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For Yahsa Pesin, on his sixtieth birthday

Abstract. It is shown that stable accessibility property is Cr-dense among
partially hyperbolic diffeomorphisms with one-dimensional center bundle, for
r ≥ 2, volume preserving or not. This establishes a conjecture by Pugh and
Shub for these systems.

1. Introduction. Partially hyperbolic systems are diffeomorphisms f : M → M
with a Tf -invariant splitting TM = Es ⊕ Ec ⊕ Eu such that Tf is contracting on
Es, expanding on Eu, and has an intermediate behavior on Ec. For more details,
see §2.

Accessibility is a concept arising from control theory (see for instance [9] and
[18]). A pair of distributions X and Y on a manifold has the accessibility property

if one can join any two points in the manifold by a path which is piecewise tangent
to either X or Y . See also [13] for an account of this. Essential accessibility is the
weaker property that if A and B are measurable sets with positive measure, then
some point of A must be joined to some point of B by such a path.

It was Brin and Pesin [1] (see also Sacksteder [17]) who first suggested in 1974 that
accessibility for the pair of distributions Es and Eu should be relevant in the context
of ergodic theory, more precisely, to study ergodic properties of partially hyperbolic
systems. A partially hyperbolic diffeomorphism is said to be accessible or essentially
accessible if the associated distributions Es and Eu have the corresponding property.
These properties are crucial in efforts to use the Hopf method to prove ergodicity
of a partially hyperbolic diffeomorphism.

Around 1995, Pugh and Shub developed a program to obtain ergodicity for (at
least) a C1-open and Cr-dense set of partially hyperbolic systems [12, 13]. More
precisely they formulated the following:

Conjecture 1. Stable ergodicity is Cr-dense among partially hyperbolic diffeomor-

phisms for r ≥ 2.

A stably ergodic diffeomorphism is a C2-diffeomorphism such that all C1-perturbations
among C2-volume preserving diffeomorphisms are ergodic.

Pugh and Shub divided this conjecture into two:
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Conjecture 2. Essential accessibility implies ergodicity for a C2-volume preserving

partially hyperbolic diffeomorphism.

Conjecture 3. Stable accessibility is Cr-dense among partially hyperbolic diffeo-

morphisms, volume preserving or not.

Conjectures 2 and 3 have been attacked by many authors, and there are now
many partial results about them, an account of which may be found, for instance,
in [6] or [16]. Let us recall some of these advances:

Conjecture 2 was proved by Brin and Pesin in [1] under the additional hypotheses
of Lipschitzness of Ec, dynamical coherence (that is, unique integrability of the
center bundle), and a technical condition on the rates of contraction/expansion of
the invariant bundles, called center bunching, which requires the action of Tf on
Ec to be close to conformal.

It took another 20 years until Grayson, Pugh and Shub [5] obtained the first
result without using Lipschitzness of Ec, by proving Conjecture 2 for perturbations
of the time-one map of the geodesic flow of a surface of constant negative curvature.
This provided the first non-hyperbolic stably ergodic example.

Their result was been extended in several stages during the last decade [19, 13,
14]. The strongest result to date is that Conjecture 2 is true with one additional
hypothesis, namely a mild form of center bunching, which we describe in the next
section. It holds whenever dim Ec = 1. This result was proved by Burns and
Wilkinson [2], and, in the case of one dimensional center, by F. and M. Rodriguez
Hertz and Ures [15].

Conjecture 3 was proved by Dolgopyat and Wilkinson with Cr-density weakened
to C1-density [4]. Many authors, starting with Brin and Pesin [1], have proved C∞-
density of stable accessibility within special classes of partially hyperbolic systems
such as the time one maps of Anosov flows and extensions of Anosov diffeomor-
phisms by compact Lie groups. But general results about accessibility have mostly
been restricted to the case of one dimensional center.

Didier showed that accessibility is C1-open [3] when the center distribution is
one-dimensional. This is still an open question in the case of higher dimensional
center. In [11], Niţică and Török found a Cr-dense set of stably accessible dif-
feomorphisms among the following ones: r-normally hyperbolic diffeomorphisms
with one-dimensional center distribution, having two close compact periodic leaves,
volume preserving or not.

F. and M. Rodriguez Hertz and Ures [15] found a C∞-dense set of stably acces-
sible diffeomorphisms among the Cr-volume preserving partially hyperbolic diffeo-
morphisms with one-dimensional center distribution, proving the volume preserving
part of Conjecture 3 for this case.

In this paper we extend the arguments in [15] to show that accessible diffeomor-
phisms are Cr-dense in the space of all Cr-partially hyperbolic diffeomorphisms
with one-dimensional center, thereby completing the proof of Conjecture 3 for the
case of one-dimensional center. The arguments in the present paper also apply to
the volume preserving case, since the various perturbations that we consider can all
be achieved while preserving volume.

