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Max and Min

For f : DDD ⊂ Rn → R, f (DDD) = {f (x) : x ∈ DDD }
is set of attainable values of f on DDD , or image of DDD by f .

f has a maximum on DDD at xM ∈ DDD provided that

f (xM) ≥ f (x) for all x ∈ DDD .

max{f (x) : x ∈ DDD } = f (xM), maximum value of f on DDD .

xM is called a maximizer of f on DDD .

arg max{f (x) : x ∈ DDD } = {x ∈ DDD : f (x) = f (xM) }.

f has a minimum on DDD at xm ∈ DDD provided that

f (xm) ≤ f (x) for all x ∈ DDD .

min{f (x) : x ∈ DDD } = f (xm), minimum of f on DDD

arg min{f (x) : x ∈ DDD } = {x ∈ DDD : f (x) = f (xm) }
set of minimizers

f has an extremum at x0 p.t. x0 is either a maximizer or minimizer.
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Basic Optimization Problem

No maximizer or minimizer of f (x) = x3 on (0, 1),

arg max{ x3 : 0 < x < 1 } = ∅, & arg min{ x3 : 0 < x < 1 } = ∅,

Optimization Problem:

Does f (x) attain a maximum (or minimum) for some x ∈ DDD?

If so, what is the maximum value (or minimum value) on DDD and

what are the points at which f (x) attains a maximum (or minimum)
subject to x ∈ DDD?
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Notations

v ≥ w in Rn means vi ≥ wi for 1 ≤ i ≤ n

v � w in Rn means vi > wi for 1 ≤ i ≤ n

Rn
+ = { x ∈ Rn : x ≥ 0 } = { x ∈ Rn : xi ≥ 0 for 1 ≤ i ≤ n }

Rn
++ = { x ∈ Rn : x � 0 } = { x ∈ Rn : xi > 0 for 1 ≤ i ≤ n }
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Linear Programming: 1.4.1 Wheat-Corn Example

Up to 100 acres of land can be used to grow wheat and/or corn:

x1 acres used to grow wheat and

x2 acres used to grow corn: x1 + x2 ≤ 100.

Cost or capital constraint: 5x1 + 10x2 ≤ 800.

Labor constraint: 2x1 + x2 ≤ 150.

Profit: f (x1, x2) = 80x1 + 60x2. Objective function

Problem:
Maximize: 80x1 + 60x2 (profit),
Subject to: x1 + x2 ≤ 100, (land)

5x1 + 10x2 ≤ 800, (capital)
2x1 + x2 ≤ 150, (labor)
x1 ≥ 0, x2 ≥ 0.

All constraints and objective function are linear: lin. programming prob.
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Example, continued

Feasible set FFF is set of all the points satisfying all constraints

x1 + x2 ≤ 100 (land), 5x1 + 10x2 ≤ 800 (capital),
2x1 + x2 ≤ 150 (labor) x1 ≥ 0, x2 ≥ 0.

(0, 0)

(50, 50)

(40, 60)

Vertices of the feasible set: (0, 0), (75, 0), (50, 50), (40, 60), (0, 80).

Other points where two constraints are tight
(

140
3 , 170

3

)
, (100, 0), etc

lie outside the feasible set, 140
3 + 170

3 = 310
3 > 100, 2(100) > 150, . . .
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Example, continued

Since ∇f = (80, 60)>>> 6= (0, 0)>>>,

maximum must be on boundary of FFF .

f (x1, x2) along an edge is linear combination of values at end points.

If a maximizer were in middle of an edge,

then f would have the same value at two end points of this edge.

Maximizer can be found at one of vertices.

Values at vertices:

f (0, 0) = 0, f (75, 0) = 6000, f (50, 50) = 7000,

f (40, 60) = 6800, f (0, 80) = 4800.

max value of f is 7000, maximizer (50, 50). End of Example

Chapter 1: Linear Programming 7



Standard Max Linear Programming Problem (MLP)

Maximize objective function: f (x) = c qx = c1x1 + · · ·+ cnxn,
Subject to resource constraints: a11x1 + · · ·+ a1nxn ≤ b1

...
...

...
am1x1 + · · ·+ amnxn ≤ bm

xj ≥ 0 for 1 ≤ j ≤ n.

Given data: c = (c1, . . . , cn)
>>>, m × n matrix A = (aij),

b = (b1, . . . , bm)>>> with all bi ≥ 0,

Constraints using matrix notation are Ax ≤ b and x ≥ 0.

Feasible set: FFF = { x ∈ Rn
+ : Ax ≤ b }.
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Minimization Example

Minimize: 3x1 + 2x2,
Subject to: 2x1 + x2 ≥ 4,

x1 + x2 ≥ 3,
x1 + 2x2 ≥ 4, x1 ≥ 0, and x2 ≥ 0.

(0, 4)

(1, 2)

(2, 1)

(4, 0)

FFF is unbounded but f (x) ≥ 0 is bded below so f (x) has a minimum.

Vertices: (4, 0), (2, 1), (1, 2), (0, 4)
Values: f (4, 0) = 12, f (2, 1) = 8, f (1, 2) = 7, f (0, 4) = 8.

min{f (x) : x ∈FFF } = 7 arg min{f (x) : x ∈FFF } = {(1, 2)}.
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Geometric Method of Solving Linear Prog Problem

1 Determine or draw the feasible set FFF .

If FFF = ∅, then problem has no optimal solution,

problem is called infeasible

2 Problem is called unbounded and has no solution p.t.

objective function on FFF has

a. arbitrarily large positive values for a maximization problem, or

b. arbitrarily large negative values for a minimization problem.

3 A problem is called bounded p.t. it is not infeasible nor unbounded;

an optimal solution exists.

Determine all the vertices of FFF and values at vertices.

Choose the vertex of FFF producing the maximum or minimum value

of the objective function.
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Rank of a Matrix

Rank of a matrix A is dimension of column space of A.

i.e., largest number of linearly independent columns of A.

Same as number of pivots (in row reduced echelon form of A).

rank(A) = k iff k ≥ 0 is the largest integer s.t. det(Ak) 6= 0,

where Ak is any k × k submatrix of A

formed by selecting any k columns and any k rows.

Ak is submatrix of pivot columns and rows.

Sketch: Let A′ be submatrix with k linearly independent columns

that span column space; rank(A′) = k

dim(row space of A′) = k, so k rows of A′ to get k × k Ak

with rank(Ak) = k, so det(Ak) 6= 0.
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Slack Variables

For large number of variables, need a practical algorithm.

Simplex method uses row reduction as solution method.

First step: make all the inequalities of type xi ≥ 0.

Inequality of the form ai1x1 + · · ·+ ainxn ≤ bi for bi ≥ 0 is called

resource constraint.

For resource constraint, introduce slack variable si by

ai1x1 + · · ·+ ainxn + si = bi with si ≥ 0.

si represents unused resource.

Introduction of a slack variable changes a resource constraint into

equality constraint and si ≥ 0.
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Introducing Slack Variables into Wheat-Corn Example

x1 + x2 + s1 = 100,
5x1 + 10x2 + s2 = 800,
2x1 + x2 + s3 = 150, s1, s2, s3 ≥ 0.

In matrix form,

Maximize: (80, 60, 0, 0, 0) q (x1, x2, s1, s2, s3) = 80 x1 + 60 x2

Subj. to:

1 1 1 0 0
5 10 0 1 0
2 1 0 0 1




x1

x2

s1
s2
s3

 =

100
800
150

 and

x1 ≥ 0,
x2 ≥ 0,
s1 ≥ 0,
s2 ≥ 0,
s3 ≥ 0.

Because of 1’s and 0’s in last 3 columns of matrix, rank is 3.

Initial feasible solution x1 = 0 = x2, s1 = 100, s2 = 800, s3 = 150
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Wheat-Corn Example, continued

 1 1 1 0 0
5 10 0 1 0
2 1 0 0 1




x1

x2

s1
s2
s3

 =

100
800
150

 with xi ≥ 0, and si ≥ 0.

Initial feasible sol’n: p0 = (0, 0, 100, 800, 150)>>> with f (p0) = 0.

Rank is 3, so 5− 3 = 2 free variables. x1, x2.

p0 obtained by setting free variables x1 = x2 = 0

and solving for dependent variables, which are 3 slack variables.

“Pivot” to make a different pair the free variables equal to zero and

a different triple of positive variables.
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Wheat-Corn Example, continued

s1
s2

s3

p0 p1

If leave the vertex (x1, x2) = (0, 0), or p0 = (0, 0, 100, 800, 150),

making x1 > 0 entering variable while keeping x2 = 0;

first slack variable to become zero is s3 when x1 = 75.

