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Implicit Function Theorem

For scalar fn g : R” — R with Vg(x*) # 0 and g(x*) =
level set g71(b) = {x € R": g(x) = b} is locally a graph.
g

M(x*) # 0 implies

Xm is locally determined implicitly as a fn of other variables.

Tangent plane

_ 98, . 7 o
0= 5 (Iba—xi) -+ 5= () (xn —x7)

Q& og x*
Xn = —Xp — (3 )>( X1 —X )_ - <8ﬁ€+()> (Xﬂ—l_x;:—l)
8x,,( ) Oxn )

linear tangent plane graph = nonlinear level set graph
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Implicit Function Theorem, Higher Dimensions

For vector fn g : R" — R¥ C1, k constraints and n variables,

level set for constant b € R,
g lb)={xeR":gi(x)=b; for i=1,... k}.
To insure a graph near x* with g(x*) = b, need rank(Dg(x*)) = k

i.e., gradients {Vg;(x*)}%_, are linearly independent
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Implicit Function Theorem, continued

If rank(Dg(x*)) = k, can select k Xpm,,...,Xm, S.t.

8g1 « (9g1 %
() G

(*)  det : S # 0.
6gk * 8gk *
() T

Below show (*) = null(Dg(x*)) graph of z = (xm,,...,Xm,)

in terms of other n— k variables w = (x¢,,...,xs,_,).

Implicit Fn Thm says that for nonlinear g™*(b),

z = (Xpmy,--.,Xm,) are also determined implicitly

as functions of the other n — k variables w = (xg,,...,x¢,_,)
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Theorem (Implicit Function Theorem)
Assume g : R" — Rk C!, g(x*) = b, & rank(Dg(x*)) = k,
then nonlinear level set g™1(b) is locally a graph near x*.
If z= (Xmy,...,Xm,) are selected s.t. (*) det ( D81 (yx ) 0,
then Xm,, ..., Xm, are determined implicitly near x*
as functions of the other n — k variables w = (xp,,...,xq,_,)-

Implicitly defined (Xm,,...,%m,) =h(xeq,...,xq,_,) is differentiable

gXZ calculated by chain rule and solving matrix equation (ImDiff)
[ Og1 og1 ]| 0g1 0g1 [ Oxm,y o Oxm, |
8Xg1 o annik 8xm1 o 8ka 8Xgl 8X‘€n7k
0= : . : + : . : : :
08k gk gk gk | | 9Xm,  Oxm,
| Ox, T Oxg,_, | OXm,  Oxmd | Oxg oxa,_,

V.
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Implicit Function Theorem, continued

Hardest part of Implicit Fn Thm is that h exists and is differentiable.

Taking g—wj of b=g(w,z) while considering z; = hj(w) as fns of w;,

Ob og « 0g 0z
Oza_m/j:a_m/j+2i:1 9z ow;
[ Og1 g1 ] og1 g1 [Xm  Oxm ]
Oxe, — Oxp,, MXmy  OXm, Oxe, oxp,
0= : : : + : : : ; " :
agk 3g/< 8gk 8g/< 8ka o 8xmk
| Oxg, X, | MXmy  OXm, | Oxpy Oxg,_, |
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Implicit Function Theorem, continued

Group partial deriv of w = (xp,,...,x;,_,) & Z= (Xmy, .-+, Xm,)-
ogi
Duelx) = ( 5o )
Xt 1<i<k, 1<j<n—k

ogi
D,g(x*) = (87,77- X

rank(D,g(x*)) = k or det(D,g(x*)) # 0.
0 = Dyg(x*) + D,g(x*) Dh(x*) (ImDiff)

*)>
1<i<k, n—k+1<j<n

Dh(x*) = - (D;g(x"))"" Dug(x").

Write down (ImDiff) then solve. Easier than formula with inverse
Dwg(x*) is matrix with determinant # 0.

Dwg(x*) includes all other independent variables.
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Implicit Function Theorem, continued

null space of Dg(x*)
null(Dg(x*)) = {v e R": Dg(x*)v=0 }
={veR":v-Vgi(x*)=0 for 1<i<k}

If det(D,g(x*)) # 0 then null(Dg(x*)) is a graph, with z fn of w:

For v € null(Dg(x")),

0 — Dg(x")v = [Duglx), Dgtx)} (3

Vz
= wg(X*)VW + ng(X*)VZy
v, = - (D.g(x"))"" Dug(x") vu,

If linear tangent space is graph of z in terms of w, then

nonlinear level set is locally a graph of z in terms of w
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Implicit Function Theorem, continued

In an example, differentiate C = g(w,z) with respect to w

thinking of z as function of w and

solve for unknown partial derivatives <%> from (ImDiff)

Ow;
0 e ] [dm  Om][oa o
8W1 o 8Wn_k 821 o 8zk 8W1 8W,,_k
0= : - : + : . : : . :
0 O8k | |8k Ogr| |0z O
_8W1 o 8Wn_k_ _821 o 8Zk_ _8W1 8W,,_k_

(1) matrix D,g(x*) includes all the partial derivatives with respect to
the dependent variables z; used to calculate the nonzero determinant
(2) matrix Dyg(x*) includes all the partial derivatives with respect to

the independent (other) variables, w;.
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Example of Changing Technology for Production

Single fixed output, Q.
Two inputs x and y, Qu = x?y°.
By changing technology, exponents a and b vary independently.
Total cost of the inputs is fixed,
px+qy=125.

