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Abstract. We present some results and open problems about
stable ergodicity of partially hyperbolic diffeomorphisms with non-
zero Lyapunov exponents. The main tool is local ergodicity theory
for non-uniformly hyperbolic systems.
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1. Introduction

1.1. Consider a C2 diffeomorphism f of a compact smooth Riemann-
ian manifold M preserving a smooth probability measure µ. Assume
that f has nonzero Lyapunov exponents on an invariant set L of posi-
tive measure. It is well-known (see [P]) that the ergodic components of
f |L are all of positive measure, and hence there can be only contably
many such components.

However, not much is known about the topological structure of the
set L nor about the topological structure of ergodic components. In
particular, one may wonder whether ergodic components (and hence
the set L) are open (mod 0) — the phenomenon known as local er-
godicity. Some criteria for local ergodicity were obtained in [P, KB]
while some basic ideas go back to pioneering work of D. Ruelle [Ru] and
Ya. Sinai [Si]. In [DHP], the authors constructed an example of a vol-
ume preserving diffeomorphism with nonzero Lyapunov exponents and
a countable (not finite) number of ergodic components which are all
open (mod 0). Note that if the ergodic components are open (mod 0)
and f is topologically transitive then f |L is ergodic.

In this connection the following two problems are of interest:
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Problem 1. Is there a volume preserving diffeomorphism with a.e.
nonzero Lyapunov exponents such that some (or even all) of the ergodic
components with positive measure are not open (mod 0)?

Problem 2. Is there a volume preserving diffeomorphism which has
nonzero Lyapunov exponents on an open (mod 0) and dense set U
which has positive but not full measure? Is there a volume preserv-
ing diffeomorphism with the above property such that f |U is ergodic?

1.2. Systems with nonzero Lyapunov exponents are nonuniformly hy-
perbolic. In this paper we deal with the situation when hyperbolicity is
uniform throughout the manifold in some but not all directions. More
precisely, we assume that f is partially hyperbolic, i.e., the tangent
bundle TM can be split into three df -invariant continuous subbundles
(distributions)

TM = Es ⊕ Ec ⊕ Eu.

The differential df contracts uniformly over x ∈ M along the strongly
stable subspace Es(x), it expands uniformly along the strongly unsta-
ble subspace Eu(x), and it can act either as nonuniform contraction or
expansion with weaker rates along the central direction Ec(x); see the
next section for more details. Partially hyperbolic systems were first
studied in the 1970’s by Brin, Pesin, Hirsch, Pugh and Shub, see e.g.
[BrP1, BrP2, HPS1, HPS2]. The definition given here was introduced
in [BrP1]. The presence of uniformly contracting and expanding direc-
tions is crucial in studying the global behavior and ergodic properties
of these systems.

1.3. The distributions Es(x) and Eu(x) are integrable and their in-
tegrable manifolds form two transversal foliations of M , the strongly
stable and strongly unstable foliations of M , which we denote by W s

and W u respectively. For every x ∈ M the leaves W s(x) and W u(x)
of the foliations containing x are smooth immersed submanifolds in M
called the strongly stable and strongly unstable global manifolds at x.
If y ∈ W s(x), then d(fn(x), fn(y)) → 0 with an exponential rate as
n→∞, and if y ∈ W u(x), then d(fn(x), fn(y))→ 0 with an exponen-
tial rate as n→ −∞.

1.4. We say that a partially hyperbolic diffeomorphism with invariant
measure µ has negative central exponents (on a set A) if for µ-a.e. x (in
the set A) we have χ(x, v) < 0 for all nonzero v ∈ Ec(v), where χ(x, v)
is the Lyapunov exponent (defined in the next section). The definition
of positive central exponents is analogous. When f has negative central
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exponents on A, the strongly unstable subspace Eu(x) includes all of
the expanding directions at x for a.e. x ∈ A.

By exploiting continuity and the absolute continuity property of the
strongly unstable foliation one can establish the following result.