Arrive at the vertex (x1, x2) = (75, 0), or p1 = (75, 0, 25, 425, 0).

New sol’n has two zero variables and three positive variables.

Move along one edge from p0 to p1.

f (p1) = 80(75) = 6000 > 0 = f (p0).

p1 is a better feasible sol’n than p0.
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Wheat-Corn Example, continued

p1
p0

p2

p3

s1
s2

s3

p1 = (75, 0, 25, 425, 0).

Repeat, leaving p1 by making x2 > 0 entering variable

while keeping s3 = 0. First other variable to become zero is s1.

Arrive p2 = (50, 50, 0, 50, 0)

f (p2) = 80(50) + 60(50) = 7000 > 6000 = f (p1).

p2 is a better feasible solution than p1.

Have moved along another edge of the feasible set from

(x1, x2) = (75, 0) and arrived at (x1, x2) = (50, 50).
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Wheat-Corn Example, continued

If leave p2 by making s3 > 0 entering variable while keeping s1 = 0,

first variable to become zero is s2, arrive at p3 = (40, 60, 0, 0, 10).

f (p3) = 80(40) + 60(60) = 6800 < 7000 = f (p2).

p3 is worse feasible solution than p2.

Let z ∈FFF r {p2}. v = z− p2, vj = pj − p2.

f (v1) = f (p1)− f (p2) < 0, f (v3) = f (p3)− f (p2) < 0

v1 & v3 are basis of R2, so v = y1 v1 + y3 v3 with y1, y3 ≥ 0.

v 6= 0 points into FFF , so (i) y1, y3 ≥ 0 and (ii) y1 > 0 or y3 > 0.

f (z) = f (p2) + f (v) = f (p2) + y1 f (v1) + y3 f (v3) < f (p2)

Since cannot increase f by moving along either edge going out from p2,

p2 is an optimal feasible solution.
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Wheat-Corn Example, continued

In this example,

p0 = (0, 0, 100, 800, 150), p1 = (75, 0, 25, 425, 0),

p2 = (50, 50, 0, 50, 0), p3 = (40, 60, 0, 0, 10),

p4 = (0, 80, 20, 0, 70)

are called basic solutions

since at most 3 variables are positive,

where 3 is the rank (and number of constraints).

End of Example
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Slack Variables added to a Standard Lin Prog Prob, MLP

All resource constraints

Given b = (b1, . . . , bm)>>> ∈ Rm
+, c = (c1, . . . , cn)

>>> ∈ Rn,

m × n matrix A = (aij).

Find x ∈ Rn
+ and s ∈ Rm

+ that

maximize: f (x) = c qx
subject to: a11x1 + · · ·+ a1nxn + s1 = b1

...
...

...
am1x1 + · · ·+ amnxn + sm = bm

xi ≥ 0, sj ≥ 0 for 1 ≤ i ≤ n, 1 ≤ j ≤ m.

Using matrix notation with I m ×m identity matrix,

maximize f (x) subject to [A, I]

[
x
s

]
= b with x ≥ 0, s ≥ 0.

Indicate partition of augmented matrix by extra vertical lines [A | I |b]
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Basic Solutions

Assume Ā m × (n + m) matrix with rank m (like Ā = [A, I] )

m dependent variables are called basic variables. (var of pivot col’ns)

n free variables are called non-basic variables. (var of non-pivot col’ns)

A basic solution is a solution p satisfying Āp = b

such that columns corresponding to pi 6= 0 are linearly indep.

≤ rank(A) = m.

If p is also feasible with p ≥ 0, then called a basic feasible solution.

Obtain by setting n free variables = 0, and get basic variables ≥ 0,

allow possibly some basic variables = 0
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Linear Algebra Solution of Wheat-Corn Problem

Augmented matrix for the original wheat-corn problem is
x1 x2 s1 s2 s3
1 1 1 0 0 100
5 10 0 1 0 800
2 1 0 0 1 150


with free variables x1 and x2 and basic variables s1, s2, and s3.

If make x1 > 0 while keeping x2 = 0, x1 becomes a new basic variable

( for new pivot coln ) called entering variable.

(i) s1 will become zero when x1 = 100
1 = 100,

(ii) s2 will become zero when x1 = 800
5 = 160, and

(iii) s3 will become zero when x1 = 150
2 = 75.

Since s3 becomes zero for the smallest value of x1,

s3 is the departing variable and

new pivot is 1st column (for x1) and 3rd row ( old pivot for s3 )
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First Pivot

Row reducing to make a pivot in first column third row,
x1 x2 s1 s2 s3
1 1 1 0 0 100
5 10 0 1 0 800
2 1 0 0 1 150

 ∼


x1 x2 s1 s2 s3
0 .5 1 0 .5 25
0 7.5 0 1 2.5 425
1 .5 0 0 .5 75


Setting free variables x2 = s3 = 0,

new basic solution p1 = (75, 0, 25, 425, 0)>>>.

Entries in the right (augmented) column give

values of the new basic variables that are > 0.
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Including Objective Function in Matrix

Objective function (or variable) is

f = 80x1 + 60x2, or −80x1 − 60x2 + f = 0.

Adding a row for this equation and a column for variable f

keeps track of the value of f during row reduction.
x1 x2 s1 s2 s3 f

1 1 1 0 0 0 100
5 10 0 1 0 0 800
2 1 0 0 1 0 150

80 60 0 0 0 1 0


This matrix including objective function row is called tableau.

Entries in column for f are 1 in objective function row and 0 elsewhere.

In objection function row of this tableau, entries for xi are negative.
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First Pivot, continued

Row reducing tableau by making

first column and third row a new pivot,
x1 x2 s1 s2 s3 f

1 1 1 0 0 0 100
5 10 0 1 0 0 800
2 1 0 0 1 0 150

80 60 0 0 0 1 0



∼


x1 x2 s1 s2 s3 f

0 .5 1 0 .5 0 25
0 7.5 0 1 2.5 0 425
1 .5 0 0 .5 0 75

0 20 0 0 40 1 6000


For x2 = s3 = 0, x1 = 75 > 0, s1 = 25 > 0, s2 = 425 > 0,

Bottom right entry of 6000 is new value of f
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Second Pivot
x1 x2 s1 s2 s3 f

0 .5 1 0 .5 0 25
0 7.5 0 1 2.5 0 425
1 .5 0 0 .5 0 75

0 20 0 0 40 1 6000


x2 & s3 free (non-basic) variables

If pivot back to make s3 > 0, the value of f becomes smaller,

so select x2 as the next entering variable, keeping s3 = 0.

(i) s1 becomes zero when x2 = 25
.5 = 50, and

(ii) s2 becomes zero when x2 = 425
7.5 = 56.67.

(iii) x1 becomes zero when x2 = 75
.5 = 150,

Since the smallest positive value of x1 comes from s1,

s1 is the departing variable and pivot on 1st row 2nd column.
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Second Pivot, contin.

Pivot on 1st row 2nd column,
x1 x2 s1 s2 s3 f

0 .5 1 0 .5 0 25
0 7.5 0 1 2.5 0 425
1 .5 0 0 .5 0 75

0 20 0 0 40 1 6000

∼


x1 x2 s1 s2 s3 f

0 1 2 0 1 0 50
0 0 15 1 5 0 50
1 0 1 0 1 0 50

0 0 40 0 20 1 7000


Entries in column for f don’t change.

f = 7000 objective function
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Third Pivot

Why does the objective function decrease when moving along the edge

making s3 > 0 an entering variable, keeping s1 = 0?

(i) x1 becomes zero when s3 = 50
1 = 50,

(ii) x2 becomes zero when s3 = 50
1 = 50, and

(iii) s2 becomes zero when s3 = 50
5 = 10.

Smallest positive value of s3 comes from s2,
and pivot on the 2nd row 5th column.

x1 x2 s1 s2 s3 f

0 1 2 0 1 0 50
0 0 15 1 5 0 50
1 0 1 0 1 0 50

0 0 40 0 20 1 7000

 ∼


x1 x2 s1 s2 s3 f

0 1 1 0 0 0 60
0 0 3 .2 1 0 10
1 0 2 2 0 0 40

0 0 100 4 0 1 6800


Value of objective function decreases since the entry is already positive

before pivot in column for s3 of the objective function row
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Tableau

Drop the column for the variable f from augmented matrix

since it does not play a role in the row reduction.

