Final December 2006

C. Robinson

Math 285-1

1. (21 Points) The matrix
$$\mathbf{A} = \begin{bmatrix} 2 & 4 & 5 & 8 & 5 \\ 1 & 2 & 2 & 3 & 1 \\ 4 & 8 & 3 & 2 & 6 \\ 2 & 4 & 4 & 6 & 1 \end{bmatrix}$$
 has the reduced echelon form $\mathbf{U} = \begin{bmatrix} 1 & 2 & 0 & -1 & 0 \\ 0 & 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$.

a. *Find* a basis for the nullspace of A.

b. *Find* a basis for the column space of A.

c. *Find* a basis for the row space of A.

Answer:

(a) Use the free variables to find the nullspace of U: $\{(-2, 1, 0, 0, 0)^T, (1, 0, -2, 1, 0)^T\}$.

(b) The basis of the column space is given by the pivot columns in the original matrix A: $\{(2, 1, 4, 2)^T, (5, 2, 3, 4)^T, (5, 1, 6, 1)^T\}$.

(c) The basis of the row space is given by the nonzero rows of U:

{ $(1, 2, 0, -1, 0)^T$, $(0, 0, 1, 2, 0)^T$, $(0, 0, 0, 0, 1)^T$ }.

2. (27 Points) The matrix $\mathbf{A} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 1 & -1 \\ -1 & 4 & -2 \end{bmatrix}$ has eigenvalues 1 and $-1 \pm 2i$. Find an eigenvector for

each eigenvalue.

Answer:

For $\lambda = 1$ we row reduce as follows:

$$\mathbf{A} - \mathbf{I} = \begin{bmatrix} -1 & 0 & 1 \\ 1 & 0 & -1 \\ -1 & 4 & -3 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 4 & -4 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix},$$

so an eigenvector is $(1, 1, 1)^T$.

For $\lambda = -1 + 2i$ we row reduce as follows:

$$\mathbf{A} - (-1+2i)\mathbf{I} = \begin{bmatrix} 1-2i & 0 & 1\\ 1 & 2-2i & -1\\ -1 & 4 & -1-2i \end{bmatrix}$$

multiplying the first row by 1 + 2i

$$\sim \begin{bmatrix} 51 & 2-2i & -1 \\ 1 & -4 & 1+2i \end{bmatrix}$$

interchanging rows 1 & 3 and clearing the first column

$$\sim \begin{bmatrix} 1 & -4 & 1+2i \\ 0 & 6-2i & -2-2i \\ 0 & 20 & -4-8i \end{bmatrix}$$

multiplying second row by (3 + 2i)/2

$$\sim \begin{bmatrix} 1 & -4 & 1+2i \\ 0 & 10 & -2-4i \\ 0 & 5 & -1-2i \end{bmatrix}$$

clearing the third column

$$\sim \begin{bmatrix} 1 & 1 & 0 \\ 0 & 5 & -1 - 2i \\ 0 & 0 & 0 \end{bmatrix},$$

so an eigenvector for -1 + 2i is $(-1 - 2i, 1 + 2i, 5)^T$. Other possible eigenvectors include $(-1, 1, 1 - 2i)^T$. An eigenvector for -1 - 2i is the complex conjugate of the eigenvector for -1 - 2i, $(-1+2i, 1-2i, 5)^T$.

- **3**. (24 Points) Consider the stochastic matrix **M** that has eigenvectors $\mathbf{v}^1 = (.3, .6, .1)^T$ for the eigenvalue 1, $\mathbf{v}^2 = (.1, -.3, .2)^T$ for the eigenvalue 0.5, and $\mathbf{v}^3 = (.2, -.1, -.1)^T$ for the eigenvalue 0.2. **a**. Write $\mathbf{p} = (.2, .4, .4)^T$ as a linear combination of \mathbf{v}^1 , \mathbf{v}^2 , and \mathbf{v}^3 .

 - **b**. For $\mathbf{p} = (.2, .4, .4)^T$, what is $\mathbf{M}^3 \mathbf{p}$?
 - c. Give the matrices **P** and **D** such that $\mathbf{D} = \mathbf{P}^{-1}\mathbf{MP}$ and **D** is a diagonal matrix.
 - **d**. *What is* the $det(\mathbf{M})$?