2. Preliminaries. Let f : M → M be a diffeomorphism of a compact connected
manifold M . We say that f is partially hyperbolic if the following holds. First, there
is a nontrivial splitting of the tangent bundle, TM = Es⊕Ec⊕Eu that is invariant
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under the derivative map Tf . Further, there is a Riemannian metric for which we
can choose continuous positive functions ν, ν̂, γ and γ̂ defined on M with

ν, ν̂ < 1 and ν < γ < γ̂−1 < ν̂−1 (2.1)

such that, for any unit vector v ∈ TpM ,

‖Tfv‖ < ν(p), if v ∈ Es(p), (2.2)

γ(p) < ‖Tfv‖ < γ̂(p)−1, if v ∈ Ec(p), (2.3)

ν̂(p)−1 < ‖Tfv‖, if v ∈ Eu(p). (2.4)

Denote by PHDr
1(M) the set of (not necessarily volume-preserving) Cr-partially

hyperbolic diffeomorphisms of M with 1-dimensional center distribution. Recall
that Conjecture 3 is already proved for 1-dimensional center distribution in the
volume preserving setting [15]. Unless otherwise specified we give PHDr

1(M) the
Cr-topology. It is convenient to let s, c and u denote the dimensions of Es, Ec, and
Eu, respectively. When necessary we use a subscript to indicate the dependence of
the bundles on the diffeomorphism.

We say that f is center bunched if the functions ν, ν̂, γ, and γ̂ can be chosen so
that:

max{ν, ν̂} < γγ̂. (2.5)

Center bunching means that the hyperbolicity of f dominates the nonconformality
of Tf on the center. Inequality (2.5) always holds when Tf |Ec is conformal. For
then we have ‖Tpfv‖ = ‖Tpf |Ec(p)‖ for any unit vector v ∈ Ec(p), and hence we

can choose γ(p) slightly smaller and γ̂(p)−1 slightly bigger than

‖Tpf |Ec(p)‖.

By doing this we may make the ratio γ(p)/γ̂(p)−1 = γ(p)γ̂(p) arbitrarily close to
1, and hence larger than both ν(p) and ν̂(p). In particular, center bunching holds
whenever Ec is one-dimensional.

The bundles Eu and Es are uniquely integrable. As usual Wu and Ws will
denote the foliations to which they are tangent. There are partially hyperbolic
diffeomorphisms for which Ec is not integrable, but none of the known examples
has one dimensional center. The question of whether the center distribution must be
uniquely integrable if it is one dimensional is still open, even for partially hyperbolic
diffeomorphisms of three dimensional manifolds.

We assume that we have a Riemannian metric on M adapted to f so that the
inequalities at the beginning of this section hold. Distance with respect to this
metric will be denoted by d(·, ·).

If W is a foliation of M , Wρ(x) will denote the set of points that can be reached
from x by a C1-path of length less than ρ tangent to the foliation; this set is a disc
for small enough ρ. We define Wloc(x) to be WR(x) for a suitably small R. The
radii such as ε and δ considered in the paper are, of course, much smaller than R.

3. Remarks on accessibility. In this section we give a brief survey of the basic
properties of accessibility. Most of the results are taken from Didier’s paper [3]. A
partially hyperbolic diffeomorphism has the accessibility property if any two points
are joined by a us-path. A us-path from x to y is a finite sequence of points
z0, . . . , zm such that z0 = x, zm = y and zi ∈ Wu(zi−1) ∪Ws(zi−1) for 1 ≤ i ≤ m.

Given a partially hyperbolic diffeomorphism f , the accessibility class AC(x, f) of
a point X is the set of all points that can be joined to x by us-paths. Being joined by
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a us-path is an equivalence relation on the points of the manifold, so the accessibility
classes are pairwise disjoint and partition the manifold. The diffeomorphism has
the accessibility property if and only if there is just one equivalence class, which is
the entire manifold.

Accessibility classes are either open, or have empty interior. To see this, suppose
x is in the interior of the accessibility class A. Then there is an open set U such
that x ∈ U ⊂ A. The union of the leaves of a foliation that pass through an open
set is open. Thus U ′ =

⋃
y∈U W u(y) and U ′′ =

⋃
y∈U W s(y) are open sets. They

lie inside A by the definition of an accessibility class. Similarly
⋃

x∈U ′ W s(z) and⋃
z∈U ′′ W u(z) are open sets that lie inside A. An inductive argument shows that

the set of all points that are joined to a point of U by a us-path is open and lies in
A. But this open set contains AC(x, f), which is the whole of A.

We say that the foliations W s and W u are jointly integrable at a point x if there
is δ > 0 such that W s

loc(y) ∩ W u
loc(z) 6= ∅ for all y ∈ W s

δ (x) and all z ∈ W u
δ (x). See

Figure 1.

