No calculators, no books, no notes

Show all your work in your bluebook. Start each problem on a new page.

- 1. (24 Points) Let
 - $\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 & 2 & 0 \\ 3 & 2 & 5 & 8 & -4 \\ 0 & 1 & 1 & 5 & 6 \end{bmatrix} \text{ and } \mathbf{b} = \begin{bmatrix} 1 \\ 9 \\ 19 \end{bmatrix}.$

Find the general parametric vector solution of Ax = b

- 2. (16 Points) Let T be a linear transformation with $m \times n$ matrix A. Complete the following sentences:
 - **a**. *T* is one-to-one if and only if **A** has _____ pivot positions.
 - **b**. *T* is onto if and only if **A** has _____ pivot positions.
 - c. The columns of A span the codomain of T if and only if A has _____ pivot positions.
 - **d**. The columns of **A** are linearly independent if and only if **A** has ______ pivot positions.
- **3**. (28 Points) Indicate which of the following statements are always true and which are false (not always true). If the statement is true, give a SHORT justification. If the statement is false, give a SHORT counterexample or explanation. Use complete sentences. Refer to any theorem by an informal statement, not by a theorem number.
 - **a**. If the three vectors \mathbf{v}^1 , \mathbf{v}^2 , and \mathbf{v}^3 are linearly dependent in \mathbb{R}^n , then one of these three vectors can be written as a linear combination of the other two vectors.
 - **b.** If there exist $n \times n$ matrices **A** and **D** such that $AD = I_n$, then there is a nontrivial solution of Ax = 0.
 - c. If C is a diagonal 3×3 matrix with nonzero entries and A is another 3×3 matrix, then the matrix product AC scales the rows of A.
 - **d**. If **A** is an $m \times n$ matrix such that the equation $A\mathbf{x} = \mathbf{b}$ has at least two different solutions, and if the equation $A\mathbf{x} = \mathbf{c}$ is consistent, then $A\mathbf{x} = \mathbf{c}$ has infinitely many solutions.
- **4**. (32 Points)
 - **a**. Let $\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$. Find \mathbf{A}^{-1} .
 - **b**. Write the two vector equations $\begin{bmatrix} 1\\0 \end{bmatrix} = c_1 \begin{bmatrix} 1\\1 \end{bmatrix} + c_2 \begin{bmatrix} 1\\2 \end{bmatrix}$ and $\begin{bmatrix} 0\\1 \end{bmatrix} = c_3 \begin{bmatrix} 1\\1 \end{bmatrix} + c_4 \begin{bmatrix} 1\\2 \end{bmatrix}$ as a single matrix equation with c_1, c_2, c_3 , and c_4 as entries of a matrix.
 - **c**. Use the answers to parts (a) and (b) to write $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ as linear combinations of $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$.
 - **d**. Let *T* be a linear transformation of \mathbb{R}^2 such that the images of the two vectors $(1, 1)^T$ and $(1, 2)^T$ by *T* are $T\left(\begin{bmatrix}1\\1\end{bmatrix}\right) = \begin{bmatrix}1\\1\end{bmatrix}$ and $T\left(\begin{bmatrix}1\\2\end{bmatrix}\right) = \begin{bmatrix}-1\\-2\end{bmatrix}$. Use the answer to part (c) and the linearity of *T* to find $T\left(\begin{bmatrix}1\\0\end{bmatrix}\right), T\left(\begin{bmatrix}0\\1\end{bmatrix}\right)$, and the matrix of *T*.