Answer:

(a) To find the coefficients by a systematic method, we have to row reduce the augmented matrix as follows:

$$\begin{bmatrix} .3 & .1 & .2 & | .2 \\ .6 & -.3 & -.1 & | .4 \\ .1 & .2 & -.1 & | .4 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & -1 & | .4 \\ 6 & -3 & -1 & | .4 \\ 3 & 1 & 2 & | .2 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & 2 & -1 & | .4 \\ 0 & -15 & 5 & | .-20 \\ 0 & -5 & 5 & | .-10 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & 2 & -1 & | .4 \\ 0 & -3 & 1 & | .4 \\ 0 & 1 & -1 & | .2 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & 2 & -1 & | .4 \\ 0 & -3 & 1 & | .4 \\ 0 & 1 & -1 & | .2 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & 2 & -1 & | .4 \\ 0 & 1 & -1 & | .2 \\ 0 & 0 & -2 & | .2 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & 2 & 0 & | .3 \\ 0 & 1 & 0 & | .1 \\ 0 & 0 & 1 & | .-1 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & 0 & 0 & | .1 \\ 0 & 1 & 0 & | .1 \\ 0 & 0 & 1 & | .-1 \end{bmatrix},$$

so $c_1 = 1$, $c_2 = 1$, and $c_3 = -1$: $\mathbf{p} = \mathbf{v}^1 + \mathbf{v}^2 - \mathbf{v}^3$.

(b) We know that a matrix acts linearly on combinations of vectors, so

 $\mathbf{M}^{3}\mathbf{p} = \mathbf{M}^{3}\mathbf{v}^{1} + \mathbf{M}^{3}\mathbf{v}^{2} - \mathbf{M}^{3}\mathbf{v}^{3} = (.3, .6, .1)^{T} + (.5)^{3}(.1, -.3, .2)^{T} - (.2)^{3}(.2, -.1, -.1)^{T}.$

(c) The matrix **P** has the eigenvectors as columns and the matrix **D** is the diagonal matrix with the eigenvalues as entries:

$$\mathbf{P} = \begin{bmatrix} .3 & .1 & .2 \\ .6 & -.3 & -.1 \\ .1 & .2 & -.1 \end{bmatrix} \qquad \mathbf{D} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & .5 & 0 \\ 0 & 0 & .2 \end{bmatrix}.$$

(d) The determinant of **M** is either equal to the product of the eigenvalues or the determinant of **D**: either of these equals to 0.1.

- **4**. (48 Points) Indicate which of the following statements are always true and which are false, i.e., not always true. Justify each answer by referring to an theorem, fact, or counterexample.
 - **a**. The nonpivot columns of a matrix are always linearly dependent.

Answer: False. A counter example is $\begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$, where $(1, 0)^T$ and $(1, 1)^T$ are not linearly dependent.

b. The dimension of the null space of a matrix **A** equals the rank of **A**.

Answer: False The matrix $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$ has rank 2 and dimension of the nullspace equal to 1 (the number of free variables).

c. The column space of a matrix A is equal to the column space of its row reduced echelon matrix U.

Answer: False

The column space of $\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}$ is spanned by $\begin{bmatrix} 1 \\ 3 \end{bmatrix}$ and not by the columns of $\mathbf{U} = \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}$ which all have 0 in the second component.

d. If **A** is a $m \times n$ matrix and **B** is a $n \times p$ matrix, then $Col(AB) \subset Col(A)$

Answer: True

The column space of **AB** is the set of all vectors of the form ABv = Aw where w = Bv. These are contained in the set of all Aw, where w is any vector in \mathbb{R}^n .

e. For any $n \times m$ matrix A, both the matrix products $\mathbf{A}^T \mathbf{A}$ and $\mathbf{A}\mathbf{A}^T$ are defined.

Answer: True.

The matrix \mathbf{A}^T is $m \times n$, so \mathbf{A}^T has the same number of columns as \mathbf{A} has rows, so $\mathbf{A}^T \mathbf{A}$ is defined; also, \mathbf{A}^T has the same number of rows as \mathbf{A} has columns, so $\mathbf{A}\mathbf{A}^T$ is defined.

f. Let **W** be a subspace of **V** with $\dim(\mathbf{W}) = 4$, and $\dim(\mathbf{V}) = 7$. Then, any basis of **W** can be expanded to a basis of **V** by adding three more vectors to it.

Answer: True

The theorem on extension of basis says that any basis of W can be expanded to a basis of V. We need to add three more vectors because of the dimensions given.

g. If **A** is a square matrix with det(**A**) \neq 0, then det(**A**⁻¹) = (det(**A**^T))⁻¹.

