Math 285-1

No calculators, no books, no notes

Show all your work in your bluebook. Start each problem on a new page.

1. (16 Points) *Calculate* the determinant det
$$\begin{bmatrix} 1 & 1 & 2 & 1 \\ 0 & 2 & 4 & 6 \\ 1 & 1 & 2 & -1 \\ 1 & 1 & 1 & 2 \end{bmatrix}$$
.

2. (24 Points)

The matrix $\mathbf{A} = \begin{bmatrix} 1 & 1 & -1 & 3 & 9 \\ -1 & 0 & -2 & 0 & 1 \\ 1 & 0 & 2 & 1 & 2 \\ 2 & 1 & 1 & 1 & 2 \end{bmatrix}$ has the reduced echelon form $\mathbf{U} = \begin{bmatrix} 1 & 0 & 2 & 0 & -1 \\ 0 & 1 & -3 & 0 & 1 \\ 0 & 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$.

- a. Give a basis for the nullspace of A and its dimension.
- **b**. *Give* a basis for the column space of **A** and its dimension.
- c. Give a basis for the row space of A and its dimension.
- 3. (18 Points) Assume that \mathbf{v}^1 , \mathbf{v}^2 , and \mathbf{v}^3 are three nonzero vectors in \mathbb{R}^n such that $5\mathbf{v}^1 + 3\mathbf{v}^2 \mathbf{v}^3 = \mathbf{0}$ and such that no pair of vectors is parallel. *Find* a basis of $\mathbf{W} = \text{Span}\{\mathbf{v}^1, \mathbf{v}^2, \mathbf{v}^3\}$ and *explain* why it is a basis.
- 4. (18 Points) Assume that $T : \mathbf{V} \to \mathbf{W}$ is a one-to-one linear transformation between the vector spaces \mathbf{V} and \mathbf{W} and that $\{\mathbf{v}^1, \ldots, \mathbf{v}^k\}$ is a set of linearly independent vectors in \mathbf{V} . *Prove* that $\{T(\mathbf{v}^1), \ldots, T(\mathbf{v}^k)\}$ is a set of linearly independent vectors in \mathbf{W} .
- **5.** (24 Points) *Indicate* which of the following statements are always true (T) and which are false (F). *Justify* each answer by a counterexample or explanation. Refer to any theorem by an informal statement, not by a theorem numbers.
 - **a**. If \mathbf{v}^1 and \mathbf{v}^2 are vectors in \mathbb{R}^2 which determine a parallelogram of area 3 and **A** is a 2 × 2 matrix with determinant 5, then $\mathbf{A}\mathbf{v}^1$ and $\mathbf{A}\mathbf{v}^2$ determine a parallelogram of area 8.
 - **b**. If **A** is an 3×3 matrix with $\mathbf{A}^3 = \mathbf{0}$, then det(**A**) = 0.
 - **c**. If **A** is an 3×3 matrix, then det(-**A**) = det(**A**).
 - **d**. Some subset of the rows of a matrix **A** form a basis of the row space of **A**.
 - e. There is a basis of \mathbb{P}_5 , the polynomials of degree less than or equal to five, that includes the two polynomials $p_1(t) = 1 + t^2 + t^4$ and $p_2(t) = t + t^3$.
 - **f**. If **A** is an $m \times n$ matrix with rank(**A**) = m, then the transformation $\mathbf{x} \mapsto \mathbf{A}\mathbf{x}$ is one-to-one.