A SIMPLE SPECIAL CASE OF SHARKOVSKII'S THEOREM
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In this note I C R is a bounded closed interval and f : I — I will be a continuous map;
f™ denotes the n-fold composition of f with itself. A point x € I is a periodic point for f
with period p if fP(x) = x and has least period p if in addition f¥(z) #zfor 1 <k <p-1.
The note presents a short proof of the following result.

Proposition. If f has a periodic point that is not fized, then f has a periodic point of
least period 2.

This is a special case of Sharkovskii’s famous theorem, which states that if f has a
periodic point with least period p and ¢ comes after p in the ordering

3,5, 7 ...,2-3,2-5,2-7,...,22.3,22.5, 22.7, ..., 23 22 2 1,

then f has a periodic point with least period gq.

The proposition corresponds to the fact that 2 is the penultimate number in this or-
dering. The other simple special case of Sharkovskii’s theorem, namely that an orbit of
least period 3 forces the existence of an orbit of least period ¢ for any ¢, corresponds to
the fact that 3 is the first number in the ordering. It was presented in this journal by Li
and Yorke [6], who rediscovered it independently of Sharkovskii’s work.

According to the history given in [1], the proposition was Sharkovskii’s first step towards
his theorem. Coppel [3] proved in the 1950’s that f™(z) converges as n — oc for all z € T
if and only if f has no periodic points with least period 2. In 1960 Sharkovskii [8] reproved
Coppel’s result and observed that it implies the proposition — because f™(x) does not
converge if z is a periodic point whose least period is 2 or more. Sharkovskii completed
the proof of his theorem in two subsequent papers [9, 10].

Proof of the Proposition. We prove that if f has a periodic point with least period p > 2,
then f has a periodic point that is not fixed and has least period less than p. A descending
induction then shows that there is a periodic point with least period 2.

Let 1 < 23 < --- < x, be the points on an orbit of least period p. We consider the
directed graph with vertices 1,...,p — 1 in which vertex % is joined to vertex j if and only
if f([zi,zix1]) D [zj,2j41]. BEach vertex ¢ must be joined to at least one vertex j # 4,
because otherwise f would have to permute the endpoints of [x;, 2;11], which is impossible
since these points lie on a periodic orbit for f with least period p > 3.

Starting at the vertex 1, choose an edge that joins 1 to a different vertex. Then we join
this vertex to a different vertex, and so on. The path can be extended indefinitely with
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each edge joining two different vertices. After at most p — 1 vertices it must return to a
previously visited vertex. This gives us a loop i1,...,1, that passes through at least 2 and
at most p — 1 vertices.

Set I, = [x;,,x4,+1) for k = 1,...,q. Then f(Ix) D Ix4q for k =1,...,¢ — 1 and
f(Iy) D I. There is a closed subinterval I; C I; such that f(I{) = I. In order to see
this, look at the intersection of the graph of f with the rectangle I; x I5. At least one
component of this intersection must join the top and bottom edges of I; X I5. The interval
I7 is the projection to I; of such a component.

Since fI(I]) = f1Y(f(I})) = f971(I5) D I, D I3, it follows from the intermediate value
theorem that f? has a fixed point z in I]. Clearly z is a periodic point for f whose least
period is a factor of ¢ and therefore less than p.

We now show that z is not a fixed point for f. Since z € I] C I; and f(z) € f(I]) = I3,
we can have z = f(z) only if z € I; N I,. But I; and Iy have disjoint interiors and their
endpoints belong to an orbit with least period p > 1. O

The modern proof of the full Sharkovskii theorem is more intricate than the above
argument, but does not require any more sophisticated tools. It was first given in [2] and
can be found in many texts on dynamical systems, for example [1, 4, 5, 7]. One of the
steps is a special case of our proposition, namely that f has a periodic point with least
period 2 if f has a periodic point with even least period. The argument presented here is
simpler than the standard proof of this step.
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