ≤ 2r−1, and E is syndetic with syndeticity constant ≤ 2r−1.

Since S is (2r − 1)-syndetic large, E contains an arithmetic progression
{a, a + n, . . . , a + (`r − 1)n} of length `r and step n ∈ S. Thus E also
contains the sub-progression {a, a + rn, . . . , a + (` − 1)rn} of length ` and
step rn ∈ rA. Write a = rb+ i where b ≥ 0 and 1 ≤ i ≤ r and rewrite this
sub-progression as {

(b+ jn)r + i : 0 ≤ j < `
}
.

By definition of E, all the integers b + jn, 0 ≤ j < `, belong to Ci. They
form a monochromatic progression of length ` for the initial coloring with
step in S. �
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