Theorem 1. Let f be a C2 diffeomorphism of a compact smooth Rie-
mannian manifold M preserving a smooth measure µ. Assume that
there exists an invariant subset A ⊂M with µ(A) > 0 on which f has
negative central exponents. Then every ergodic component of f |A is
open (mod 0) and so is the set A.

If the map f is topologically transitive, then A is dense and f |A is
ergodic.

1.5. Apparently topological transitivity does not guarantee that the
set A is of full measure and one needs a stronger requirement, which
we now discuss.

Two points p, q ∈ M are called accessible if there are points p =
z0, z1, . . . , z`−1, z` = q, zi ∈M such that zi ∈ W u(zi−1) or zi ∈ W s(zi−1)
for i = 1, . . . , `. The collection of points z0, z1, . . . , z` is called a us-path
connecting p and q and is denoted by [p, q] = [z0, z1, . . . , z`]. Accessibil-
ity is an equivalence relation. The diffeomorphism f is said to have the
accessibility property if the partition into accessibility classes is trivial
(i.e. any two points p, q ∈ M are accessible) and to have the essential
accessibility property if the partition into accessibility classes is ergodic
(i.e. a measurable union of equivalence classes must have zero or full
measure).

It was shown in [DP] that if a.e. pair of points in M is joined by
a us-path, then the orbit of a.e. point is dense in M . We shall see
that the proof actually requires only essential accessibility. This and
Theorem 1 imply the following result.

Theorem 2. Let f be a C2 partially hyperbolic diffeomorphism of a
compact smooth Riemannian manifold M preserving a smooth mea-
sure µ. Assume that f has negative central exponents on an invariant
set A of positive measure and is essentially accessible. Then f has neg-
ative central exponents on the whole of M , the set A has full measure,
f has nonzero Lyapunov exponents a.e., and f is ergodic.

1.6. The proofs of Theorems 1 and 2 are based on methods developed
in [P, PuSh1]. In proving Theorem 2 we also use some ideas from [BV]
to make a crucial step: once a partially hyperbolic diffeomorphism
has negative Lyapunov exponents in the central direction on a set of
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positive measure, then this set indeed has full measure. This phenom-
enon has been observed in other situations, for example billiards and
geodesic flows on negatively curved manifolds.

1.7. Accessibility plays a crucial role in stable ergodicity theory. A
diffeomorphism f is called stably ergodic if it preserves a smooth mea-
sure µ and there exists a C2-open neighborhood U of f in Diff2(M)
such that any diffeomorphism g ∈ U which preserves µ is ergodic with
respect to µ. Volume preserving Anosov diffeomorphisms are stably er-
godic. Recently Grayson, Pugh and Shub [GPS] proved that the time
one map of the geodesic flow of a surface of constant negative curva-
ture is stably ergodic. This result has been generalized several times
[W, PuSh3, PuSh4, BW]. These papers give conditions under which a
partially hyperbolic diffeomorphism f is stably ergodic (with respect
to a smooth measure on M). Among these conditions, the most crucial
one is stable accessibility. A diffeomorphism f is said to be stably ac-
cessible if there exists a C1-open neighborhood U of f in Diff2(M) such
that any diffeomorphism g ∈ U is accessible. Pugh and Shub [PuSh2]
have formulated two conjectures relating accessibility and stable ergod-
icity.

Conjecture 1. Stably ergodic diffeomorphisms form an open and dense
set in the space of partially hyperbolic diffeomorphisms.

Conjecture 2. A volume preserving partially hyperbolic diffeomor-
phism with the essential accessibility property is ergodic. In particular
a volume preserving partially hyperbolic diffeomorphism that is stably
accessible should be stably ergodic.

In [PuSh4], Pugh and Shub proved Conjecture 2 under some addi-
tional assumptions of which the most restrictive one is center-bunching,
that is the norm ‖df±1|Ec(x)‖ should be close to 1 uniformly over x.
A natural way to relax this condition is to consider its nonuniform ver-
sion. That is, to consider the cases in which the Lyapunov exponents in
the central direction are: 1) all negative (or all positive), 2) all nonzero
(i.e., some negative and some positive), 3) all zero, or 4) not all nonzero
(i.e. some zero). We think that splitting the study of stable ergodicity
of partially hyperbolic diffeomorphisms into these four cases may be re-
warding. In fact, the approach of Pugh and Shub gives no information
on the quantitative properties of the diffeomorphisms they consider
and quite different tools are currently used to obtain some quantitative
information on the system in the non-uniformly hyperbolic and zero
exponent cases (see [D1, D2]).