(entry in last row stays = 1 and others stay = 0)

Augmented matrix with objective function row

but without column for objective function variable

is called the tableau.
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Steps in the Simplex Method for Stand MLP

1 Set up the tableau so that all bi ≥ 0. An initial feasible basic
solution is determined by setting xi = 0 and solving for si .

2 Choose as entering variable any free variable with a negative entry in
objection function row. (often most negative)

3 From column selected in previous step, select row for which ratio of
entry in augmented column divided by entry in column selected is
smallest value ≥ 0; departing variable is basic variable for this row.

Row reduce the matrix using selected new pivot position.

4 Objective function has no upper bound and no optimal solution
when one column has only nonpositive coefficients above a negative
coefficient in objective function row.

5 Solution is optimal when all entries in objective function row are
nonnegative.

6 If optimal tableau has zero entry in objective row for nonbasic variable
and all basic variables are positive, then nonunique solution.
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General Constraints: Requirement Constraints

All bi ≥ 0 (by multiplying inequalities by 1 if necessary.)

Requirement constraint is given by

ai1x1 + · · ·+ ainxn ≥ bi (occur especially for a min problem.)

Require to have at least a minimum amount to quantity.

Can have a surplus of quantity,

so subtract off a surplus variable to get equality

ai1x1 + · · ·+ ainxn − si = bi with si ≥ 0.

To solve equation initially, also add an artificial variable ri ≥ 0,

ai1x1 + · · ·+ ainxn − si + ri = bi .

(Walker uses ai , but we use ri to distinguish from matrix aij .)

Initial sol’n sets the artificial variable ri = bi while si = 0 = xj ∀ j .
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Equality Constraints

For an equality constraint ai1x1 + · · ·+ ainxn = bi ,

add one artificial variable

ai1x1 + · · ·+ ainxn + ri = bi ,

with an initial solution ri = bi ≥ 0 while the xj = 0.

For general constraints (with either requirement or equality constraint)

initial solution has all xi = 0 and all surplus variables zero,

while slack variables and artificial variables ≥ 0.

This sol’n is not feasible if any artificial variables is positive

for a requirement constraint or an equality constraint
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Minimization Example

Assume two foods are consumed in amounts x1 and x2

with costs per unit of 15 and 7 respectively, and

yield (5, 3, 5) and (2, 2, 1) units of three vitamins respectively.

Problem is to minimize cost 15 x1 + 7 x2 or

Maximize: 15 x1 7 x2

Subject to: 5 x1 + 2 x2 ≥ 60
3 x1 + 2 x2 ≥ 40, and
5 x1 + 1 x2 ≥ 35.

x = 0 not a feasible sol’n,

initial sol’n involves the artificial variables
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Minimization Example, continued

The tableau is
x1 x2 s1 s2 s3 r1 r2 r3
5 2 1 0 0 1 0 0 60
3 2 0 1 0 0 1 0 40
5 1 0 0 1 0 0 1 35

15 7 0 0 0 0 0 0 0


To eliminate artificial variables, preliminary steps

to force all artificial variables to be zero.

Use artificial objective function that is

negative sum of equations that contain artificial variables,

13x1 5x2 + s1 + s2 + s3 + ( r1 r2 r3) = 135.

13x1 5x2 + s1 + s2 + s3 + R = 135

R = r1 r2 r3 ≤ 0 new variable, with max of 0.
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Minimization Example, continued

Tableau with the artificial objective function included
(but not a column for the variable R) is

x1 x2 s1 s2 s3 r1 r2 r3
5 2 1 0 0 1 0 0 60
3 2 0 1 0 0 1 0 40
5 1 0 0 1 0 0 1 35

15 7 0 0 0 0 0 0 0
13 5 1 1 1 0 0 0 135


If artificial objective function can be made equal zero,

then this gives an initial feasible basic solution with ri = 0

and only original and slack variables positive.

Then, artificial variables can be dropped and proceed as before.
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Minimization Example, continued

13 < 5

x1 x2 s1 s2 s3 r1 r2 r3
5 2 1 0 0 1 0 0 60
3 2 0 1 0 0 1 0 40
5 1 0 0 1 0 0 1 35

15 7 0 0 0 0 0 0 0
13 5 1 1 1 0 0 0 135


35
5 = 7 < 40

3 ≈ 13.3, 60
5 = 12: Pivoting on a31 (making into a pivot)

∼



x1 x2 s1 s2 s3 r1 r2 r3
0 1 1 0 1 1 0 1 25

0 7
5 0 1 3

5 0 1 3
5 19

1 1
5 0 0 1

5 0 0 1
5 7

0 4 0 0 3 0 0 3 105

0 12
5 1 1 8

5 0 0 13
5 44


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Minimization Example, continued

Pivoting on a22 (19× 5
7 ≈ 13.57 < 25 < 7× 5)

x1 x2 s1 s2 s3 r1 r2 r3
0 1 1 0 1 1 0 1 25

0 7
5 0 1 3

5 0 1 3
5 19

1 1
5 0 0 1

5 0 0 1
5 7

0 4 0 0 3 0 0 3 105

0 12
5 1 1 8

5 0 0 13
5 44



∼



x1 x2 s1 s2 s3 r1 r2 r3

0 0 1 5
7

4
7 1 5

7
4
7

80
7

0 1 0 5
7

3
7 0 5

7
3
7

95
7

1 0 0 1
7

2
7 0 1

7
2
7

30
7

0 0 0 20
7

9
7 0 20

7
9
7

1115
7

0 0 1 5
7

4
7 0 12

7
11
7

80
7


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Minimization Example, continued

Pivoting on a14 yields an initial feasible basic solution:

x1 x2 s1 s2 s3 r1 r2 r3

0 0 1 5
7

4
7 1 5

7
4
7

80
7

0 1 0 5
7

3
7 0 5

7
3
7

95
7

1 0 0 1
7

2
7 0 1

7
2
7

30
7

0 0 0 20
7

9
7 0 20

7
9
7

1115
7

0 0 1 5
7

4
7 0 12

7
11
7

80
7



∼



x1 x2 s1 s2 s3 r1 r2 r3

0 0 7
5 1 4

5
7
5 1 4

5 16

0 1 1 0 1 1 0 1 25

1 0 1
5 0 2

5
1
5 0 2

5 2

0 0 4 0 1 4 0 1 205
0 0 0 0 0 1 1 1 0


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Minimization Example, continued

After these two steps, (2, 25, 0, 16, 0) is an initial feasible basic solution

and artificial variables can be dropped.

Pivoting on a15 yields final solution:


x1 x2 s1 s2 s3

0 0 7
5 1 4

5 16

0 1 1 0 1 25

1 0 1
5 0 2

5 2

0 0 4 0 1 205

 ∼


x1 x2 s1 s2 s3

0 0 7
4

5
4 1 20

0 1 3
4

5
4 0 5

1 0 1
2

1
2 0 10

0 0 9
4

5
4 0 185

 .

All entries in the obj fn are positive, so maximal solution:

(10, 5, 0, 0, 20) with an value of 185.

For original problem, minimal sol’n has value of 185.

End of Example
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Steps in Simplex Method w/ General Constraints

1 Make all bi ≥ 0 of constraints by multiplying by 1 if necessary.

2 Add a slack variable for each resource inequality, add a surplus
variable and an artificial variable for each requirement constraint, and
add an artificial variable for each equality constraint.

3 If either requirement constraints or equality constraints are present,
then form artificial objective function by taking negative sum of all
equations that contain artificial variables,
dropping terms involving artificial variables.

Set up tableau matrix. (The row for artificial objective function has
zeroes in the columns of the artificial variables.)

An initial solution of equations including artificial variables is
determined by setting all original variables xj = 0,
all slack variables si = bi , all the surplus variables si = 0,
and all artificial variables ri = bi .
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Steps for General Constraints, continued

4 Apply simplex algorithm using artificial objective function.

a. If it is not possible to make artificial objective function equal to zero,
then there is no feasible solution.

b. If the artificial variables can be made equal to zero, then drop
artificial variables and artificial objective function from tableau and
continue using initial feasible basic solution constructed.

5 Apply simplex algorithm to actual objective function.
Solution is optimal when all entries in objective function row are
nonnegative.
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Example with Equality Constraint

Consider the problem of
Maximize: 3 x1 + 4 x2

Subject to: 2 x1 + x2 ≤ 6, and
2 x1 + 2 x2 ≥ 24,
x1 = 8,
x1 ≥ 0, x2 ≥ 0.

With slack, surplus, and artificial variables added the problem becomes
Maximize: 3 x1 + 4 x2

Subject to: 2 x1 + x2 + s1 = 6
2 x1 + 2 x2 − s2 + r2 = 24
x1 + r3 = 8.