Lemma 3.1. [3, Lemma 5] Suppose W s and W u are jointly integrable at x for a

Cr-partially hyperbolic diffeomorphism f . Let D be the set of all points of the form

W u
loc(y) ∩ W s

loc(z) where y ∈ W s
δ (x) and z ∈ W u

δ (x). Then D is a C1 immersed

disc that is everywhere tangent to Es ⊕ Eu.

Proof. By introducing suitable coordinates, we can reduce to the situation where
W s and W u are continuous foliations of R

c+s+u with Cr leaves, tangent to distri-
butions Es and Eu. We may assume:

1. Es and Eu are close to the R
s and R

u coordinate distributions respectively.
2. W s(0, 0, 0) = {0} × R

s × {0} and W u(0, 0, 0) = {(0, 0)} × R
u.

3. W s
loc(0, y, 0) ∩ W u

loc(0, 0, z) is a single point for any y ∈ R
s and any z ∈ R

u.

Define η : R
s×R

u → R
c+s+u so that η(y, z) is the point of intersection of W s

loc(0, y, 0)
and W u

loc(0, 0, z). It is easily shown that η is a continuous function whose image is
the graph of a function h : R

s×R
u → R

c+s+u. For each (y, z) ∈ R
s×R

u, let V s(y, z)
and V u(y, z) be the projections of W s(h(y, z)) and W u(h(y, z)) to {0} × R

s × R
u,

which we identify with R
s × R

u in the obvious way. The leaves W s(h(y, z)) and
W u(h(y, z)) are Cr and lie in the image of η; hence the restrictions of h to V s(y, z)
and V u(y, z) are Cr for any (y, z) ∈ R

s × R
u.

We can now apply Journé’s theorem [7] to see that the function h is at least C1.
The statement in Journé’s paper assumes that V s and V u are foliations, but all
that is required is that V s(y, z) and V u(y, z) be uniformly transverse and depend
continuously on (y, z). Journé assumes that the restrictions of h to the manifolds
V s and V u are Cr,α, where r is a positive integer and 0 < α < 1, and concludes
that h is Cr,α. The same conclusion holds when r = 1 and α = 0; the proof in
this case is similar to the proof that a function with continuous first order partial
derivatives is C1. In either case, we see that h is at least C1.

It follows from the previous lemma that if W s and W u are jointly integrable at
every point in an accessibility class, then the class is an immersed submanifold of
dimension s + u tangent to Es ⊕ Eu [3, Lemma 6].

In the case when Ec is one dimensional, such an accessibility class has codimen-
sion one. Furthermore, in this case an argument which goes back to the 1970s —
the Brin quadrilateral argument — shows that AC(x, f) is open if W s and W u are
not jointly integrable at a point x. Thus, in the case (considered in this paper) of
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one dimensional center, there are precisely two types of accessibility classes: open
sets and immersed codimension one submanifolds tangent to Es ⊕ Eu. Each open
accessibility class contains a point at which W s and W u are not jointly integrable;
the other accessibility classes do not.

Proposition 3.2. [3, Proposition 5] Let f be a partially hyperbolic diffeomorphism

with one dimensional center. If AC(x, f) is open, then there exist a C1-neighborhood

U of f and ε > 0 such that B(x, ε) ⊂ AC(x, g) for all g ∈ U .

Proof. Since AC(x, f) is open, there is a point y ∈ AC(x, f) at which the foliations
W s

f and W u
f are not jointly integrable. The local stable and unstable manifolds

depend continuously on the point and the diffeomorphism. Hence there are neigh-
borhoods U of y and U1 of f in the C1-topology such that if g ∈ U1, then W s

g and
W u

g are not jointly integrable at any point z ∈ U for any g ∈ U1. Now we can

choose another neighborhood U2 of f in the C1-topology such that x is joined to
some point in U by a us-path for every g ∈ U2. Finally we take U = U1 ∩ U2.

We denote the union of all the non-open accessibility classes by Γ(f). Observe
that Γ(f) is a compact set, since it lies in a compact manifold and its complement is
open. It is laminated by codimension one submanifolds tangent to Es ⊕Eu. These
laminae are accessibility classes. If x ∈ Γ(f), we denote by Γ(x, f) the lamina of
Γ(f) that contains x. Note that if x ∈ Γ(f), then W s

f and W u
f are jointly integrable

at x and Γ(x, f) = AC(x, f). The accessibility property for f is equivalent to
Γ(f) = ∅.