PARTIAL HYPERBOLICITY, LYAPUNOV EXPONENTS AND STABILITY 5

In this paper we study the first of the above cases. Surprisingly, the
diffeomorphisms we consider are stably ergodic under the much weaker
assumption that only the unperturbed map is accessible. In other words
no information about the perturbation is required to establish stable
ergodicity.

Theorem 3. Let f be a C2 partially hyperbolic diffeomorphism of a
compact smooth Riemannian manifold M preserving a smooth measure
µ. Assume that f is accessible and has negative central exponents on a
set of positive measure. Then f is stably ergodic.

We also prove a related result.

Theorem 4. Let f be a C2 partially hyperbolic diffeomorphism of a
compact smooth Riemannian manifold M preserving a smooth measure
µ. Assume that f is accessible and∫

M
ln ‖df |Ec

f (x)‖ dµ(x) < 0.

Then f is stably ergodic.

Ideas from [ABV] about hyperbolic times are used in the proof of
these theorems.

1.8. We now consider the case when f is partially hyperbolic and has
positive central exponents. Note that the inverse map is partially hy-
perbolic, preserves the measure µ, and has negative central exponents.
Applying the above results to the inverse map we obtain that Theo-
rems 1, 2, and 3 hold for f . Theorem 4 also holds if the inequality is
replaced by ∫

M
ln ‖df−1|Ec

f (x)‖−1 dµ(x) > 0.

1.9. In view of Theorem 3 the following problems are of interest.

Problem 3. Is Conjecture 2 true if all Lyapunov exponents of f are
non-zero?

Problem 4. Is Conjecture 2 true if all Lyapunov exponents of f are
zero?

1.10. An important example of a diffeomorphism satisfying the condi-
tion of Theorem 3 was constructed in [SW]. It is a small perturbation
of a circle extension of an Anosov diffeomorphism. Further examples,
including modifications of Anosov diffeomorphisms and time-one maps
of Anosov flow can be found in [BV, D1]. In this connection we propose
the following problem.
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Problem 5. Let f be a stably ergodic diffeomorphism. Can it be ap-
proximated by a diffeomorphism having (stably) non-zero Lyapunov ex-
ponents?

See [Mñ, BG-MV] for some evidence that this might be true.

1.11. Some of the methods presented here were used in [DP] to show
that any manifold carries a Bernoulli diffeomorphism with non-zero
Lyapunov exponents. The following problem arises naturally.

Problem 6. Which manifolds carry an open set of Ck diffeomorphisms
with non-zero Lyapunov exponents?

For k = 1, it follows from a result of Mane [Mñ, B] that T2 is the
only surface with this property. Thus the answer to this question is
not always positive. It seems likely (see Problem 5) that the answer is
positive if the manifold admits a partially hyperbolic diffeomorphism,
but even this is unknown.

2. Preliminaries

See [KH, BP, BPSW] for more details.
A diffeomorphism f of a compact smooth Riemannian manifold M

is called (uniformly) partially hyperbolic if for every x ∈M the tangent
space at x admits an invariant splitting

TxM = Es(x)⊕ Ec(x)⊕ Eu(x)

into strongly stable Es(x) = Es
f (x), central Ec(x) = Ec

f (x), and strongly
unstable Eu(x) = Eu

f (x) subspaces. This means that there exist num-
bers

0 < λs < λ′c ≤ 1 ≤ λ′′c < λu

such that for every x ∈M ,

v ∈ Es(x) ⇒ ‖dxf(v)‖ ≤ λs‖v‖,
v ∈ Ec(x) ⇒ λ′c ‖v‖ ≤ ‖dxf(v)‖ ≤ λ′′c ‖v‖,
v ∈ Eu(x) ⇒ λu‖v‖ ≤ ‖dxf(v)‖.