Artificial obj fn is negative sum of the 2nd and 3rd rows

3 x1 − 2 x2 + s2 + R = 32 where R = r2 − r3
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Example, continued

The tableau with variables is

x1 x2 s1 s2 r2 r3
2 1 1 0 0 0 6
2 2 0 1 1 0 24
1 0 0 0 0 1 8

3 4 0 0 0 0 0
3 2 0 1 0 0 32


Pivoting on a31 and then a22,

∼



x1 x2 s1 s2 r2 r3
0 1 1 0 0 2 22
0 2 0 1 1 2 8
1 0 0 0 0 1 8

0 4 0 0 0 3 24
0 2 0 1 0 3 8

 ∼


x1 x2 s1 s2 r2 r3

0 0 1 1
2

1
2 3 18

0 1 0 1
2

1
2 1 4

1 0 0 0 0 1 8

0 0 0 2 2 1 40
0 0 0 0 1 1 0


Attained a feasible solution of (x1, x2, s1, s2) = (8, 4, 18, 0).
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Example, continued

Can now drop artificial objective function and artificial variables.

Pivoting on a1,4
x1 x2 s1 s2

0 0 1 1
2 18

0 1 0 1
2 4

1 0 0 0 8

0 0 0 2 40

 ∼


x1 x2 s1 s2
0 0 2 1 36
0 1 1 0 22
1 0 0 0 8

0 0 4 0 112


Optimal solution of f = 112 for (x1, x2, s1, s2) = (8, 22, 0, 36).

End of Example
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Duality: Introductory Example

Return to wheat-corn problem (MLP).

Maximize: z = 80x1 + 60x2

subject to: x1 + x2 ≤ 100, (land)
5x1 + 10x2 ≤ 800, (capital)
2x1 + x2 ≤ 150, (labor), x1, x2 ≥ 0

Assume excess resources can be rented out or shortfalls rented
for prices of y1, y2, and y3. (Shadow prices of inputs.)

Profit P = 80x1 + 60x2 + (100− x1 − x2)y1

+(800− 5x1 − 10x2)y2 + (150− 2x1 − x2)y3

If profit by renting outside land, then competitors raise price of land
force farmer 100− x1 − x2 ≥ 0.

If 100− x1 − x2 > 0, then market sets y1 = 0.

(100− x1 − x2)y1 = 0 at optimal

Similar other constraints, Farmer’s perspective yields original MLP
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Duality: Introductory Example, contin.

P = 80x1 + 60x2 + (100 x1 x2)y1 + (800 5x1 10x2)y2 + (150 2x1 x2)y3

If a resource is slack, 100− x1 − x2 > 0, then market sets y1 = 0.

Market is minimizing P as function of (y1, y2, y3)

Rearranging profit function from markets perspective yields

P = (80 y1 5y2 2y3)x1 + (60 y1 10y2 y3)x2 + 100y1 + 800y2 + 150y3

Coefficients of xi represents net profit after costs of unit of i th-good

If net profit > 0, the competitors grow wheat/corn. Force ≤ 0,

80− y1 − 5y2 − 2y3 ≤ 0 or 80 ≤ y1 + 5y2 + 2y3

60− y1 − 10y2 − y3 ≤ 0 or 60 ≤ y1 + 10y2 + y3

If a resource is slack, 100− x1 − x2 > 0, then market sets y1 = 0.

0 = (100− x1 − x2)y1 0 = (800− 5x1 − 10x2)y2

0 = (150− 2x1 − x2)y3

Market is minimizing P = 100y1 + 800y2 + 150y3
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Duality: Introductory Example, contin.

Market’s perspective results in dual minimization problem:

Minimize: w = 100y1 + 800y2 + 150y3

Subject to: y1 + 5y2 + 2y3 ≥ 80, (wheat)
y1 + 10y2 + y3 ≥ 60, (corn)
y1, y2, y3 ≥ 0.

MLP: Maximize: z = 80x1 + 60x2

Subject to: x1 + x2 ≤ 100,
5x1 + 10x2 ≤ 800,
2x1 + x2 ≤ 150, x1, x2 ≥ 0

1. Coefficient matrices of xi and yi are transposes of each other.

2. Coefficients for objective function of MLP
become constants for inequalities of dual mLP.

3. Constants for inequalities of MLP
become coefficients for objective function of dual mLP.
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Duality: Introductory Example, contin.

For the wheat-corn MLP problem, final tableau


x1 x2 s1 s2 s3
1 1 1 0 0 100
5 10 0 1 0 800
2 1 0 0 1 150

80 60 0 0 0 0

 ∼


x1 x2 s1 s2 s3
0 1 2 0 1 50
0 0 15 1 5 50
1 0 1 0 1 50

0 0 40 0 20 7000


Optimal sol’n MLP is

x1 = 50 and x2 = 50 with a payoff of 7000.

Optimal sol’n dual mLP is (by theorem given later)

y1 = 40, y2 = 0, and y3 = 20 with the same payoff,

where 40, 0, and 20 are entries in bottom row of final tableau

in columns associated with slack variables.
End of Example
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Example, Bicycle Manufacturing

A bicycle manufacturer manufactures x1 3-speeds and x2 5-speeds.

Maximize profits given by z = 12x1 + 15x2.

Constraints are
20 x1 + 30 x2 ≤ 2400 finishing time in minutes,
15 x1 + 40 x2 ≤ 3000 assembly time in minutes,
x1 + x2 ≤ 100 frames used for assembly,
x1 ≥ 0 x2 ≥ 0.

Dual problem is

Minimize: w = 2400 y1 + 3000 y2 + 100 y3,
Subject to: 20 y1 + 15 y2 + y3 ≥ 12,

30 y1 + 40 y2 + y3 ≥ 15,
y1 ≥ 0, y2 ≥ 0, y3 ≥ 0.
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Bicycle Manufacturing, contin.

MLP
x1 x2 s1 s2 s3
20 30 1 0 0 2400
15 40 0 1 0 3000
1 1 0 0 1 100

12 15 0 0 0 0

 ∼


x1 x2 s1 s2 s3
0 10 1 0 20 400
0 25 0 1 15 1500
1 1 0 0 1 100

0 3 0 0 12 1200



∼



x1 x2 s1 s2 s3

0 1 1
10 0 2 40

0 0 5
2 1 35 500

1 0 1
10 0 3 60

0 0 3
10 0 6 1320


Optimal sol’n has x1 = 60 3-speeds, x2 = 40 5-speeds,

with a profit of $1320.
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Bicycle Manufacturing, continued



x1 x2 s1 s2 s3
0 1 1

10 0 2 40

0 0 5
2 1 35 500

1 0 1
10 0 3 60

0 0 3
10 0 6 1320


yi are marginal values of corresponding constraint.

Dual problem has a solution of

y1 = 3
10 profit per finishing minute,

y2 = 0 profit per assembly minute

y3 = 6 profit per frame.

Additional units of the exhausted resources, finishing time and frames,

contribute to the profit but not assembly time.
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Rules for Forming Dual LP

Maximization Problem, MLP Minimization Problem, mLP

i th constraint
∑

j aijxj ≤ bi i th variable 0 ≤ yi

i th constraint
∑

j aijxj ≥ bi i th variable 0 ≥ yi

i th constraint
∑

j aijxj = bi i th variable yi unrestricted

j th variable 0 ≤ xj j th constraint
∑

i aijyi ≥ cj

j th variable 0 ≥ xj j th constraint
∑

i aijyi ≤ cj

j th variable xj unrestricted j th constraint
∑

i aijyi = cj

Standard conditions for MLP,
∑

j aijxj ≤ bi or 0 ≤ xj , corresp to

standard conditions for mLP, 0 ≤ yi or
∑

i aijyi ≥ cj

Nonstandard conditions, ≥ bi or 0 ≥ xj , corresp to nonstand conditions

Equality constraints correspond to unrestricted variables

These rules follow from proof of Duality Theorem (given subsequently)

Chapter 1: Linear Programming 51



Example

Minimize : 8y1 + 10y2 + 4y3

Subject to : 4y1 + 2y2 − 3y3 ≥ 20
2y1 + 3y2 + 5y3 ≤ 150
6y1 + 2y2 + 4y3 = 40
y1 unrestricted, y2 ≥ 0, y3 ≥ 0