Remark 3.3. Didier’s result in [3] that the set of diffeomorphisms in PHDr
1(M)

with the accessibility property is open follows from Proposition 3.2. Indeed, if this
set were not open, we could find a diffeomorphism f ∈ PHD r

1(M) that is accessible
and a sequence fn → f in PHDr

1(M) such that Γ(fn) 6= ∅ for each n. Choose a
point xn ∈ Γ(fn) for each n. Since M is compact, we may assume (by passing
to a subsequence if necessary) that the sequence xn converges to a point x. Since
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AC(x, f) is open (in fact the whole of M) it follows from Proposition 3.2 that
AC(xn, fn) is open for all large n, which is a contradiction.

4. The main result and an outline of its proof. Denote by A the set of all
diffeomorphisms in PHDr

1(M) with the accessibility property. Didier [3] showed that
A is a C1-open subset of PHDr

1(M). Note that the assumption of one dimensional
center is crucial in Didier’s work. It is not known whether accessibility is an open
property when the center is higher dimensional.

In this paper we prove the following result.

Theorem 4.1. A is Cr-dense in PHDr
1(M).

We extend the arguments in [15] where the analogous result is proved for the
subspace of volume preserving diffeomorphisms in PHDr

1(M). The proof in this
paper can also be adapted to the volume preserving case; all of the perturbations
that we need can be made in a volume preserving way. Together with Didier’s
result, Theorem 4.1 and its analogue in [15] establish the conjecture of Pugh and
Shub about the density of accessibility (Conjecture 3) in the case when the center
bundle Ec is one dimensional.

Denote by K(M) the space of compact subsets of M with Hausdorff distance. We
say that a function Φ : PHDr

1(M) → K(M) is upper-semicontinuous with respect
to the Cr-topology if we have x ∈ Φ(f) whenever there are sequences xn → x in M
and fn → f in the Cr-topology such that xn ∈ Φ(fn) for all n.

Theorem 4.2. The map Γ: PHDr
1(M) → K(M) is upper-semicontinuous with

respect to the Cr-topology on PHDr
1(M) for any r ≥ 1.

Proof of Theorem 4.2. We prove upper-semicontinuity of Γ with respect to the C1-
topology, since this implies upper-semicontinuity with respect to the Cr-topology
for r > 1. It is enough to show that if x /∈ Γ(f), then there exist a C1-neighborhood
V of f in PHDr

1(M) and ε > 0 such that y /∈ Γ(g) for all y ∈ B(x, ε) and all g ∈ V .
But this is an immediate consequence of Proposition 3.2 and the definition of Γ.

It is a classical result that the set of continuity points of an upper-semicontinuous
function such as Γ is residual, see e.g. §39.IV.2 in [8]. In particular, it is dense.
Theorem 4.1 now follows immediately from the next result.

Theorem 4.3. If f is a continuity point of Γ, then Γ(f) = ∅.

The rest of this paper is dedicated to proving Theorem 4.3. Here is an outline of
its proof:

In the first place, we show that there is a Cr-dense set of diffeomorphisms of
PHDr

1(M) for which the accessibility class of every periodic point is open, this is,
Γ(g)∩Per(g) = ∅ for a Cr-dense set of g ∈ PHDr

1(M) (Proposition 6.2). Recall that
if a point x is in Γ(g), then W s

g and W u
g are jointly integrable at x. So, in order

to get this dense set we use an unweaving method (see Lemma 6.1), which allows
us to break up the joint integrability of W s and W u on periodic orbits. In this
way, we “open” the accessibility class of a periodic point by means of a Cr-small
perturbation. The unweaving method, in turn, is based on the Keepaway Lemma
(Lemma 5.2) which may be found in Section 5.

On the other hand, in Section 8, we assume there exists a continuity point f
of Γ with Γ(f) 6= ∅. Under this hypothesis, we find an open set N in PHDr

1(M)
such that every h ∈ N has a periodic point with nonopen accessibility class, that is,
Γ(h)∩Per(h) 6= ∅ for every h ∈ N (Lemma 8.2). We therefore obtain a contradiction.
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5. The Keepaway Lemma. Let f be a diffeomorphism preserving a foliation
W tangent to a continuous sub-bundle E of TM . Denote by W(x) the leaf of
W through x and by Wε(x) the set of points that are reached from x by a curve
contained in W(x) of length less than ε.

The following lemma was already proved by Mañé [10, Lemma 5.2.] when the
dimension of E is 1. The general case is presented in [15]. We reproduce the proof
since it is quite short and the lemma is fundamental to this paper.

Given a (small) embedded manifold V transverse to W whose dimension equals
the codimension of E and δ > 0, define

Bδ(V ) =
⋃

y∈V

Wδ(y).

We will always assume that V and δ are chosen so that the discs W5δ(y) for y ∈ V
are pairwise disjoint. There is no need for V to be connected.

Definition 5.1. Let us say that the bundle E is µ-uniformly expanded by Tf if
there is a constant µ > 1 such that ‖Tf−1|E‖ < µ−1 < 1.

