Math 285-2

1. (22 Points) Let W be the subspace spanned by the vectors $\mathbf{v}^1 = (1, 0, -1, 1)^T$ and $\mathbf{v}^2 = (0, 1, 2, 2)^T$. a. Find the orthogonal projection of $\mathbf{y} = (6, 3, 3, 0)^T$ onto W.

b. Find the distance of the point **y** to the subspace **W**. You may leave a square root in your answer. **Answer:**

a.
$$\mathbf{y} \cdot \mathbf{v}^{1} = 6 + 0 - 3 = 3$$
, $\mathbf{v}^{1} \cdot \mathbf{v}^{1} = 3$, $\mathbf{y} \cdot \mathbf{v}^{2} = 0 + 3 + 6 = 9$, $\mathbf{v}^{2} \cdot \mathbf{v}^{2} = 9$,
 $\hat{\mathbf{y}} = \left(\frac{\mathbf{y} \cdot \mathbf{v}^{1}}{\mathbf{v}^{1} \cdot \mathbf{v}^{1}}\right) \mathbf{v}^{1} + \left(\frac{\mathbf{y} \cdot \mathbf{v}^{2}}{\mathbf{v}^{2} \cdot \mathbf{v}^{2}}\right) \mathbf{v}^{2}$

$$= \left(\frac{3}{3}\right) \begin{bmatrix} 1\\0\\-1\\1 \end{bmatrix} + \left(\frac{9}{9}\right) \begin{bmatrix} 0\\1\\2\\2 \end{bmatrix}$$

$$= \begin{bmatrix} 1\\1\\1\\3 \end{bmatrix}$$

b. The distance is $\|\mathbf{y} - \hat{\mathbf{y}}\| = \|(6 - 1, 3 - 1, 3 - 1, 0 - 3)^T\| = \sqrt{25 + 4 + 4 + 9} = \sqrt{42}$.

- 2. (18 Points) Consider the three vectors $\mathbf{v}^1 = (2, 2, 1, 0)^T$, $\mathbf{v}^2 = (0, 3, 3, 1)^T$, and $\mathbf{v}^3 = (3, 0, 3, -10)^T$. Construct an orthogonal set of vectors $\{\mathbf{w}^1, \mathbf{w}^2, \mathbf{w}^3\}$ such that $\text{Span}(\mathbf{w}^1) = \text{Span}(\mathbf{v}^1)$, $\text{Span}(\mathbf{w}^1, \mathbf{w}^2) = \text{Span}(\mathbf{v}^1, \mathbf{v}^2)$, and $\text{Span}(\mathbf{w}^1, \mathbf{w}^2, \mathbf{w}^3) = \text{Span}(\mathbf{v}^1, \mathbf{v}^2, \mathbf{v}^3)$. **Answer:** Let $\mathbf{w}^1 = \mathbf{v}^1 = (2, 2, 1, 0)^T$. Then $\mathbf{w}^1 \cdot \mathbf{v}^2 = 0 + 6 + 3 + 0 = 9$, $\mathbf{w}^1 \cdot \mathbf{w}^1 = 4 + 4 + 1 + 1 = 9$, so $\mathbf{w}^2 = (0, 3, 3, 1)^T - \left(\frac{9}{9}\right)(2, 2, 1, 0)^T = (-2, 1, 2, 1)^T$. $\mathbf{w}^1 \cdot \mathbf{v}^3 = 6 + 0 + 3 + 0 = 9$, $\mathbf{w}^2 \cdot \mathbf{v}^3 = -6 + 0 + 6 - 10 = -10$, $\mathbf{w}^2 \cdot \mathbf{w}^2 = 4 + 1 + 4 + 1 = 10$, so $\mathbf{w}^3 = (0, 3, 3, 1)^T - \left(\frac{9}{9}\right)(2, 2, 1, 0)^T - \left(\frac{-10}{10}\right)(-2, 1, 2, 1)^T = (-1, -1, 4, -9)^T$.
- **3**. (22 Points) Determine whether the following two quadratic forms are positive definite, negative definite, or indefinite. Show your work.