Answer: True

We have theorems that say that $\det(\mathbf{A}^{-1}) = (\det(\mathbf{A}))^{-1}$ and $\det(\mathbf{A}) = \det(\mathbf{A}^T)$. Combining, we get the formula given.

h. Every diagonalizable $n \times n$ matrix has *n* distinct eigenvalues.

Answer: False The matrix $\begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ has repeated eigenvalue 2 and is diagonal (so diagonalizable).

i. If A is a 4×4 matrix with eigenvalues 3, -1, 2, and 5, then it is diagonalizable.

Answer: True

Because the eigenvalues are distinct, and eigenvectors for different eigenvalues are linearly independent, any set of eigenvectors are linearly independent and so a basis. There is a theorem that says that a matrix with a basis of eigenvectors is diagonalizable.

j. If λ is an eigenvalue of a matrix **A**, then there is a unique eigenvector of **A** that corresponds to λ .

Answer: False

The eigenvalue can have an eigenspace of dimension 2. Also, if \mathbf{v} is an eigenvector that $2\mathbf{v}$ is also an eigenvector. In any case, the eigenvector is not unique.

k. Assume **A** and **B** are both $n \times n$. If **v** is an eigenvector of both **A** and **B** then **v** is an eigenvector of **A** + **B**.

Answer: True Use the definition of an eigenvector. $\mathbf{A}\mathbf{v} = \lambda_A \mathbf{v}$ and $\mathbf{B}\mathbf{v} = \lambda_B \mathbf{v}$ for the eigenvalues λ_A and λ_B . Then $(\mathbf{A} + \lambda_B)\mathbf{v} = (\lambda_A + \lambda_B)\mathbf{v}$, so \mathbf{v} is an eigenvector or $\mathbf{A} + \mathbf{B}$ for the eigenvalue $\lambda_A + \lambda_B$.

I. If **v** is an eigenvector of an invertible matrix **A** that corresponds to a nonzero eigenvalue, then **v** is also an eigenvector for \mathbf{A}^{-1} .

Answer: True If $\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$, then $\mathbf{A}^{-1}\mathbf{v} = \lambda^{-1}\mathbf{v}$ and so \mathbf{v} is an eigenvector for \mathbf{A}^{-1} corresponding to the eigenvalue λ^{-1} .

- **5**. (14 Points) Let $\mathbf{a}^1, \ldots, \mathbf{a}^n$ be vectors in \mathbb{R}^m and the columns of the matrix **A**.
 - a. If the vectors are linearly independent, what can you say about the rank of A?
 - **b**. If the vectors span \mathbb{R}^m , what can you say about the rank of **A**?

Answer:

- (a) $\operatorname{rank}(\mathbf{A}) = n$.
- (**b**) rank(\mathbf{A}) = m.
- 6. (22 Points) Assume that (i) $\mathbf{V} \subset \mathbb{R}^n$ is a subspace, (ii) $\{\mathbf{b}^1, \ldots, \mathbf{b}^r\}$ is a basis of \mathbf{V} , and (iii) \mathbf{A} is an $m \times n$ matrix of rank *n*. *Prove* that $\{\mathbf{Ab}^1, \ldots, \mathbf{Ab}^r\}$ is a basis of \mathbf{AV} .

Answer:

We need to show that these vectors are linearly independent and span the subspace. Assume that $\mathbf{0} = c_1 \mathbf{A} \mathbf{b}^1 + \cdots + c_r \mathbf{A} \mathbf{b}^r$. Then, $\mathbf{0} = \mathbf{A}(c_1 \mathbf{b}^1 + \cdots + c_r \mathbf{b}^r)$. Since \mathbf{A} has rank n, it has a trivial nullspace, so it follows that $\mathbf{0} = c_1 \mathbf{b}^1 + \cdots + c_r \mathbf{b}^r$. Since the vectors \mathbf{b}^j are linearly independent, it follows that all the $c_j = 0$. Thus, any linear combination of the vectors $\{\mathbf{A}\mathbf{b}^1, \ldots, \mathbf{A}\mathbf{b}^r\}$ giving the zero vector must have coefficients equal to zero. This shows that the set of vectors $\{\mathbf{A}\mathbf{b}^1, \ldots, \mathbf{A}\mathbf{b}^r\}$ is linearly independent.