Lemma 5.2 (Keepaway Lemma). Assume that the bundle E is µ-uniformly ex-

panded by Tf . Let N > 0 be such that µN > 5 and let V be a small manifold

transverse to W whose dimension is complementary to that of the leaves of W.

Suppose that for some ε > 0 we have

fn(B5ε(V )) ∩ Bε(V ) = ∅ for n = 1, . . . , N .

Then for each x ∈ M there is a point z ∈ Wε(x) such that fn(z) /∈ Bε(V ) for all

n ≥ 1.

Proof. We shall construct a sequence of closed discs D0, D1, D2, . . . starting from

D0 = Wε(x) such that f−1(Dn) ⊂ Dn−1 for all n > 0 and Di ∩ Bε(V ) = ∅ for all
i ≤ n. Then z can be chosen to be any point in

∞⋂

n=0

f−n(Dn).

In fact this intersection will consist of a unique point in our construction.
Observe that µ-uniform expansion of E means that, for any given integer k ≥ 1,

any point p ∈ M and any δ > 0, we have

Wδ(fk(p)) ⊂ Wµkδ(fk(p)) ⊂ fk(Wδ(p)). (5.6)

The construction is as follows:

0. Set D0 = Wε(w0), where w0 = x.
1. If n < N , put Dn = fn(D0).
2. For the N th iterate, we still have fN(D0) ∩ Bε(V ) = ∅. Since µN > 5, we

see from the right half of (5.6) with p = w0, k = N and δ = ε that fN (D0)
contains the round ball of radius 5ε centered at fN (w0), i.e.,

W5ε(fN (w0)) ⊂ fN(D0).

We set DN = W5ε(fN (w0)).

3. For n > N , we continue to set Dn = W5ε(fn(w0)) until we reach n = n1,
where n1 is the first n such that

W5ε(fn1(w0)) ∩ Bε(V ) 6= ∅.
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We get Dn ⊂ f(Dn−1) for N < n < n1 from (5.6) with δ = 5ε, k = 1 and
p = fn−1(w0).

4. For the nth
1 iterate, we cannot take W5ε(fn1(w0)), since this disc intersects

Bε(V ). But there is a point wn1
∈ W4ε(fn1(w0)) such that Wε(wn1

) ⊂
B5ε(V ) \ Bε(V ). Indeed, let yn1

∈ V be the center of the leaf in Bε(V )

that intersects W5ε(fn1(w0)). If yn1
lies outside W2ε(fn1(w0)), then we can

take wn1
= fn1(w0). If yn1

lies inside W2ε(fn1(w0)), then wn1
can be any

point in W5ε(fn1(w0)) whose distance from fn1(w0)) is 4ε.

Choose Dn1
= Wε(wn1

). We get Dn1
⊂ f(Dn1−1) using (5.6) with δ = 5ε,

k = 1 and p = fn1−1(w0) and the fact that Dn1
⊂ W5ε(fn1(w0)).

5. Now, go to Step 1, replace D0 by Dn1
, and continue the construction with the

obvious modifications.

This algorithm gives the desired sequence of discs, and then the point z, proving
the lemma.

The Keepaway Lemma gives us an abundance of nonrecurrent points.

Corollary 1. Suppose f : M → M has an invariant foliation W tangent to a bundle

that is uniformly expanded by Tf . Then the set {z : z /∈ ω(z)} of points that are

nonrecurrent in the future is dense in every leaf of W.

Proof. Let y be a point in M . If y is not periodic, we can choose a transversal V to
W that passes through y such that the hypothesis of the previous lemma is satisfied
for any small enough ε > 0; the lemma then gives us a point z ∈ Wε(y) that is not
forward recurrent. If y is periodic, no other point of W(y) is periodic, so for any
small ε > 0 we can choose a nonperiodic point y′ ∈ Wε/2(y) and then find a point
z ∈ Wε/2(y

′) that is nonrecurrent in the future.

6. Unweaving. The results of the previous section will allow us to break up the
joint integrability of Es and Eu along a minimal set. In [15, Lemma A.4.3] it is
shown that if we have an f -periodic orbit K, then we can make a Cr-perturbation
such that g = f on K and there is no joint integrability of Es and Eu along K.
Here we extend this result to the case when K is a minimal set.

Lemma 6.1. Let K ⊂ Γ(f) be a minimal set for a diffeomorphism f ∈ PHD r
1(M).

Then we can find g ∈ PHDr
1(M) as close to f in the Cr-topology as we wish such

that f |K = g|K and AC(x, g) is open for some point x ∈ K.

Proof. We construct g by perturbing f in the complement of the closed f -invariant
set K. This ensures that K remains invariant under g.