By table, dual maximization problem is

Maximize : 20x1 + 150x2 + 40x3

Subject to : 4x1 + 2x2 + 6x3 = 8
2x1 + 3x2 + 2x3 ≤ 10
3x1 + 5x2 + 4x3 ≤ 4

x1 ≥ 0, x2 ≤ 0, x3 unrestricted

Chapter 1: Linear Programming 52



Example, continued

Maximize : 20x1 + 150x2 + 40x3

Subject to : 4x1 + 2x2 + 6x3 = 8
2x1 + 3x2 + 2x3 ≤ 10
3x1 + 5x2 + 4x3 ≤ 4

x1 ≥ 0, x2 ≤ 0, x3 unrestricted

By making change of variables x2 = v2 and x3 = v3 − w3,

all restrictions on variables are ≥ 0:

Maximize : 20x1 − 150v2 + 40v3 − 40w3

Subject to : 4x1 − 2v2 + 6v3 − 6w3 = 8
2x1 − 3v2 + 2v3 − 2w3 ≤ 10
3x1 − 5v2 + 4x3 − 4w3 ≤ 4

x1 ≥ 0, v2 ≥ 0, v3 ≥ 0, w3 ≥ 0
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Example, continued

Tableau for maximization problem with variables x1, v2, v3, w3,

with artificial variable r1, and with slack variables s2 and s3 is

x1 v2 v3 w3 s2 s3 r1
4 2 6 6 0 0 1 8
2 3 2 2 1 0 0 10
3 5 4 4 0 1 0 4

20 150 40 40 0 0 0 0
4 2 6 6 0 0 0 8



∼



x1 v2 v3 w3 s2 s3 r1

1 1
2

3
2

3
2 0 0 1

4 2

0 2 1 1 1 0 1
2 6

0 13
2

17
2

17
2 0 1 3

4 10

0 140 10 10 0 0 5 40
0 0 0 0 0 0 1 0


.
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Example, continued

Drop artificial objective function but keep artificial variable

to determine value of its dual variable.

x1 v2 v3 w3 s2 s3 r1

1 1
2

3
2

3
2 0 0 1

4 2

0 2 1 1 1 0 1
2 6

0 13
2

17
2

17
2 0 1 3

4 10

0 140 10 10 0 0 5 40



∼



x1 v2 v3 w3 s2 s3 r1

1 11
17 0 0 0 3

17
2
17

4
17

0 47
17 0 0 1 2

17
7
17

122
17

0 13
17 1 1 0 2

17
3
34

20
17

0 2250
17 0 0 0 20

17
100
17

880
17


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Example, continued



x1 v2 v3 w3 s2 s3 r1

1 11
17 0 0 0 3

17
2
17

4
17

0 47
17 0 0 1 2

17
7
17

122
17

0 13
17 1 1 0 2

17
3
34

20
17

0 2250
17 0 0 0 20

17
100
17

880
17


Optimal solution of MLP is

x1 = 4
17 , x2 = v2 = 0,

x3 = v3 − w3 = 20
17 − 0 = 20

17 ,

s2 = 122
17 , and s3 = r1 = 0

with a maximal value 20
(

4
17

)
+ 150(0) + 40

(
20
17

)
= 880

17 .
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Example, continued

Optimal solution for original mLP can be also read off final tableau,

x1 v2 v3 w3 s2 s3 r1

1 11
17 0 0 0 3

17
2
17

4
17

0 47
17 0 0 1 2

17
7
17

122
17

0 13
17 1 1 0 2

17
3
34

20
17

0 2250
17 0 0 0 20

17
100
17

880
17


y1 = 100

17 , y2 = 0, y3 = 20
17 ,

and minimal value

8
(

100
17

)
+ 10 (0) + 4

(
20
17

)
= 880

17 .
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Example, continued

Alternatively method: First write minimization problem in

with variables ≥ 0 by setting y1 = u1 − z1,

Minimize : 8u1 − 8z1 + 10y2 + 4y3

Subject to : 4u1 − 4z1 + 2y2 − 3y3 ≥ 20
2u1 − 2z1 + 3y2 + 5y3 ≤ 150
6u1 − 6z1 + 2y2 + 4y3 = 40
u1 ≥ 0, z1 ≥ 0, y2 ≥ 0, y3 ≥ 0

Dual MLP will now have a different tableau than before

but the same solution.
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Remark on Tableau with Surplus/Equal

After artificial objective function is zero

drop this row but keep artificial variables

to determine values of dual variables.

Proceed to make all the entries of row for objective function

≥ 0 in columns of xi , slack and surplus variable,

but allow negative values in artificial variable columns.

Dual variables are entries in row for objective function

in columns of slack variables and artificial variables.

For pair of surplus and artificial variable columns,

value in artificial variable column is ≤ 0 and

1 of value in surplus variable column.
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Notation for Duality Theorems

MLP: (primal) maximization linear programming problem

Maximize: f (x) = c qx
Subject to:

∑
j aijxj ≤ bi , ≥ bi , or = bi for 1 ≤ i ≤ m and

xj ≥ 0, ≤ 0, or unrestricted for 1 ≤ j ≤ n
Feasible set: FFFM .

mLP: (dual) minimization linear programming problem

Minimize: g(y) = b qy
Subject to:

∑
i aijyi ≥ cj , ≤ cj , or = cj for 1 ≤ j ≤ n and

yi ≥ 0, ≤ 0, or unrestricted for 1 ≤ i ≤ m
Feasible set: FFFm.

Dual of the minimization problem is the maximization problem.
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Weak Duality Theorem

Theorem (Weak Duality Theorem)

Let x ∈FFFM for MLP and y ∈FFFm for mLP, any feasible solutions.

a. Then, f (x) = c qx ≤ b qy = g(y).

Thus, optimal value M to either problem satisfies
c qx ≤ M ≤ b qy for any x ∈FFFM and y ∈FFFm.

b. c qx = b qy iff x & y satisfy complementary slackness

0 = yj(bj − aj1x1 − · · · − ajnxn) for 1 ≤ j ≤ m, and

0 = xi (a1iy1 + · · ·+ amiym − ci ) for 1 ≤ i ≤ n.

In matrix notation,

0 = y q (b− Ax) and

0 = x q (A>>>y − c
)
.
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Complementary Slackness

For linear programming usually solve by simplex method, row reduction

In nonlinear programming with inequalities often solve

complementary slackness equations,

Karush-Kuhn-Tucker equations
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Proof of Weak Duality Theorem

(1) If
∑

j aijxj ≤ bi then yi ≥ 0 and yi (Ax)i = yi
∑

j aijxj ≤ yi bi .

If
∑

j aijxj ≥ bi then yi ≤ 0 and yi (Ax)i = yi
∑

j aijxj ≤ yi bi .

If
∑

j aijxj = bi then yi is arb and yi (Ax)i = yi
∑

j aijxj = yi bi .

Summing over i

y qAx =
∑

i yi (Ax)i ≤
∑

i yi bi = y qb or y>>> (b− Ax) ≥ 0.

(2) By same type of argument as (1),

c qx ≤ x q (A>>>y
)

=
(
A>>>y

)>>>
x = y>>> (Ax) = y qAx(

A>>>y − c
)>>>

x ≥ 0.

c qx ≤ y qAx ≤ y qb (a)

(b) y qb− c qx = y>>> (b− Ax) +
(
A>>>y − c

)>>>
x = 0 iff

0 =
(
A>>>y − c

) qx and 0 = y q (b− Ax). QED

Chapter 1: Linear Programming 63



Feasibility/Boundedness

Corollary

Assume that MLP and mLP both have feasible solutions.

Then MLP is bounded above and has an optimal solution.

Also, mLP is bounded below and has an optimal solution.

Proof.

If y0 ∈FFFm and x ∈FFFM , then

f (x) = c qx ≤ b qy0

so f is bounded above, and has an optimal solution.

Similarly, if x0 ∈FFFM , and y ∈FFFm then

g(y) = b qy ≥ c qx0

so g is bounded below, and has an optimal solution.
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Necessary Conditions for Optimal Solution

Proposition

If x̄ is an optimal solution for MLP,

then there is a feasible solution ȳ ∈ FFFm of the dual mLP

that satisfies complementary slackness equations,

1. ȳ q (b− Ax̄) = 0,

2.
(
A>>>ȳ − c

) q x̄ = 0.

Similarly, if ȳ ∈ FFFm is optimal solution of mLP,

then there is a feasible solution x̄ ∈FFFM that satisfy 1-2.

Proof is longest of duality arguments.

Prove similar necessary conditions for nonlinear situation.
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Proof of Necessary Conditions

Let E be set of i such that bi =
∑

j aij x̄j , i.e. is tight or effective.