Given x ∈M , one can construct strongly stable and strongly unstable
local manifolds at x. We denote them by V s(x) and V u(x) respectively.
They can be characterized as follows: there is a neighborhood U(x) of
the point x such that

V u(x) = {y ∈ U(x) : d(f−n(x), f−n(y)) ≤ Cλ−nu d(x, y) for all n ≥ 0},
and

V s(x) = {y ∈ U(x) : d(fn(x), fn(y) ≤ Cλns d(x, y) for all n ≥ 0}.
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Let us stress that the sizes of the strongly stable and strongly unstable
local manifolds are uniformly bounded from below.

We define the strongly stable and strongly unstable global manifolds
at x by

W u(x) =
⋃
n≥0

fn(V u(f−n(x))),

W s(x) =
⋃
n≥0

f−n(V s(fn(x))).

Recall that a partition ξ of M is called a foliation if there exist δ > 0,
q > 0, and an integer k > 0 such that for each x ∈M :

(1) There exists a smooth immersed k-dimensional manifold W (x)
containing x for which ξ(x) = W (x) where ξ(x) is the element
of the partition ξ containing x. (The manifold W (x) is called
the (global) leaf of the foliation at x; the connected component
of the intersection W (x) ∩B(x, δ) that contains x is called the
local leaf at x and is denoted by V (x); the number δ is called
the size of V (x).)

(2) There exists a continuous map φx : L ∩ B(x, q) → C1(D,M)
(where D is the unit ball) such that V (y) is the image of the
map φx(y) : D →M for each y ∈ B(x, q).

The strongly stable and strongly unstable global manifolds form two
transversal foliations of M .

We denote by

χ(x, v) = lim sup
n→∞

1

n
log ‖dfnv‖

the Lyapunov exponent of a nonzero vector v at x ∈ M and by χif (x)
the values of the Lyapunov exponents at x. Note that the functions
χif (x) are invariant. There exists a subset Λ ⊂ M of full measure
which consists of Lyapunov regular points (see [BP], Sections 1.5 and
2.1). Among other things Lyapunov regularity of x means that

χ(x, v) = lim
n→±∞

1

n
log ‖dfnv‖

for all nonzero v ∈ TxM .
An invariant measure µ is called hyperbolic on a set L if µ(L) > 0 and

µ-a.e. x ∈ L has the property that χ(x, v) 6= 0 for all nonzero v ∈ TxM .
By neglecting a set of measure 0 we may assume that L ⊂ Λ. For every
x ∈ L the tangent space at x admits an invariant splitting

TxM = E−f (x)⊕ E+
f (x)
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into stable and unstable subspaces. Let λ−(x) = eχ−(x) and λ+(x) =
eχ+(x) where χ−(x) and χ+(x) are respectively the largest negative Lya-
punov exponent and the smallest positive Lyapunov exponent at x. For
each ε > 0 there are Borel functions C(x) > 0 and K(x) > 0 such that

(1) for each n > 0,

‖dfnv‖ ≤ C(x)λ−(x)neεn‖v‖, v ∈ E−(x),

‖df−nv‖ ≤ C(x)λ+(x)−ne−εn‖v‖, v ∈ E+(x);

(2) the angle

∠(E−(x), E+(x)) ≥ K(x);

(3) for each m ∈ Z,

C(fm(x)) ≤ C(x)eε|m|, K(fm(x)) ≥ K(x)e−ε|m|.

For every x ∈ L one can construct stable and unstable local manifolds
V −(x) and V +(x). They can be characterized as follows: there is a
neighborhood U(x) of the point x such that V +(x) is the set of all
y ∈ U(x) for which

d(f−n(x), f−n(y)) ≤ C(x)λ+(x)−ne−εn d(x, y) for all n ≥ 0,

while V −(x) is the set of all y ∈ U(x) for which

d(fn(x), fn(y) ≤ C(x)λ−(x)neεn d(x, y) for all n ≥ 0.