The construction is an application of the Brin quadrilateral argument. We choose
a closed us-quadrilateral with corners x, y, z, w such that x ∈ K and y /∈ K, as in
Figure 1. The quadrilateral is constructed so that there are radii ρ, ρ1, ρ2, ρ3, ρ4 > 0
such that B(y, ρ) ∩ K = ∅ and:

1. w ∈ Ws
ρ1

(y) and fn(Ws
ρ1

(y)) ∩ B(y, ρ) = ∅ for any n ≥ 1;

2. y ∈ Wu
ρ2

(x) and f−n(Wu
ρ2

(x)) ∩ B(y, ρ) = ∅ for any n ≥ 1;

3. z ∈ Ws
ρ3

(x) and fn(Ws
ρ3

(x)) ∩ B(y, ρ) = ∅ for any n ≥ 0;

4. w ∈ Wu
ρ4

(z) and f−n(Wu
ρ4

(z)) ∩ B(y, ρ) = ∅ for any n ≥ 0.

A perturbation that changes f only inside B(y, ρ) leaves x, z and w joined by a
us-path. It is easy to break the us-connection from x to w through y by composing
f with a “push” in the central direction that is restricted to B(y, ρ) (see Figure 2).
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In order to create the desired quadrilateral, we first choose x0 ∈ K. We can then
apply Corollary 1 with W = Wu to find a point y ∈ Wu

loc(x0) that is not forward
recurrent and is as close to x0 as we wish. We make sure that y ∈ Wu

β (x0), where β
is very small compared to the radius R of the local stable and unstable manifolds.
Since y is not forward recurrent, it does not belong to the minimal set K. Choose
δ > 0 small enough so that K ∩ B(y, δ) = ∅ and fn(y) /∈ B(y, δ) for n ≥ 1.

We now choose the point x. It must belong to Wu
loc(y)∩K and have the property

that no other point of Wu
loc(y) ∩ K is closer to y. Note that fn(x) /∈ B(y, δ) for all

n. This is because fn(B(y, δ)) ∩ K = ∅ for all n.
We now apply Corollary 1 with f replaced by f−1 to choose a point z ∈ Ws

loc(x)
very close to x that is not backward recurrent. We choose V to be a disc transverse
to Ws that contains Wu

loc(x) and ε � δ small enough so that the stable discs
of radius 5ε centered at points of V are pairwise disjoint. We may assume that
V was chosen so that Bε(V ) contains Wu

2β(y′) for all points y′ close enough to y.

Lemma 5.2 gives us a point z ∈ Ws
ε (x) whose backward orbit under f avoids Bε(V ).

Since x ∈ K ⊂ Γ(f), x is a point of joint integrability of Es ⊕Eu, and the points
y and z are in the immersed codimension one submanifold Γ(x, f). Hence Ws

loc(y)
and Wu

loc(z) intersect in a unique point w. We may assume that ε was chosen small
enough so that w ∈ Wu

2β(z). We now verify properties (1)–(4) above.

Let ρ3 be the distance in Ws
loc(x) from x to z. Then ρ3 ≤ ε � δ. The stable man-

ifold Ws
loc(x) contracts under forward iteration of f , so we have d(fn(x), fn(z)) � δ

for all n ≥ 0. Since fn(x) /∈ B(y, δ) for n ≥ 0, we see that (3) holds as long as
ρ < δ/2.

The proof of (1) is similar. Let ρ1 be the distance in Ws
loc(y) from y to w. We

may assume that ε was chosen small enough so that ρ1 � δ. Since iteration of f
contracts Ws

loc(y) and fn(y) /∈ B(y, δ) for n ≥ 1, we see as before that (1) will hold
if ρ < δ/2.

To prove (4), let ρ4 be the distance in Wu
loc(z) from z to w. Then ρ4 < 2β. Since

Wu
loc(z) contracts under iteration of f−1, we see from the choices made above that

(4) will hold if ρ is small enough.
Finally let ρ2 be the distance in Wu

loc(x) from x to y. Then β ≥ ρ2 > δ. Iteration
of f−1 contracts Wu

ρ2
(x). Choose n0 so that the diameter of f−n(Wu

ρ2
(x)) is less

than δ/2 for n ≥ n0. Then f−n(Wu
ρ2

(x)) ∩ Bδ/2(y) = ∅ for n ≥ n0, since otherwise

f−n(x) would be a point of K in Bδ(y).

On the other hand, there is ρ′
2 < ρ such that such that f−n(Wu

ρ2
(x)) ⊂ Wu

ρ′

2

(y)

for all n ≥ 1. This means that f−n(Wu
ρ2

(x))∩Wu
ρ2−ρ′

2

(y) = ∅, for otherwise f−n(x)

would be a point of K∩Wu
loc(y) closer to y than x. It now follows from a compactness

argument that we can choose a positive ρ < δ/2 such that f−n(Wu
ρ2

(x))∩Bρ(y) = ∅
for 1 ≤ n ≤ n0. Property (2) holds for any such ρ > 0.