Gradient of this constraint is transpose of i th-row of A, R>>>i ,

Let E′ be set of i such that xi = 0 is tight.

ei = (0, . . . , 1, . . . , 0)>>> is negative of gradient

Assume nondegenerate, so gradients of constraints

{RT
i }i∈E ∪ { ei}i∈E′ = {wi}i∈E′′ are linearly independent.

(Otherwise take an appropriate subset in following argument.)

f has a maximum at x̄ on level set for constraints i ∈ E ∪ E′.

By Lagrange multipliers,

∇f (x̄) = c =
∑

i∈E ȳi R
T
j −

∑
i∈E′ z̄i ei

By setting ȳi = 0 for i /∈ E and 1 ≤ i ≤ m and

z̄i = 0 for i /∈ E′ and 1 ≤ i ≤ n,

c =
∑

1≤i≤m ȳi R
T
i −

∑
1≤i≤m z̄i ei = A>>>ȳ − z̄. (*)
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Proof of Necessary Conditions, contin.

Since ȳi = 0 for bi −
∑

j aij x̄j 6= 0

0 = ȳi (bi −
∑

j aij x̄j) for 1 ≤ i ≤ m.

Since z̄j = 0 for x̄j 6= 0,

0 = x̄j z̄j 1 ≤ j ≤ n.

In vector-matrix form using (*),

(1) 0 = ȳ q (b− Ax̄)

(2) 0 = x̄ q z̄ =
(
A>>>ȳ − c

) q x̄
Still need (4): (i) ȳi ≥ 0 for resource constraint,

(ii) ȳi ≤ 0 for requirement constraint,

(iii) ȳi is unrestricted for equality constraint,

(iv) z̄j =
∑

i aij ȳi − cj ≥ 0 for xj ≥ 0, (v) z̄j ≤ 0 for xj ≤ 0, and

(vi) z̄j = 0 for xj unrestricted.
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Proof of Necessary Conditions, contin.

{RT
i }i∈E ∪ { ei}i∈E′ = {wk}k∈E′′ are linearly independent

Complete to a basis of Rn using vectors perp to these first vectors.

W = (w1, . . . ,wn) and V = (v1, . . . , vn) s.t. W>>>V = I.

Column vk perp to wi except for i = k.

c =
∑

1≤i≤m ȳi R
T
i −

∑
1≤i≤n z̄i ei =

∑
j pj wj where pj = ȳi , z̄i , or 0

c qvk = (
∑

j pj wj) qvk = pk

Take i ∈ E. Gradient of this constraint is R>>>i = wk for some k ∈ E′′.

Set δ = 1 for resource and δ = +1 for requirement constraints

δ R>>>i points into FFFM (unless = constraint).

For small t ≥ 0, x̄ + t δ vk ∈FFFM

0 ≤ f (x̄)− f (x̄ + t δ vk) = t δ c qvk = t δ pk ,

δ pk ≥ 0, or ȳi ≥ 0 for resource and ≤ 0 for requirement constraint

Can’t move off for equality constraint, so yi unrestricted
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Proof of Necessary Conditions, contin.

Take i ∈ E′. ei = wk for some k ∈ E′′.

Set δ = 1 if xi ≥ 0 and δ = 1 if xi ≤ 0

δ wk = δ ei points into FFFM (unless xi unrestricted).

By argument as before, δ pk = δ z̄i ≥ 0.

Therefore z̄i ≥ 0 if xi ≥ 0 and z̄i ≤ 0 if xi ≤ 0

If xi is unrestricted, then the equation is not tight and z̄i = 0.

This proves ȳ ∈FFFm and satisfies complementary slackness (1) and (2)

QED

Chapter 1: Linear Programming 69



Optimality and Complementary Slackness

Corollary

Assume that x̄ ∈FFFM is a feasible solution for primal MLP and ȳ ∈FFFm

is a feasible solution of dual mLP. Then the following are equivalent.

a. x̄ is an optimal solution of MLP and ȳ is an optimal solution of mLP.

b. c q x̄ = b q ȳ.

c. 0 = x̄ q (c− A>>>ȳ) and 0 = (b− Ax̄) q ȳ.

Proof.

(b ⇔ c) Restatement of Weak Duality Theorem.

(a ⇒ c) By proposition, ∃ ȳ′ that satisfies complementary slackness

By Weak Duality Theorem, c q x̄ = b q ȳ′.
So, c q x̄ = b q ȳ′ ≥ b q ȳ ≥ c q x̄.
By Weak Duality Theorem, ȳ satisfies complementary slackness.
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Proof of Corollary, contin.

Proof.

(b ⇒ a) If x̄ and ȳ satisfy c q x̄ = b q ȳ, then

for any x ∈FFFM & y ∈FFFm,

c qx ≤ b q ȳ = c q x̄ ≤ b qy
x̄ & ȳ must be optimal solutions.
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Duality Theorem

Theorem

Consider two dual problems MLP and mLP.

Then, MLP has an optimal sol’n iff dual mLP has an optimal sol’n.

Proof.

If MLP has an optimal sol’n x̄,

then mLP has feasible sol’n ȳ that satisfies complementary slackness.

By Corollary, ȳ is optimal sol’n of mLP.

Converse is similar
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Duality and Tableau

Theorem

If either MLP or mLP is solved for an optimal sol’n by simplex method,
then sol’n of its dual LP is displayed in bottom row of final optimal tableau
in the columns associated with slack and artificial variables. (not surplus)

Proof:

Start with MLP. To solve by tableau, need x ≥ 0.

Group equations into resource, requirement, and equality constraints.

so tableau for MLP
A1 I1 0 0 0 b1

A2 0 I2 I2 0 b2

A3 0 0 0 I3 b3

c>>> 0 0 0 0 0


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Proof continued

Row operations to final tableau realized by by matrix multiplication

[
M1 M2 M3 0

ȳ>>>1 ȳ>>>2 ȳ>>>2 1

] 
A1 I1 0 0 0 b1

A2 0 I2 I2 0 b2

A3 0 0 0 I3 b3

c>>> 0 0 0 0 0


=

[
M1A1 + M2A2 + M3A3 M1 M2 M2 M3 Mb

ȳ>>>1 A1 + ȳ>>>2 A2 + ȳ>>>3 A3 − c>>> ȳ>>>1 ȳ>>>2 ȳ>>>2 ȳ>>>3 ȳ>>>b

]

Obj fn row is not added to the other rows so last column = (0, 1)>>>,

In final tableau, entries in objective function row ≥ 0,

except for artificial variable columns, so

A>>>ȳ − c =
(
ȳ>>>A− c>>>

)>>> ≥ 0, ȳ1 ≥ 0, ȳ2 ≤ 0, so ȳ ∈FFFm

c qxmax = ȳ>>>b = b q ȳ so ȳ is minimizer by Optimality Corollary.
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Proof continued

Note:
(
A>>>ȳ

)
i
= Li

q ȳ Li i th-column of A

If xi ≤ 0, set ξi = xi ≥ 0.

Column in tableau, 1 original column, and new obj fn coef ci .

Now have 0 ≤ ( Li ) q ȳ − ( ci ),

Li
q ȳ ≤ ci resource constraint of dual.

If xi arbitrary, set xi = ξi − ηi .

Then get both Li
q ȳ ≥ ci & Li

q ȳ ≤ ci ,

Li
q ȳ = ci , equality constraint of dual.

QED
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Sensitivity Analysis

Sensitive analysis concerns the extent to which more of a resource

would increase the maximum value of a MLP.

Example. In short run,

in stock product 1 per item product 2 per item
profit $40 $10
units of paint 1020 15 10
fasteners 400 10 2
hours of labor 420 3 5
x1 x2 s1 s2 s3
15 10 1 0 0 1020
10 2 0 1 0 400
3 5 0 0 1 420

40 10 0 0 0 0

 ∼


x1 x2 s1 s2 s3
0 7 1 1.5 0 420
1 .2 0 .1 0 40
0 4.4 0 .3 1 300

0 2 0 4 0 1600


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Sensitivity Analysis, continued


x1 x2 s1 s2 s3
0 7 1 1.5 0 420
1 .2 0 .1 0 40
0 4.4 0 .3 1 300

0 2 0 4 0 1600

 ∼



x1 x2 s1 s2 s3

0 1 1
7

3
14 0 60

1 0 1
35

1
7 0 28

0 0 22
35

9
14 1 36

0 0 2
7

25
7 0 1720


Optimal solution is

x1 = 28, x2 = 60, s1 = 0, s2 = 0, s3 = 36,

with optimal profit of 1720.
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Sensitivity Analysis, continued



x1 x2 s1 s2 s3

0 1 1
7

3
14 0 60

1 0 1
35

1
7 0 28

0 0 22
35

9
14 1 36

0 0 2
7

25
7 0 1720


Values of an increase of constrained quantities are

y1 = 2
7 , y2 = 25

7 ,

y3 = 0 for quantity that is not tight.

