Test 2: November 14, 2006

Math 285-1

1. (12 Points) Calculate the determinant det
$$\begin{bmatrix} 1 & -2 & 1 & 4 \\ 2 & -4 & 4 & 8 \\ 3 & -4 & 2 & 5 \\ 0 & 2 & -4 & -9 \end{bmatrix}$$
.

Answer:

$$\det \begin{bmatrix} 1 & -2 & 1 & 4 \\ 2 & -4 & 4 & 8 \\ 3 & -4 & 2 & 5 \\ 0 & 2 & -4 & -9 \end{bmatrix} = \det \begin{bmatrix} 1 & -2 & 1 & 4 \\ 0 & 0 & 2 & 0 \\ 0 & 2 & -1 & -7 \\ 0 & 2 & -4 & -9 \end{bmatrix}$$
$$= -\det \begin{bmatrix} 1 & -2 & 1 & 4 \\ 0 & 2 & -1 & -7 \\ 0 & 0 & 2 & 0 \\ 0 & 2 & -4 & -9 \end{bmatrix}$$
$$= -\det \begin{bmatrix} 1 & -2 & 1 & 4 \\ 0 & 2 & -1 & -7 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & -3 & -2 \end{bmatrix}$$
$$= -\det \begin{bmatrix} 1 & -2 & 1 & 4 \\ 0 & 2 & -1 & -7 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & -3 \end{bmatrix}$$
$$= -\det \begin{bmatrix} 1 & -2 & 1 & 4 \\ 0 & 2 & -1 & -7 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & -2 \end{bmatrix}$$
$$= -(1)(2)(2)(-2) = 8.$$

- **a**. Find a basis for the nullspace of *A*.
- **b**. Find a basis for the column space of *A*.
- **c**. Find a basis for the row space of A.

Answer:

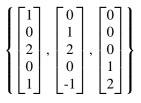
(a) Using the free variables and the reduced echelon form, we get the following basis of Nul(A):

$$\left\{ \begin{bmatrix} -2\\ -2\\ 1\\ 0\\ 0 \end{bmatrix}, \begin{bmatrix} -1\\ 1\\ 0\\ -2\\ 1 \end{bmatrix} \right\}$$

(b) Using the pivot columns of the original matrix **A** we get the following basis of Col(**A**):

$$\left\{ \begin{bmatrix} 1\\0\\0\\1\\2 \end{bmatrix}, \begin{bmatrix} 1\\1\\0\\-1\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\1\\0\\0 \end{bmatrix} \right\}$$

(c) Using the nonzero rows of the reduced echelon matrix U, we get the basis of Row(A) as



- **3.** (32 Points) Indicate which of the following statements are always true and which are false (not always true). If the statement is true, give a SHORT justification. If the statement is false, give a SHORT counterexample or explanation. Use complete sentences. Refer to any theorem by an informal statement, not by a theorem number.
 - **a**. If **A** and **B** are $n \times n$ matrices with det(**B**) $\neq 0$, then det(**AB**⁻¹) = det(**A**)/det(**B**).

Answer: True

By properties of the determinant of products and inverses, $\det(\mathbf{AB}^{-1}) = \det(\mathbf{A}) \det(\mathbf{B}^{-1}) = \det(\mathbf{A}) / \det(\mathbf{B})$.

b. If the columns of a 3×3 matrix **A** determine a parallelepiped in \mathbb{R}^3 of volume 10, then the volume of the parallelepiped determined by the columns of 2**A** is 20.

Answer: False

There are three rows that are multiplied by 2, so the det(2A) = 8 det A), so the volume is 80 and not 20.

c. If A is a 3×5 matrix with rank 2, then the dimension of the null space of A is 2.

Answer: False

The dim(Nul(A)) = 5 - Rank(A) = 5 - 2 = 3 not 2.

d. If **A** is a 5×3 matrix, then the rows of **A** must be linearly dependent.

Answer: True

The rank can be at most 3, so there can be at most 3 linearly independent rows. Therefore, the 5 rows must be linearly dependent.

e. Let W be a subspace of V, $\dim(W) = 4$, and $\dim(V) = 7$. Every basis of W can be extended to a basis of V by adding three more vectors to it.

Answer: True

The vectors in the basis of W are linearly independent as vectors in V. By the theorem on the extension of linearly independent vectors, they can be extended to a basis of V.

f. Let **W** be a subspace **V**, dim(**W**) = 4, and dim(**V**) = 7. Every basis \mathscr{B} of **V** can be reduced to a basis of **W** by removing three vectors from \mathscr{B} .