Let us consider a Cr-perturbation of f of the form g = f ◦ h, where supp(h) ⊂
B(y, ρ) see Figure 2. Recall that B(y, ρ) ∩ K = ∅, so this implies that f = g on K.
We produce a push so that

W s
g,loc(w) ∩ W u

f,loc(y) = ∅ (6.7)

See Figure 2. Now, Properties (1)–(4) above imply that Wu
g,loc(y) = Wu

f,loc(y),

Ws
g,loc(z) = Ws

f,loc(z) and Wu
g,loc(z) = Ws

g,loc(z), so we do not change the fact that
there is a us-path from x to z to w, but we do change the local stable disc of w.
Now, we have x ∈ Ws

g,ε(z) and w ∈ Wu
g,ε(z). If z belonged to Γ(g), we would have
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PSfrag replacements

x

y z

w

Wu
g,loc(z)

Ws
g,loc(w)

Ws
g,loc(z)Wu

f,loc(y)

Figure 2. Lemma 6.1: Opening the accessibility class of x

Ws
g,loc(w)∩Wu

g,loc(x) 6= ∅, due to joint integrability. But this this would contradict

(6.7), since Wu
g,loc(y) = Wu

f,loc(y). Hence z /∈ Γ(g) and AC(z, g) is open. But

AC(z, g) = AC(x, g) since z ∈ Ws
ε (x). Thus AC(x, g) is open, as desired.

Proposition 6.2. PHDr
1(M) contains a Cr-dense set of diffeomorphisms with the

property that the accessibility class of every periodic point is open.

Proof. For k ≥ 1 let Uk denote the set of all diffeomorphisms in PHDr
1(M) with

the property that the periodic points of period k are all hyperbolic. Each Uk is
open and Cr-dense by the Kupka-Smale theorem. The number of periodic points
of period k is finite and constant on each component of Uk. It is immediate from
the previous lemma that Uk has a Cr-dense subset U ′

k such that the accessibility
class of every periodic point with period k for every diffeomorphism in U ′

k is open.
The set U ′

k is C1-open, by Proposition 3.2. The diffeomorphisms in
⋂

k≥1 U
′
k have

the property that the accessibility class of every period point is open. This set is
residual by Baire’s theorem, in particular, it is dense.

7. Preliminary lemmas. Henceforth we consider a fixed diffeomorphism f ∈
PHDr

1(M). Here we present two lemmas which will be used in the next section
to show that if f is a continuity point of Γ, then Γ(f) = ∅. The lemmas apply to
all diffeomorphisms close enough to f in the Cr-topology.

The first lemma is an application of the Anosov Closing Lemma. If h ∈ PHDr
1(M)

and x ∈ Γ(h), let us denote by Γρ(x, h) the set of points in the lamina Γ(x, h)
that can be reached from x by a C1-path of length less than ρ. It follows from
Theorem 4.2 and the continuous dependence of the stable and unstable bundles on
the diffeomorphism that if hn → h in the C1 topology on PHDr

1(M), xn → x in M

and xn ∈ Γρ(xn, hn) for each n, then x ∈ Γ(h) and Γρ(xn, hn) → Γρ(x, h) in the
Hausdorff topology.

Lemma 7.1. There are a neighborhood N1 of f in PHDr
1(M), an integer n0 > 0,

and a radius ρ > 0 such that the following property holds for any h ∈ N1: If there

is a point y ∈ Γ(h) with hn(y) ∈ Γρ(y, h) for some n ≥ n0, then there is a periodic

point of h in Γ(y, h) with period n.
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Proof. This follows from the Anosov Closing Lemma and the remarks preceding the
lemma.

We define a central curve to be a C1-curve with unit speed that is tangent to
Ec at all times. The following lemma states that if a (short) central curve σ0 hits
the disc Γρ(y, h), then any central curve close enough to σ0 also hits Γρ(y, h). The
length of the central curves and the proximity of their origins are uniform over a
neighborhood of f in PHDr

1(M). The lemma involves an orientation for the one
dimensional bundle Ec. This bundle may not be globally orientable, but all that is
needed in the lemma is a local orientation in the neighborhood of a point.

Lemma 7.2. For each ρ > 0, there are a neighborhood N2 of f in PHDr
1(M), and

∆ > 0 such that the following holds for any h in N2: Suppose that x0 /∈ Γ(h) and

σ0 : [0, ∆] → M is a central curve with σ0(0) = x0 and y0 = σ0(t0) ∈ Γ(h) for some

t0 ∈ (0, ∆]. Suppose σ : [0, 2∆] → M is a central curve such that d(σ(0), x0) <
d(x, Γ(h)) and σ̇(0) is oriented in the same direction as σ̇0(0). Then σ intersects

Γρ(y0, h) in a unique point y. Moreover if y0 is the first point of σ0 that is in Γ(h),
then y is the first point of σ that is in Γ(h). See Figure 3.

