Math 285-1

Final December 2006

C. Robinson

No calculators, no books, no notes

Show all your work in your bluebook. Start each problem on a new page.

1. (21 Points) The matrix
$$\mathbf{A} = \begin{bmatrix} 2 & 4 & 5 & 8 & 5 \\ 1 & 2 & 2 & 3 & 1 \\ 4 & 8 & 3 & 2 & 6 \\ 2 & 4 & 4 & 6 & 1 \end{bmatrix}$$
 has the reduced echelon form $\mathbf{U} = \begin{bmatrix} 1 & 2 & 0 & -1 & 0 \\ 0 & 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$

- **a**. *Find* a basis for the nullspace of A.
- **b**. *Find* a basis for the column space of A.
- **c**. *Find* a basis for the row space of A.

2. (27 Points) The matrix $\mathbf{A} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 1 & -1 \\ -1 & 4 & -2 \end{bmatrix}$ has eigenvalues 1 and $-1 \pm 2i$. Find an eigenvector for

each eigenvalue.

- 3. (24 Points) Consider the stochastic matrix **M** that has eigenvectors $\mathbf{v}^1 = (.3, .6, .1)^T$ for the eigenvalue 1, $\mathbf{v}^2 = (.1, -.3, .2)^T$ for the eigenvalue 0.5, and $\mathbf{v}^3 = (.2, -.1, -.1)^T$ for the eigenvalue 0.2.
 - **a**. Write $\mathbf{p} = (.2, .4, .4)^T$ as a linear combination of $\mathbf{v}^1, \mathbf{v}^2$, and \mathbf{v}^3 .
 - **b**. For $\mathbf{p} = (.2, .4, .4)^T$, what is $\mathbf{M}^3 \mathbf{p}$?
 - c. Give the matrices **P** and **D** such that $\mathbf{D} = \mathbf{P}^{-1}\mathbf{MP}$ and **D** is a diagonal matrix.
 - **d**. What is the $det(\mathbf{M})$?
- 4. (48 Points) Indicate which of the following statements are always true and which are false, i.e., not always true. Justify each answer by referring to an theorem, fact, or counterexample.
 - **a**. The nonpivot columns of a matrix are always linearly dependent.
 - **b**. The dimension of the null space of a matrix **A** equals the rank of **A**.
 - c. The column space of a matrix A is equal to the column space of its row reduced echelon matrix U.
 - **d**. If **A** is a $m \times n$ matrix and **B** is a $n \times p$ matrix, then $Col(AB) \subset Col(A)$
 - e. For any $n \times m$ matrix A, both the matrix products $A^T A$ and AA^T are defined.
 - **f**. Let **W** be a subspace of **V** with dim(**W**) = 4, and dim(**V**) = 7. Then, any basis of **W** can be expanded to a basis of V by adding three more vectors to it.
 - **g**. If **A** is a square matrix with det(**A**) \neq 0, then det(**A**⁻¹) = (det(**A**^T))⁻¹.
 - **h**. Every diagonalizable $n \times n$ matrix has *n* distinct eigenvalues.
 - i. If A is a 4×4 matrix with eigenvalues 3, -1, 2, and 5, then it is diagonalizable.
 - j. If λ is an eigenvalue of a matrix **A**, then there is a unique eigenvector of **A** that corresponds to λ .
 - **k**. Assume **A** and **B** are both $n \times n$. If **v** is an eigenvector of both **A** and **B** then **v** is an eigenvector of $\mathbf{A} + \mathbf{B}$.
 - **l**. If \mathbf{v} is an eigenvector of an invertible matrix **A** that corresponds to a nonzero eigenvalue, then \mathbf{v} is also an eigenvector for A^{-1} .

(over for problems 5-8)

- **5**. (14 Points) Let $\mathbf{a}^1, \ldots, \mathbf{a}^n$ be vectors in \mathbb{R}^m and the columns of the matrix **A**.
 - **a**. If the vectors are linearly independent, what can you say about the rank of **A**?
 - **b**. If the vectors span \mathbb{R}^m , what can you say about the rank of **A**?
- 6. (22 Points) Assume that (i) $\mathbf{V} \subset \mathbb{R}^n$ is a subspace, (ii) $\{\mathbf{b}^1, \ldots, \mathbf{b}^r\}$ is a basis of \mathbf{V} , and (iii) \mathbf{A} is an $m \times n$ matrix of rank *n*. *Prove* that $\{\mathbf{Ab}^1, \ldots, \mathbf{Ab}^r\}$ is a basis of \mathbf{AV} .
- 7. (22 Points) The set of all 3×3 matrices with real entries, $\mathbf{M}_{3\times 3}$, is a vector space. A matrix **A** is said to be a magic square provided that its row sums and column sums all add up the same number. (The number can depend on the matrix.) *Prove* that the set of all 3×3 matrices that are magic squares is a subspace $\mathbf{M}_{3\times 3}$.
- 8. (22 Points) Suppose that V is a vector space with basis {v¹, v²}.
 a. Let w¹ = 2v¹ + v² and w² = v¹ + v². *Prove* that the set ℬ = {w¹, w²} is a basis for V.
 b. *Find* [v¹]ℬ, the coordinate vector of v¹ with respect to the basis ℬ.