The manifolds V −(x) and V +(x) are tangent at x to E−(x) and E+(x)
respectively. If f is partially hyperbolic, V +(x) ⊃ V u(x) and V −(x) ⊃
V s(x).

The sizes of the stable and unstable local manifolds vary with x in a
measurable way. They are not always uniformly bounded from below,
in contrast to the sizes of the strongly stable and strongly unstable local
manifolds. If δ(x) is the size of a stable or unstable local manifold at
x, then for every m ∈ Z

δ(fm(x)) ≥ δ(x)e−ε|m|.

It is known that the function δ(x) depends only on C(x) and K(x); in
particular, δ(x) is uniformly bounded from below if C(x) is uniformly
bounded from above and K(x) is uniformly bounded from below.

The families of these local manifolds possess the absolute continuity
property. This means the following. Denote by mu(x) the Riemannian
volume on V u(x) induced by the Riemannian metric on V u(x) as a
smooth submanifold in M . Given x ∈ M and sufficiently small r > 0,
consider the partition ξu of B(x, r) (the ball centered at x of radius r)
by strongly unstable local manifolds V u(y) with y ∈ B(x, r). Let µu be
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the conditional measure generated by µ on V u(y), y ∈ B(x, r). Then
the measures mu(y) and µu(y) are equivalent for a.e. y ∈ B(x, r).

The families of local manifolds V s(x), V +(x) and V −(x) also possess
the absolute continuity property.

In this paper we deal with the case where f is partially hyperbolic
and has negative central Lyapunov exponents at a set of points x of
positive or full measure (with respect to an invariant measure µ on M).
For such x we have E−(x) = Es(x) ⊕ Ec(x). In particular, V +(x) =
V u(x). In this case, we will use the notation V cs(x) for the stable local
manifold V −(x) and we define the stable global manifold

W cs(x) =
⋃
n≥0

f−n(V cs(fn(x))).

3. Proofs

3.1. Proof of Theorem 1. Let us call a point z Birkhoff regular if
the Birkhoff averages

ϕ−(z) = lim
n→−∞

1

n

n−1∑
k=0

ϕ(fk(z)) and ϕ+(z) = lim
n→+∞

1

n

n−1∑
k=0

ϕ(fk(z))

are defined and equal for every continuous function ϕ on M . Applying
Birkhoff’s ergodic theorem to a countable dense subset of the contin-
uous functions shows that the set B of Birkhoff regular points has full
measure in M with respect to µ. It follows from the absolute continu-
ity of the stable local manifolds V −(x) that µ-a.e. x ∈ A is Lyapunov
regular and has the property that m−-a.e. z ∈ V −(x) belongs to B,
where m− is the Riemannian volume on V −.

We shall show that any point x ∈ A with the above properties has a
neighborhood in which the forward Birkhoff average ϕ+ is a.e. constant
for any continuous function ϕ. Since f has negative central exponents
at x, we have V −(x) = V cs(x). The disc V cs(x) is transverse to the
strong unstable foliation. This and the uniform size of the strongly
unstable local manifolds V u(z) ensure that

N(x) =
⋃

z∈V cs(x)

V u(z)

is a neighbourhood of x. The full measure of B in V cs(x) = V −(x) and
the absolute continuity of the strongly unstable local manifolds ensure
that

N ′(x) =
⋃

z∈V cs(x)∩B
V u(z)

has full measure in N(x).
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We now use the Hopf argument to show that ϕ+ is constant on N ′(x)
for any continuous function ϕ. Let y ∈ N ′(x). Then y ∈ V u(z) for a
point z ∈ V −(x) ∩ B. Since forward Birkhoff averages of continuous
functions are constant on strongly unstable manifolds and backwards
Birkhoff averages of continuous functions are constant on stable mani-
folds, we obtain

ϕ+(y) = ϕ+(z) = ϕ−(z) = ϕ−(x).