Any vector **w** in **AV** can be written as $\mathbf{w} = \mathbf{Av}$ for some vector **v** in **V**. But, the vectors $\{\mathbf{b}^1, \ldots, \mathbf{b}^r\}$ is a basis of **V**, so **v** can be written as a linear combination of them, $\mathbf{v} = c_1\mathbf{b}^1 + \cdots + c_r\mathbf{b}^r$ for some c_1, \ldots, c_r . Thus, $\mathbf{w} = \mathbf{Av} = \mathbf{A}(c_1\mathbf{b}^1 + \cdots + c_r\mathbf{b}^r) = c_1\mathbf{Ab}^1 + \cdots + c_r\mathbf{Ab}^r$. This shows that the set of vectors $\{\mathbf{Ab}^1, \ldots, \mathbf{Ab}^r\}$ span **AV**.

Combining, they are a basis of AV.

7. (22 Points) The set of all 3×3 matrices with real entries, $\mathbf{M}_{3\times 3}$, is a vector space. A matrix **A** is said to be a magic square provided that its row sums and column sums all add up the same number. (The number can depend on the matrix.) *Prove* that the set of all 3×3 matrices that are magic squares is a subspace $\mathbf{M}_{3\times 3}$.

Answer:

We must show the zero "vector" is a magic square and that magic squares are closed under linear combinations.

The 3 \times 3 with all zeroes (the zero "vector" in $M_{3\times3}$) as all row sums and columns sums equal to 0. Thus, it is a magic square.

Now assume that A and B are magic squares with row sums and columns sums equal to r_A and r_B respectively. Then, the row sums and columns sums of $c_1 \mathbf{A} + c_2 \mathbf{B}$ are

$$\begin{aligned} (c_1a_{i1} + c_2b_{i1}) + (c_1a_{i2} + c_2b_{i2}) + (c_1a_{i3} + c_2b_{i3}) &= c_1(a_{i1} + a_{i2} + a_{i3}) + c_2(b_{i1} + b_{i2} + b_{i3}) \\ &= c_1r_A + c_2r_B \\ (c_1a_{1j} + c_2b_{1j}) + (c_1a_{2j} + c_2b_{2j}) + (c_1a_{3j} + c_2b_{3j}) &= c_1(a_{1j} + a_{i2j} + a_{3j}) + c_2(b_{1j} + b_{2j} + b_{3j}) \\ &= c_1r_A + c_2r_B. \end{aligned}$$

. .

Since these are equal for all *i* and *j*, $c_1\mathbf{A} + c_2\mathbf{B}$ is a magic square. This shows that the set of magic squares is a subspace.

8. (22 Points) Suppose that **V** is a vector space with basis $\{\mathbf{v}^1, \mathbf{v}^2\}$.

• .

a. Let $\mathbf{w}^1 = 2\mathbf{v}^1 + \mathbf{v}^2$ and $\mathbf{w}^2 = \mathbf{v}^1 + \mathbf{v}^2$. *Prove* that the set $\mathscr{B} = {\mathbf{w}^1, \mathbf{w}^2}$ is a basis for **V**.

b. *Find* $[\mathbf{v}^1]_{\mathscr{B}}$, the coordinate vector of \mathbf{v}^1 with respect to the basis \mathscr{B} .

Answer:

 \mathbf{w}^1 and \mathbf{w}^2 .)

. . . .

(a) The easiest way to solve this problem is to use the coordinates of the \mathbf{w}^{j} in terms of the original basis \mathscr{B}_0 : $[\mathbf{w}^1, \mathbf{w}^2]_{\mathscr{B}_0} = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$. This matrix has nonzero determinant, so the columns are linearly independent. Since the columns of the \mathscr{B}_0 -coordinates are linearly independent, the vectors \mathbf{w}^1 and \mathbf{w}^2 are linearly independent. Since the vector space V has dimension equal to 2 (a basis with 2 members), any set of 2 linearly independent vectors forms a basis and the set \mathcal{B} is a basis. (**b**) The inverse of the matrix $\begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$ gives the vectors \mathbf{v}^j in terms of the \mathbf{w}^i : so $\mathbf{v}^1 = \mathbf{w}^1 - \mathbf{w}^2$ and $\mathbf{v}^2 = -\mathbf{w}^1 + 2\mathbf{w}^2$. (This can also be obtained by solving the two equations for \mathbf{v}^1 and \mathbf{v}^2 in terms of