Answer: False

None of the vectors of the original basis needs to be an element of **W**, so they cannot always be made into a basis of **W**. For example, Let $\mathbf{W} = \{(x_1, x_2, x_3, x_4, 0, 0, 0)^T\}$ and dim $(\mathbf{V}) = \mathbb{R}^7$. The original basis of **V** could be made up of the vectors $(1, 0, 0, 0, 1, 0, 0)^T$, $(0, 1, 0, 0, 1, 0, 0)^T$, $(0, 0, 0, 1, 1, 0, 0)^T$, $(0, 0, 0, 1, 1, 0, 0)^T$, $(0, 0, 0, 0, 1, 0, 0)^T$, $(0, 0, 0, 0, 1, 1, 0, 0)^T$, $(0, 0, 0, 0, 1, 0, 0)^T$, $(0, 0, 0, 0, 0, 1, 0, 0)^T$, and $(0, 0, 0, 0, 0, 0, 1)^T$.

g. The set of all polynomials p(t) with the property that p(1) = 1 is a subspace of the vector space \mathbb{P} of all polynomials.

Answer: False

The zero polynomial is not in this set, $\mathcal{O}(1) = 0 \neq 1$. Also, if p(t) and q(t) are in this set then the sum is not in this set, $(p+q)(1) = p(1) + q(1) = 2 \neq 1$.

h. If **H** is a subspace of \mathbb{R}^3 that is not the zero subspace, $\mathbf{H} \neq \{0\}$, then there is a matrix **A** such that $\mathbf{H} = \operatorname{Col}(\mathbf{A})$.

```
Answer: True
```

- Take a basis of **H** and put them into the columns of a matrix **A**. Then, for this matrix, Col(A) = H.
- **4.** (14 Points) Assume **A** is an $m \times n$ matrix and $\mathbf{V} \subset \mathbb{R}^n$ is a subspace. Show directly from the definition of a subspace that the set $\mathbf{A}(\mathbf{V}) = \{\mathbf{Av} : \mathbf{v} \in \mathbf{V}\}$ is a subspace of \mathbb{R}^m .

Answer:

With the wording of the question, the matrix A and the subspace V are fixed. The vector in the subspace can vary.

The zero vector $\mathbf{0}_n$ is an element of the subspace \mathbf{V} , so $\mathbf{A0}_n = \mathbf{0}_m$ is an element of $\mathbf{A}(\mathbf{V})$.

If Av^1 and Av^2 are two elements of A(V) and *r* and *s* are real numbers, then $rv^1 + sv^2$ is an element of **V** (because it is a subspace), so $rAv^1 + sAv^2 = A(rv^1 + sv^2)$ is an element of A(V).

Thus, A(V) contains the zero vector and is closed under linear combinations. Therefore, it is a subspace of \mathbb{R}^m .

- 5. (18 Points) Consider the set of polynomials $S = \{1+t^2, 1+2t, 1+3t^2\}$ in \mathbb{P}_2 , the set of polynomials of degree ≤ 2 .
 - **a**. Prove that the set **S** is linearly independent.
 - **b**. Prove that **S** is a basis for \mathbb{P}_2 .

c. Find the coordinate vector $[p(t)]_{\mathbf{S}}$ of the polynomial $p(t) = 7 + 4t + 9t^2$ relative to the basis **S**. **Answer:**

(a) The standard basis of \mathbb{P}_2 is $\mathscr{B} = \{1, t, t^2\}$. Taking the image of the polynomials in **S** by the coordinate map for the standard basis, we get the three vectors $[1 + t^2]_{\mathscr{B}} = (1, 0, 1)^T$, $[1 + 2t]_{\mathscr{B}} = (1, 2, 0)^T$, $[1 + 3t^2]_{\mathscr{B}} = (1, 0, 3)^T$. Putting these three vectors in as columns of a matrix, we get $\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$

 $\begin{bmatrix} 0 & 2 & 0 \\ 1 & 0 & 3 \end{bmatrix}$. This matrix has determinant equal to 4, which is not equal to zero. Therefore, the

columns of the vectors in \mathbb{R}^3 are linearly independent, and so their corresponding polynomials in \mathbb{P}_2 are also linearly independent.

(b) From part (a), the set of "vectors" (or polynomials) in S are linearly independent in \mathbb{P}_2 . The dimension of \mathbb{P}_2 (or \mathbb{R}^3) is 3, so three linearly independent S forms a basis of \mathbb{P}_2 .

(c) The coordinate vector with respect to the standard basis is $[p(t)]_{\mathscr{B}} = (7, 4, 9)^T$. So we need to row reduced the augmented matrix

$$\begin{bmatrix} 1 & 1 & 1 & | & 7 \\ 0 & 2 & 0 & | & 4 \\ 1 & 0 & 3 & | & 9 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 & | & 7 \\ 0 & 1 & 0 & | & 2 \\ 0 & -1 & 2 & | & 2 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & 1 & 1 & | & 7 \\ 0 & 1 & 0 & | & 2 \\ 0 & 0 & 2 & | & 4 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & 0 & 0 & | & 3 \\ 0 & 0 & 0 & | & 2 \\ 0 & 0 & 1 & | & 2 \end{bmatrix}.$$

Thus, the coordinate vector in \mathbb{R}^3 is $[p(t)]_{\mathbf{S}} = (3, 2, 2)^T$ and the relation in \mathbb{P}_2 is $7 + 4t + 9t^2 = 3(1 + t^2) + 2(1 + 2t) + 2(1 + 3t^2)$.