Thus ϕ+ is constant on N ′(x) as desired. �

3.2. Proof of Theorem 4. Let Diffrµ(M) be the space of Cr diffeo-
morphisms of M that preserve the smooth measure µ.

Lemma 1. There are a neighborhood U of f in Diff1
µ(M) and a con-

stant α > 0 with the following property. For any g ∈ U there is a subset
Ag ⊂M with µ(Ag) > 0 such that for every x ∈ Ag,

lim sup
n→∞

1

n

n−1∑
j=0

‖dg|Ec
g(g

j(x))‖ ≤ −α.

Proof. Choose α > 0 such that∫
M

ln ‖df |Ec
f (x)‖ dµ(x) < −α. (1)

Since the central bundle Ec
g depends continuously on the diffeomor-

phism g in the C1 topology, there is a neighborhood U ⊂ Diff1
µ(M) of

f such that for any g ∈ U ,∫
M

ln ‖dg|Ec
g(x)‖ dµ(x) < −α.

For g ∈ U , let Ag be set of points x where the forward Birkhoff average
of ‖dg|Ec

g(·)‖ is defined and less than −α. It follows from the Birkhoff
ergodic theorem (and the fact that µ is a probability measure) that
µ(Ag) > 0. If x ∈ Ag, we have

lim
n→∞

1

n

n−1∑
j=0

ln ‖dg|Ec
g(g

j(x))‖ ≤ −α.

This completes the proof. �

Since

‖dgn|Ec
g(x)‖ ≤ 1

n

n−1∑
j=0

ln ‖dg|Ec
g(g

j(x))‖,

we see that g has negative central Lyapunov exponents on the set Ag.
It now follows from Theorem 1 that the set Ag is open (mod 0) and
g|Ag has at most countably many ergodic components which are open
(mod 0).
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We proceed with the following result.

Lemma 2. There are a neighbourhood V of f in Diff1
µ(M) and a num-

ber r0 > 0 such that, if g ∈ V is a C2 diffeomorphism and x ∈ Ag (the
set defined in Lemma 1), then there is an n ≥ 0 such that the size of
the stable global manifold W cs(g−n(x)) is at least r0.

Proof. Set σ = exp(−α/3), where α is defined in (1). We call the
number n a σ-hyperbolic time for g at x if

‖dgj|Ec
g(g
−n(x))‖ ≤ σj,

for 0 ≤ j ≤ n. Corollary 3.2 of [ABV] and the remarks preceding
it imply that if g ∈ U and x ∈ Ag, then there are infinitely many
σ-hyperbolic times for g at x.

Denote by Bcs(y, r) the ball in V cs(y) centered at y of radius r. It
follows from Lemma 2.7 in [ABV] that we can choose r0 > 0 and a
neighborhood V ⊂ U of f such that for every C2 diffeomorphism g ∈ V
and any σ-hyperbolic time n for g at x,

dn = diam (gj(Bcs(g−n(x), r0))) ≤ σj/2 for 0 ≤ j ≤ n.

Since σ < 1, we can make dn as small as we wish by choosing n to be
a sufficiently large σ-hyperbolic time for g at x. In particular, we can
ensure that gn(Bcs(g−n(x), r0)) lies in the stable local manifold V cs(x).
Then Bcs(g−n(x), r0) is contained in the stable manifold W cs(g−n(x))
as claimed. �

We now repeat the proof of Theorem 1 for g|Ag. Instead of using
V cs(x) to construct a neighborhood of x, we use Bcs(g−n(x), r0) to
construct a neighborhood of g−n(x), where n is a large σ-hyperbolic
time for g at x. This gives us the following statement.

Lemma 3. There is a positive number r̃0 = r̃0(f) such that any ergodic
component of g|Ag contains a ball of radius r̃0.

It remains to show that the set Ag has full measure and g|Ag is
ergodic. Since f is accessible, the result from [DP] mentioned in the
introduction tells us that the f -orbit of a.e. point in M is dense. Thus
our desired claims hold when g = f , and they would hold for any g close
enough to f if the accessibility property were open. This, however, is an
open problem (see [RH] for some interesting results in this direction).