Increase is largest for second constraint, limitation on fasteners.

Next consider range that b2 can be increased

while keeping same basic variables with s1 = s2 = 0.
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Sensitivity Analysis, continued

Let δ2 be change in 2nd resource (fasteners):

10x1 + 2x2 + s2 = 400 + δ2 starting form of constraint.

s2 and δ2 play similar roles (and have similar units),

so the new final tableau adds

δ2 times s2-column to right side of equalities.

Still need x1, x2, s3 ≥ 0,

0 ≤ x2 = 60− 3 δ2
14 or δ2 ≤ 60 q 14

3 = 280,

0 ≤ x1 = 28 + δ2
7 or δ2 ≥ 28 q7 = 196,

0 ≤ s3 = 36 + 9 δ2
14 or δ2 ≥ 36 q 14

9 = 56;

56 ≤ δ2 ≤ 280.
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Sensitivity Analysis, continued

Resource can be incr at most 280 units and decr at most 56 units, or

56 ≤ δ2 ≤ 280

344 = 400− 56 ≤ b2 ≤ 400 + 280 = 680.

For this range, x1, x2, and s3 are still basic variables.

Resource = 344
Resource = 400
Resource = 680

(20,72)

(28,60)

(68,0)(40,0)
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Sensitivity for Change of Constraint Constants

For δ2 = 280,

x1 = 28 + 280 · 1
7 = 68,

x2 = 60− 280 · 3
14 = 0,

s3 = 36 + 280 · 9
14 = 216,

z = 1720 + 280 · 25
7 = 2720 is optimal value.

For δ2 = 56,

x1 = 28− 56 · 1
7 = 20,

x2 = 60 + 56 · 3
14 = 72,

s3 = 36− 56 · 9
14 = 0,

z = 1720− 56 · 25
7 = 1520 is optimal value.
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General Changes in Tight Constraint

Use optimal (final) tableau that gives maximum

b′i entry of i th-row of constants in right hand column

c ′j ≥ 0 entry in j th-column of objective row

a′ij entry in i th-row and j th-column

exclude right side constants and any artificial variable columns.

C′j j th-column of A′ (note capital and bold, not cj)

Ri i th-row of A′
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General Changes in Constraint, contin.

Change in tight r th- resource constraint, br + δr

Assume that sr is in kth-column sr
A er b + δrer

−cT 0 0

 ∼
 sr

A′ C′k b′ + δrC′k

c′T c ′k M + δrc
′
k


zi basic variable with pivot in i th-row, need 0 ≤ zi = b′i + δra

′
ik .

For a′ik < 0, need δra
′
ik ≤ b′i , so

δr ≤ min i

{
b′

i
a′
ik

: a′ik < 0
}

, kth-column for sr

For a′ik > 0, need b′i ≤ δra
′
ik , so

min i

{
b′

i
a′
ik

: a′ik > 0
}
≤ δr , kth-column for sr .

Change in optimal value for δr in allowable range: δrc
′
k
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Change in Slack Constraint Constant

Let sr be for a pivot column in optimal tableau for a slack r th-resource.

To keep same basic variables, need changed amount b′r + δr ≥ 0

δr ≥ b′r .

br can be increased by an arbitrary amount.

For δr is this range, optimal value is unchanged.
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Sensitivity Analysis, continued



x1 x2 s1 s2 s3

0 1 1
7

3
14 0 60

1 0 1
35

1
7 0 28

0 0 22
35

9
14 1 36

0 0 2
7

25
7 0 1720


Allowable δ1 for first resource,

δ1 ≤ min
{

28 · 35
1 , 36 · 35

22

}
= min { 980, 57.27 } = 57.27.

δ1 ≥ min
{

60 · 7
1

}
= 420.

Change of optimal value 1720 + 2
7 · δ1

Allowable δ3

δ3 ≥ 36
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Changes in Objective Function Coefficients

For a change from c1 to c1 + ∆1, changes in tableaux
x1 x2 s1 s2 s3
15 10 1 0 0 1020
10 2 0 1 0 400
3 5 0 0 1 420

40 ∆1 10 0 0 0 0



∼



x1 x2 s1 s2 s3

0 1 1
7

3
14 0 60

1 0 1
35

1
7 0 28

0 0 22
35

9
14 1 36

∆1 0 2
7

25
7 0 1720


∼

 x1 x2 s1 s2 s3
∗ ∗ ∗ ∗ ∗ ∗
0 0 2

7 −
1
35∆1

25
7 + 1

7∆1 0 1720 + 28 ∆1


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Changes in Coefficients, contin.

To keep objective function row ≥ 0, need

2
7 −

1
35∆1 ≥ 0 & 25

7 + 1
7∆1 ≥ 0

∆1 ≤ 2
7

35
1 = 10 & ∆1 ≥ 25

7 ·
7
1 = 25

15 = 40− 25 ≤ c1 + ∆1 ≤ 40 + 10 = 50.

Corresponding optimal value of objective function is 1720 + 28 ∆1
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General Changes in Objective Function Coefficients

Consider change ∆k in coefficient ck of basic xk in obj fn,

where xk is a basic in optimal solution and its pivot is in r th row.

a′rj denote the entries in r th row and j th column,

excluding right side constants and any artificial variable columns.

c ′j ≥ 0 denote entries in the objective row of optimal tableau

With change, original entry in the Obj Rn row becomes ck −∆k .

Entry in optimal tableau changes from 0 to ∆k

To keep xk basic, need to add ∆k R′r to Obj Fn row.

Entry in xk -column is now 0 and j th-column is c ′j + ∆ka′rj

For all j , need c ′j + ∆ka′rj ≥ 0.
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Changes in Coefficients, contin.

ck + ∆k for basic variable with r th-pivot row, a′rk = 1 pivot.

For a′rj > 0 in r th-pivot row, need ∆k a′rj ≥ c ′j or ∆k ≥
c ′j
a′rj

,

∆k ≥ min j

{
c ′
j

a′
rj

: a′rj > 0, j 6= k
}

, maximal decrease of ck .

For a′rj < 0 in r th-pivot row, need c ′j ≥ a′rj ∆k or
c ′j
a′rj

≥ ∆k ,

∆k ≤ min j

{
c ′
j

a′
rj

: a′rj < 0
}

, maximal increase of ck .

If c ′j = 0 for a′rj < 0, then need ∆k ≤ 0.

If c ′j = 0 for a′rj > 0 & j 6= k, then need ∆k ≥ 0.

Change in optimal value is ∆kb′r
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Sensitivity Analysis for Non-basic Variable

Our example does not have any non-basic variables, xk .

If xk were a non-basic variable in optimal solution, xk = 0,

then c ′k + ∆k ≥ 0 insures that xr is a non-basic variable,

∆k ≥ c ′k .

i.e., c ′k ≤ 0 is min decrease needed to make xk a basic variable

and a positive contribution to optimal solution.
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Theory: Convex Combinations

Weighted averages in Rn:

For three vectors a1, a2, and a3,
a1 + a2 + a3

3
is average of each component, average of these vectors.

a1 + a2 + a2 + a3 + a3 + a3

6
=

a1 + 2a2 + 3a3

6
= 1

6a1 + 2
6a2 + 3

6a3

is a weighted average of these vectors with weights 1
6 , 2

6 , and 3
6 .

For vectors {ai}k
i=1 and numbers

∑k
i=1 ti = 1 with ti ≥ 0∑k

i=1 ti ai

is a weighted average, and is called a convex combination of {ai}.
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Convex Sets

Definition

A set S ⊂ Rn is convex provided that

if x0 and x1 are any two points in S then convex combination

xt = (1− t)x0 + tx1 is also in S for all 0 ≤ t ≤ 1,

i.e., line segment from x0 to x1 in S.

convex convex convex

not convex not convex
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Convex Sets, contin.

Each constraint, ai1x1 + · · ·+ ainxn ≤ bi or ≥ bi ,

or xi ≥ 0, defines a closed half-space in Rn.

ai1x1 + · · ·+ ainxn = bi is a hyperplane (n − 1 dimensional).

Definition

Any intersection of a finite number of closed half-spaces

and possibly some hyperplanes is called a polyhedron.
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Convex Sets, contin.