Proof. This is a consequence of the continuity of h 7→ Ec
h, Es

h, Eu
h and of the

transversality of central curves and the laminae of the set Γ(h).

PSfrag replacements

Γ(h)

Γ(h)

B(x0, δ)
x0

y0y

σ0
σ

Γρ(y0, h)

Figure 3. Lemma 7.2: Central curves hitting Γ(y, h)

8. Creating a periodic point with non open accessibility class. This section
is devoted to proving Theorem 4.3. What we wish to show is that if f ∈ PHDr

1(M)
is a continuity point of the function Γ : PHDr

1(M) → K(M), then we have Γ(f) = ∅.
In order to do this, we assume that Γ(f) 6= ∅, and show that in that case there is
an open set of diffeomorphisms with a periodic point whose accessibility class is not
open (Lemma 8.2). This contradicts Proposition 6.2 above.

By continuity of Γ at f there is a neighborhood N3 of f in the Cr-topology on
PHDr

1(M) such that for any g ∈ N3, we have

sup{dist(x, Γ(g)) : x ∈ Γ(f)} < ∆,

where ∆ is the constant of Lemma 7.2.
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Now, the set Γ(f) is closed and invariant, hence it contains a minimal set K.
Applying Lemma 6.1, we can choose g in N1 ∩ N2 ∩ N3, where N1 and N2 are the
neighborhoods of f defined in the previous section, such that AC(x0, g) is open for
some x0 ∈ K ⊂ Γ(f). Recall that dist(x0, Γ(g)) < ∆.

Let n0, ρ and ∆ be the numbers defined in Lemma 7.2 and Lemma 7.1, and
choose an orientation for the one dimensional bundle Ec on the ball B(x0, ∆).

Lemma 8.1. There is n > n0 such that gn(x0) ∈ B(x0, δ/2) and Tgn(x0) preserves

orientation of Ec.

Proof. The point x0 is recurrent because x0 ∈ K and f |K = g|K . Hence there is an
integer n1 > n0 such that gn1(x0) ∈ B(x0, δ/2). If Tgn1(x0) preserves orientation,
we can take n = n1.

If Tgn1(x0) reverses orientation, we then pick n2 > n0 such that gn2(x0) is in
B(x0, δ/2) and is close enough to x0 so that gn1(gn2(x0)) ∈ B(x0, δ/2). If Tgn2(x0)
preserves orientation, we can take n = n2; if not we can take n = n1 + n2. Figure
4 illustrates the case in which n = n1 + n2.

PSfrag replacements

Γ(h)

gn1(x0)
x0

gn2(x0)

hn(x0) B(x0, δ)

σ

y0hn(y0)

Figure 4. Lemmas 8.1 and 8.2

Lemma 8.2. There is a Cr-open neighborhood N of g, such any h ∈ N has a

periodic point in Γ(h).

Proof. Any h close enough to g in the Cr-topology satisfies the following properties:

1. h ∈ N1 ∩ N2 ∩ N3.
2. B(x0, δ) ⊂ AC(x0, h) for some δ < ∆.
3. Γ(h) ∩ B(x0, ∆) 6= ∅.
4. There is n > n0 such that hn(x0) ∈ B(x0, δ) and Thn preserves the orientation

of Ec near x0.

The first property holds because g ∈ N1 ∩N2 ∩N3 and this set is open. The second
follows from Proposition 3.2. The third holds is a consequence of the choice of ∆
and the fact that h ∈ N3. The fourth follows from Lemma 8.1.

We now show that any diffeomorphism h satisfying these three properties has a
periodic point in Γ(h). Let σ be a central arc connecting x0 and Γ(h). Choose a
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point y0 ∈ σ ∩ Γ(h) such that σ contains no point of Γ(h) except y0, see Lemma
7.2. Choose n > n0 such that hn(x0) ∈ B(x0, δ) and Thn(x0) preserves orientation
of Ec.

Then the central arc hn(σ) connects hn(x0) to a point y ∈ Γρ(y0, h). Observe
that there are no points of Γ(h) on hn(σ) between hn(x0) and y. Since the set Γ(h)
is invariant, the image under hn of the point y0 where the curve σ first hits Γ(h)
must be the point where hn(σ) first hits Γ(h). Hence hn(y0) = y. We can now
apply Lemma 7.1 to obtain a periodic point of h in Γ(y0, h).

This contradicts Proposition 6.2, so for a continuity point f of Γ we must have
Γ(f) = ∅, concluding the proof of Theorem 4.3.

Acknowledgements. We thank the referees for helpful comments, which improved
the paper.
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