We will therefore exploit a weaker property, which is sufficient for
our purpose (even in the case g = f). Given ε > 0, we say that a
diffeomorphism g is ε-accessible if for every open ball B of radius ε the
union of accessibility classes passing through B is M . An equivalent
requirement is that the accessibility class of any point should enter
every open ball of radius ε.



12 K. BURNS, D. DOLGOPYAT, YA. PESIN

Lemma 4. Assume that f has the accessibility property. Then the
following properties hold for every ε > 0.

(a) There exist ` > 0 and R > 0 such that for any p, q ∈M one can
find a us-path that starts at p, ends within distance ε/2 of q, and has
at most ` legs, each of them with length at most R.

(b) There exists a neighborhood U of f in the space Diff2(M) such
that every g ∈ U is ε-accessible.

Proof. (a) Let q1, . . . , qN be an ε/4-net in M . For each p ∈ M and
each qk, choose a us-path from p to qk; let `(p, k) be the number of legs
and R(p, k) the length of the longest leg in this path. Set

R(p) = max
k
R(p, k) and `(p) = max

k
`(p, k).

By continuity of the foliations W u and W s, every point p ∈ M has a
neighbourhood U(p) such that, for each k, any point in U(p) is joined to
some point in B(qk, ε/4) by a us-path which has at most `(p) legs each
of length at most 2R(p). The sets {U(p)} form an open cover of M .
Let {U(p1), . . . , U(pm)} be a finite subcover. Then R = maxi 2R(pi)
and ` = maxi `(pi) satisfy the condition of part (a).

(b) The statement follows from (a) and the continuous dependence
of the leaves of W u and W s on g. �

We proceed with the proof of the theorem. Given ε > 0, we say that
an orbit Orb(x) = {fn(x) : n ∈ Z} is ε-dense if the points of the orbit
form an ε-net.

Lemma 5. If g is ε-accessible, then almost every orbit is ε-dense.

Proof. It suffices to show that if B is an open ball of radius ε, then
the orbit of a.e. point enters B. To this end, let us call a point good if it
has a neighborhood in which the orbit of a.e. point enters B. We now
wish to show that an arbitrary point p is good. Since g is ε-accessible,
there is a us-path [z0, . . . , zk] with z0 ∈ B and zk = p. We shall show
by induction on j that each point zj is good.

This is obvious for j = 0.
Now suppose that zj is good. Then zj has a neighborhood N such

that Orb(x)∩B 6= ∅ for a.e. x ∈ N . Let S be the subset of N consisting
of points with this property that are also both forward and backward
recurrent. It follows from the Poincaré recurrence theorem that S has
full measure in N . If x ∈ S, any point y ∈ W s(x) ∪W u(x) has the
property that Orb(y)∩B 6= ∅. The absolute continuity of the foliations
W s and W u means that the set⋃

x∈S
W s(x) ∪W u(x)
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has full measure in the set⋃
x∈N

W s(x) ∪W u(x).

The latter is a neighborhood of zj+1. Hence zj+1 is good. �
Theorem 4 now follows from Lemmas 3, 4 and 5. �

3.3. Proof of Theorem 2. If f is essentially accessible, the accessi-
bility class of a.e. point is dense in M . With minor modifications, the
proof of Lemma 5 shows that this property imples that a.e. point has
a dense orbit. Theorem 2 is then immediate from Theorem 1. �

3.4. Proof of Theorem 3. By Theorem 2, f is ergodic and has nega-
tive central exponents a.e. with respect to µ. Hence there exists β > 0
such that for a.e. x ∈M

lim
n→+∞

1

n
ln ‖dfn|Ec

f (x)‖ ≤ −β.

Integrating over M we obtain

lim
n→∞

1

n

∫
M

ln ‖dfn|Ec
f (x)‖ dµ(x) ≤ −β.

In particular, there exists n0 > 0 such that∫
M

ln ‖dfn0|Ec
f (x)‖ dµ(x) < 0.

Hence fn0 satisfies the hypotheses of Theorem 4 and thus is stably
ergodic. It follows that f itself is stably ergodic. �
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