Theorem

a. Intersection of convex sets,
⋂

j Sj , is convex.

b. A polyhedron is convex. So feasible set of any LP is convex.

Proof.

(a) If x0, x1 ∈ Sj & 0 ≤ t ≤ 1,

then (1− t) x0 + t x1 ∈ Sj ∀ j , and

(1− t) x0 + t x1 ∈
⋂

j Sj .

(b) Each closed half space & hyperplane is convex,

so intersection is convex.
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Convex Sets, contin.

Theorem

If S is a convex set, and pi ∈ S for 1 ≤ i ≤ k,

then any convex combination
∑k

i=1 ti pi ∈ S.

Proof.

Proof is by induction.

For k = 2, it follows from the def’n of convex set.

Assume true for k − 1 ≥ 2.

If tk = 1 & tj = 0 for 1 ≤ j < k, then clear.

If tk < 1, then
∑k−1

i=1 ti = 1− tk > 0, &
∑k−1

i=1
ti

1−tk
= 1.∑k−1

i=1
ti

1−tk
pi ∈ S by induction hypothesis

So,
∑k

i=1 ti pi = (1− tk)
∑k−1

i=1
ti

1−tk
pi + tk pk ∈ S.
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Extreme Points and Vertices

Definition

A point p in a nonempty convex set S is called an extreme point p.t.

if p = (1− t)x0 + tx1 with x0, x1 in S and 0 < t < 1,

then p = x0 = x1.

An extreme point in a polyhedron is called a vertex.

An extreme point of S must be a boundary point of S.

Disk D = { x ∈ R2 : ‖x‖ ≤ 1 } is convex.

Each point on its boundary is an extreme point.

For next few theorems, consider feasible set

FFF = { x ∈ Rn+m
+ : Ax = b }

with slack and surplus variables included in x’s and constraints.
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Vertices

Theorem

Let FFF = { x ∈ Rn+m
+ : Ax = b }.

x ∈FFF is a vertex of FFF if and only if basic feasible solution,

i.e., columns of A with xj > 0 linearly independent set of vectors.

Proof:
By reindexing columns and variables, can assume that

x1 > 0, . . . , xr > 0 xr+1 = · · · = xn+m = 0.

(a) Assume {Aj }r
j=1 linearly dependent: ∃ (β1, . . . , βr ) 6= 0

β1 A1 + · · ·+ βr Ar = 0.

For βββ>>> = (β1, . . . , βr , 0, . . . , 0), Aβββ = 0,

For small λ, w1 = x + λβββ ≥ 0, & w2 = x− λβββ ≥ 0, Awi = Ax = b.

so w1, w2 ∈FFF & x = 1
2w1 + 1

2w2, so not vertex.
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Proof

(b) Conversely, assume that x ∈FFF is not vertex,

x = t y + (1− t) z for 0 < t < 1,

with y 6= z in FFF .

For r < j ,

0 = xj = t yj + (1− t) zj .

Since both yj ≥ 0 and zj ≥ 0, both must be zero for j > r .

Because y 6= z are both in FFF ,

b = Ay = y1 A1 + · · ·+ yr Ar ,

b = Az = z1 A1 + · · ·+ zr Ar ,

0 = (y1 − z1)A1 + · · ·+ (yr − zr )Ar ,

and columns {Aj }r
j=1 are linearly dependent. QED
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Some Vertex is an Optimal Solution

For any convex combination

f (
∑

tjxj) = c q ∑ tjxj =
∑

tjc qxj =
∑

tj f (xj).

Theorem

Assume that FFF = { x ∈ Rn+m
+ : Ax = b } 6= ∅ for bounded MLP.

Then following hold.

a. If x0 ∈FFF , then there exists a basic feasible xb ∈FFF s.t.

f (xb) = c qxb ≥ c qx0 = f (x0).

b. There is at least one optimal basic solution.

c. If two or more basic solutions are optimal, then

any convex combination of them is also an optimal solution.
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Proof a.

If x0 is already a basic feasible sol’n then done.

Otherwise, columns A for x0
i > 0 are lin. depen.

Let A′ be matrix with only these columns.

∃ y′ 6= 0 such that A′y′ = 0.

Adding 0 in other entries, get y 6= 0 s.t. Ay = 0.

A( y) = 0, so can assume that c qy ≥ 0.

A [x0 + t y] = Ax0 = b,

If yi 6= 0, then x0
i > 0, so x0 + t y ≥ 0 for small t is in FFF .
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Proof a, contin.

Case 1. Assume that c qy > 0 and some component yi < 0.

x0
i > 0 and x0

i + t yi = 0 for ti =
x0
i

yi
> 0.

As t increases from 0 to ti , objective function increases from

c qx0 to c q [x0 + tiy].

If more than one yi < 0, then select one with smallest ti .

Have constructed point in FFF with one more zero component of x0,

fewer components yi < 0,

and a greater value of objective function.

Can continue until either columns are linearly independent or

all yi ≥ 0.
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Proof a, continued

Case 2. If c qy > 0 and y ≥ 0,

then x0 + t y ∈FFF for all t > 0,

c q [x0 + t y] = c qx0 + t c qy is arbitrarily large.

MLP is unbounded and has no maximum, contradiction.

Case 3. If c qy = 0: f (x0 + t y) = c qx0 unchanged

Some yi 6= 0. Considering y & y can assume some yi < 0.

∃ first ti > 0, to make another x0
i + tiyi = 0.

Eventually, get corresponding columns linearly independent, and

a basic solution as claimed in part (a).
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Proof b,c

(b) Only finitely many basic feasible solutions, {pj}N
j=1.

f (x) ≤ max1≤j≤N f (pj) for x ∈FFF by part (a)

Maximum can be found among f (pj).

(c) Assume f (pji ) = M = max{ f (x) : x ∈FFF } for i = 1, . . . , ` > 1.∑`
i=1 tji pji ∈FFF

f
(∑`

i=1 tji pji

)
=

∑`
i=1 tji f (pji ) =

∑`
i=1 tji M = M. optimal

QED
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Validation of Simplex Method

If ∃ degen. basic feasible sol’ns with fewer than m positive basic var,

then simplex method can cycle by row reduction to matrices

with same positive basic variables but different sets of pivots:

interchange one zero basic variable with zero free variable.

Same vertex of feasible set

Need to insure don’t repeat same set of basic variables at a vertex (cycle)

Theorem

If a maximum solution exists for a linear programming problem

and simplex algorithm does not cycle among degen basic feasible sol’ns,

then simplex algorithm locates a maximum solution in finitely many steps.
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Sketch of Proof of Theorem

Assume never reach a degenerate basic solution.

Then reach p0 with all pivoting to p1,. . . ,pk have f (pj) ≤ f (p0)

Complete to set of all basic feasible sol’ns (vertices) p0,p1,. . . ,p`

Set of all convex combinations, convex hull, is bounded polyhedron

H = {
∑`

i=0 tipi : ti ≥ 0,
∑`

i=0 ti = 1 } ⊂FFF .

Edge of H from pi to pj corresponds to pivoting

(as in proof of Theorem 3.4.2(a)) where

one constraint becomes 6= bi and another become = bj ,

Positive cone out from p0 determined by {pi − p0 }k
i=1

C = {p0 +
∑k

i=1 yi (pi − p0) : yi ≥ 0 } ⊃ H. (geometrically)

Let q be any vertex of H (basic solution), q ∈ H ⊂ C.

q− p0 =
∑k

i=1 yi (pi − p0) with all yi ≥ 0

f (q)− f (p) =
∑k

i=1 yi [f (pi )− f (p∗)] ≤ 0. End Proof
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Degenerate Basic Solutions

Homework Prob gives example of a degenerate basic solution.

A basic variable is = 0 in addition to free (non-pivot) variables.

When leaving, variable which is becomes > 0 must be

free (non-pivot) variable and not a basic (pivot) variable = 0

First pivoting at the degenerate solution

interchanges a basic variable = 0 and a free variable,

so new free variable can be made > 0 with next pivoting

when the value of objection function is increased;

all same values of variables, so the same point in FFF .

Matter of how row reduction relates to movement on feasible set.

Chapter 1: Linear Programming 106


	Intro Optim
	Lin Prog
	Stand MLP

	Rank
	Slack Var
	Stand MLP with slack

	Simplex Meth
	Gen Constraints
	Min Ex
	Ex Eq Const

	Duality
	Ex Bikes
	Duality Rules
	Example
	Duality Thms

	Sensitivity
	Change of Constants
	Change of Obj Fn

	Convex sets
	Vertex is Optimal Soln
	Valid. Sim Meth