(a)
$$Q(x_1, x_2, x_3) = x_1^2 + 2x_2^2 + 2x_3^2 + 2x_1x_3 + 4x_2x_3$$

(b) $Q(x_1, x_2, x_3) = -x_1^2 - 2x_2^2 - 4x_3^2 + 2x_1x_3 + 4x_2x_3$

Answer:

a. The matrix of the quadratic form is

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 2 \\ 1 & 2 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 2 \\ 0 & 2 & 1 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & -1 \end{bmatrix}$$

The pivots are 1, 2, and -1. They do not have all one sign, so the quadratic form is indefinite.

b. The matrix of the quadratic form is

$$\begin{bmatrix} -1 & 0 & 1 \\ 0 & -2 & 2 \\ 1 & 2 & -4 \end{bmatrix} \sim \begin{bmatrix} -1 & 0 & 1 \\ 0 & -2 & 2 \\ 0 & 2 & -3 \end{bmatrix}$$
$$\sim \begin{bmatrix} -1 & 0 & 1 \\ 0 & -2 & 2 \\ 0 & 0 & -1 \end{bmatrix}$$

The pivots are -1, -2, and -1. They are all negative, so the quadratic form is negative definite.

- **4**. (24 Points) Indicate which of the following statements are always true (T) and which are false (F). Justify each answer by referring to an theorem, fact, or counterexample.
 - **a.** If $\{v^1, v^2, v^3\}$ is an orthogonal set of three nonzero vectors, then they are linearly independent.
 - **b.** If a 3 \times 2 matrix **U** has orthonormal columns, then **UU**^T = **I**.
 - c. Assume that A is a symmetric matrix with eigenvectors \mathbf{v}^1 and \mathbf{v}^2 for distinct eigenvalues $\lambda_1 \neq \lambda_2$. Then \mathbf{v}^1 and \mathbf{v}^2 are orthogonal.
 - **d**. Let **A** be an 5 × 5 symmetric matrix, **B**₁ be 3 × 3 with det(**B**₁) \neq 0, **B**₂ be 3 × 2, and **B** = $[\mathbf{B}_1, \mathbf{B}_2]$. Let $\mathbf{H}_8 = \begin{bmatrix} \mathbf{0} & \mathbf{B} \\ \mathbf{B}^T & \mathbf{A} \end{bmatrix}$ be the bordered Hessian and \mathbf{H}_7 be the 7 × 7 principal submatrix. If det(\mathbf{H}_8) > 0 and det(\mathbf{H}_7) > 0, then the quadratic form of **A** is positive definite on the null space of **B**.

Answer:

- **a**. True. If $\mathbf{0} = c_1 \mathbf{v}^1 + c_2 \mathbf{v}^2 + c_3 \mathbf{v}^3$, then taking the dot product with \mathbf{v}^i we get $0 = c_1 \mathbf{v}^i \cdot \mathbf{v}^i$. Since $\mathbf{v}^i \cdot \mathbf{v}^i = \|\mathbf{v}^i\|^2 > 0$, this implies that $c_i = 0$. Thus all the coefficients are necessarily zero.
- **b**. False. For example take

$$\mathbf{U} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \quad \text{so}$$
$$\mathbf{U}\mathbf{U}^{T} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \neq \mathbf{I}.$$

- c. True. $(\mathbf{v}^1)^T \mathbf{A} \mathbf{v}_2 = (\mathbf{v}^1)^T \lambda_2 \mathbf{v}^2 = \lambda_2 (\mathbf{v}^1)^T \mathbf{v}^2$. But it also equals $(\mathbf{A} \mathbf{v}^1)^T \mathbf{v}^2 = (\lambda_1 \mathbf{v}^1)^T \mathbf{v}^2 = \lambda_1 (\mathbf{v}^1)^T \mathbf{v}^2$. Therefore, $(\lambda_1 \lambda_2) (\mathbf{v}^1)^T \mathbf{v}^2 = 0$. Since $\lambda_1 \lambda_2 \neq 0$, it follows that $(\mathbf{v}^1)^T \mathbf{v}^2 = 0$ and the two vectors are orthogonal.
- **d**. False. k = 3 and n = 5. Thus, $(-1)^3 \det(\mathbf{H}_8) < 0$, and it would have to be positive to be positive definite.
- **5**. (14 Points) Let **A** be an $k \times n$ matrix. *Prove* that $Col(\mathbf{A})^{\perp} = Nul(\mathbf{A}^{T})$.

Answer:

A vector $\mathbf{v} \in \operatorname{Col}(\mathbf{A})^{\perp}$ iff $\mathbf{a}^i \cdot \mathbf{v} = 0$ for each column of \mathbf{A} iff $(\mathbf{a}^i)^T \mathbf{v} = 0$ for each column of \mathbf{A} iff $\mathbf{A}^T \mathbf{v} = \mathbf{0}$ iff $\mathbf{v} \in \operatorname{Nul}(\mathbf{A}^T)$. Therefore, these two subspaces are equal.