Math 285-2

No calculators, no books, no notes

Show all your work in your bluebook. Start each problem on a new page.

- 1. (22 Points) Let **W** be the subspace spanned by the vectors $\mathbf{v}^1 = (1, 0, -1, 1)^T$ and $\mathbf{v}^2 = (0, 1, 2, 2)^T$. **a**. Find the orthogonal projection of $\mathbf{y} = (6, 3, 3, 0)^T$ onto **W**.
 - **b**. Find the distance of the point **y** to the subspace **W**. You may leave a square root in your answer.
- 2. (18 Points) Consider the three vectors $\mathbf{v}^1 = (2, 2, 1, 0)^T$, $\mathbf{v}^2 = (0, 3, 3, 1)^T$, and $\mathbf{v}^3 = (3, 0, 3, -10)^T$. Construct an orthogonal set of vectors $\{\mathbf{w}^1, \mathbf{w}^2, \mathbf{w}^3\}$ such that $\text{Span}(\mathbf{w}^1) = \text{Span}(\mathbf{v}^1)$, $\text{Span}(\mathbf{w}^1, \mathbf{w}^2) = \text{Span}(\mathbf{v}^1, \mathbf{v}^2)$, and $\text{Span}(\mathbf{w}^1, \mathbf{w}^2, \mathbf{w}^3) = \text{Span}(\mathbf{v}^1, \mathbf{v}^2, \mathbf{v}^3)$.
- **3.** (22 Points) Determine whether the following two quadratic forms are positive definite, negative definite, or indefinite. Show your work.
 - (a) $Q(x_1, x_2, x_3) = x_1^2 + 2x_2^2 + 2x_3^2 + 2x_1x_3 + 4x_2x_3$ (b) $Q(x_1, x_2, x_3) = -x_1^2 - 2x_2^2 - 4x_3^2 + 2x_1x_3 + 4x_2x_3$
- **4**. (24 Points) Indicate which of the following statements are always true (T) and which are false (F). Justify each answer by referring to an theorem, fact, or counterexample.
 - **a**. If $\{\mathbf{u}^1, \mathbf{u}^2, \mathbf{u}^3, \mathbf{u}^4\}$ is a basis of \mathbb{R}^4 with each \mathbf{u}^i a unit vector, then any vector \mathbf{y} in \mathbb{R}^4 can be written as $\mathbf{y} = (\mathbf{u}^1 \cdot \mathbf{y}) \mathbf{u}^1 + (\mathbf{u}^2 \cdot \mathbf{y}) \mathbf{u}^2 + (\mathbf{u}^3 \cdot \mathbf{y}) \mathbf{u}^3 + (\mathbf{u}^4 \cdot \mathbf{y}) \mathbf{u}^4$.
 - **b**. A least squares solution of Ax = b is a vector \hat{x} that satisfies $A\hat{x} = \hat{b}$, where \hat{b} is the orthogonal projection of **b** onto Col(**A**).
 - c. Assume that A is a symmetric matrix with eigenvectors \mathbf{v}^1 and \mathbf{v}^2 for distinct eigenvalues $\lambda_1 \neq \lambda_2$. Then \mathbf{v}^1 and \mathbf{v}^2 are orthogonal.
 - **d**. Let **A** be an 5 × 5 symmetric matrix, **B**₁ be 3 × 3 with det(**B**₁) \neq 0, **B**₂ be 3 × 2, and **B** = $\begin{bmatrix} \mathbf{B}_1, \mathbf{B}_2 \end{bmatrix}$. Let $\mathbf{H}_8 = \begin{bmatrix} \mathbf{0} & \mathbf{B} \\ \mathbf{B}^T & \mathbf{A} \end{bmatrix}$ be the bordered Hessian and \mathbf{H}_7 be the 7 × 7 principal submatrix. If det(\mathbf{H}_8) > 0 and det(\mathbf{H}_7) > 0, then the quadratic form of **A** is positive definite on the null space of **B**.
- **5**. (14 Points) Let **A** be an $k \times n$ matrix. *Prove* that $Col(\mathbf{A})^{\perp} = Nul(\mathbf{A}^{T})$.