Math 285-1

No calculators, no books, no notes

You do not need to simplify your answer

Show all your work in your bluebook. Start each problem on a new page.

1. (12 Points) Calculate the determinant det
$$\begin{bmatrix} 1 & -2 & 1 & 4 \\ 2 & -4 & 4 & 8 \\ 3 & -4 & 2 & 5 \\ 0 & 2 & -4 & -9 \end{bmatrix}$$
.

- **a**. Find a basis for the nullspace of *A*.
- **b**. Find a basis for the column space of *A*.
- **c**. Find a basis for the row space of *A*.
- **3.** (32 Points) Indicate which of the following statements are always true and which are false (not always true). If the statement is true, give a SHORT justification. If the statement is false, give a SHORT counterexample or explanation. Use complete sentences. Refer to any theorem by an informal statement, not by a theorem number.
 - **a**. If **A** and **B** are $n \times n$ matrices with det(**B**) $\neq 0$, then det(**AB**⁻¹) = det(**A**)/det(**B**).
 - **b**. If the columns of a 3×3 matrix **A** determine a parallelepiped in \mathbb{R}^3 of volume 10, then the volume of the parallelepiped determined by the columns of 2**A** is 20.
 - c. If A is a 3×5 matrix with rank 2, then the dimension of the null space of A is 2.
 - **d**. If **A** is a 5×3 matrix, then the rows of **A** must be linearly dependent.
 - e. Let W be a subspace of V, dim(W) = 4, and dim(V) = 7. Every basis of W can be extended to a basis of V by adding three more vectors to it.
 - **f**. Let **W** be a subspace **V**, dim(**W**) = 4, and dim(**V**) = 7. Every basis \mathscr{B} of **V** can be reduced to a basis of **W** by removing three vectors from \mathscr{B} .
 - **g**. The set of all polynomials p(t) with the property that p(1) = 1 is a subspace of the vector space \mathbb{P} of all polynomials.
 - h. If **H** is a subspace of \mathbb{R}^3 that is not the zero subspace, $\mathbf{H} \neq \{0\}$, then there is a matrix **A** such that $\mathbf{H} = \operatorname{Col}(\mathbf{A})$.
- **4.** (14 Points) Assume **A** is an $m \times n$ matrix and $\mathbf{V} \subset \mathbb{R}^n$ is a subspace. Show directly from the definition of a subspace that the set $\mathbf{A}(\mathbf{V}) = \{\mathbf{Av} : \mathbf{v} \in \mathbf{V}\}$ is a subspace of \mathbb{R}^m .
- 5. (18 Points) Consider the set of polynomials $\mathbf{S} = \{1+t^2, 1+2t, 1+3t^2\}$ in \mathbf{P}_2 , the set of polynomials of degree ≤ 2 .
 - **a**. Prove that the set **S** is linearly independent.
 - **b**. Prove that **S** is a basis for \mathbb{P}_2 .
 - c. Find the coordinate vector $[p(t)]_{s}$ of the polynomial $p(t) = 7 + 4t + 9t^{2}$ relative to the basis S.