where price are p and g
What are rates of change of inputs as functions of a and b

at x=5, y=50, p=5, g=2, a:%, and bz%?
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Changing Technology, continued

Rather than use Qg = x?y?, take logarithm: constraints
gi(x,y,a,b,p,q) = px + qy =125 and (1)
g2(X7y7 a, bvpv q) = aln(x) + bln(y) = In(QO)

Two egs define x and y as functions of a, b, p, and g since

981 Og

ox oy | _ p q| pb qa pbx—qay
il —det[; 5]—7 P

ox Oy

5.2.5-2.1.50 1
- 3.5.50 _'1_57&0'
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Changing Technology, continued

Considering x and y as functions of a, b, p, and g, and differentiating
equations with respect to (four) independent variables gives (ImDiff):

(0g1 Oz Og1 Ogi| [Og Oei] [0x Ox Ox Ox
0— 0a 0b 0Op Og I Ox 0Jy 0a 0b Jp Oq
Ogr Og2 Og2 Og Og2 Og2| |0y Oy Ody dy

| da b dp dq dx dy] loa db dp dqg
0da 0b Jp OJq
dy 9y 9y dy
0da 0b Jp Oq

[0 0 x vy
| In(x) In(y) O 0]+

XL T
<lo-Q

2 X 2 matrix is one with nonzero determinant and
has partial derivatives with respect to x and y, which

is same as dependent variables (rows) of last matrix.
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Changing Technology, continued

Taking first matrix across equality and inverting the 2 x 2 matrix,

b 0 o ox ,
da Ob Op Oq Xy y _q[O 0 xy]
In

dy 9y Oy Ody|  pbx—gqay |[-2 p
0da 0b Jp Og

Xy [-qln(X) -qin(y) b]

qgay — pbx | pIn(x) plin(y) -a —%Z
-xyqIn(x)  -xyqIn(y) bx? bxy
qay — pbx qay — pbx qay —pbx qay — pbx
xypIn(x)  xypIn(y) -axy -ay?In(y)

qay — pbx qay — pbx qay — pbx qay — pbx

Chapter 3: Constrained Extrema 13



Changing Technology, continued

At the point in question, gay — pbx = M = 53—0 and
P _ yaits) _ SOEQING) gy )
% _ ;;}}/,qlnlgg)z _ —3(5)(50282) In(50) — 230 In(50),
% _ (;gf,k\gz)x _ 3(5)(50%85) In(5) — 75 In(5),
% _ 333!182)( _ 3(5)(50)5(3) In(50) — 75 In(50).
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Outline of implicit differentiation with several constraints

o First, some equations are derived (or given) relating several variables.

In the last example, there are two equations with six variables.

@ Second, thinking of these equations as defining some variables

in terms of the others, take partial derivatives to give equation
(ImDiff).

In last example, take partial derivatives with respect to x and y.

o Finally, solve for the matrix of partial derivatives of the dependent

variables with respect to the independent variables.

Chapter 3: Constrained Extrema 15



3.2 Theorem of Lagrange

C?! constraints gj : R” — R for i =1,...,k with g(x) = (gi(x)) satisfy

constraint qualification at x* p.t.
rank (Dg(x*)) = k.

i.e., gradients {Vg;(x*)}%_, are linearly independent.
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Method of Lagrange Multipliers

Theorem
Assume f,gi : R" — R are C! functions for i =1,..., k.
Suppose that x* is a local extremizer of f on

glb)={xeR":g(x)=b;, i=1,...,k }.
Then at least one of the following holds:

1. 3 X =(A],...,A}) eRF st

Df(x*) = 321, Af Dgi(x"),
i.e., Vf = linear combination of Vg; of constraints

2. rank(Dg(x*)) < k, constraint qualification fails at x*.

Could add condition rank(Dg(x*)) = k to assumptions.
But emphasize that max/min could come a point with lower rank.
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Singular Example, R?

Let g(x,y) =x3+y?=0 and f(x,y) =y +2x.

g (0)

F1(-1) £1(0)
FH-3)

Maximum of f(x,y) is at singular point (0,0), where Vg = 0.
VF(0)=(2,1)T #0=AVg.
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Singular Example, R3

gi(x,y,2) =x>+y* +2=0, g(x,y,2) =2=0, f(x,y,2) = y + 2x.
Level set is that of last example in (x, y)-plane

g7 1(0)={(x,y,0): x*+y*=0}

Maximum at 0.

Gradients parallel at O:
Vgl(x,y,z) = (3X27 2_)/7 1)Tv VgZ(X7y’Z) = (07 07 1)T
Vgi(0,0,0) = (0,0,1)T, Vg»(0,0,0)=(0,0,1)T

0 01
rank(Dg(0)) = rank [O 0 J =1

VF(0)=(2,1,0)T # X\ Vgi(0) + X2 Vg (0) = (0,0, A1 + \2)T.
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Tangent Space to Level Set

For g(x*) = b, denote set of tangent vectors at x* to g !(b) by
T(x*) = {v =r(0):r(t) isa C! curve with r(0) = x*,
g(r(t)) = b for all small t }.
Called tangent space of g !(b) at x*
null(Dg(x*)) ={v:v-Vgj(x*)=0 for j=1,...,k}.

Proposition (3.8)

Assume g :R" — Rk js C!, g(x*) = b, and rank(Dg(x*)) = k.
Then T(x*) = null(Dg(x*)), set of tangent vectors is null(Dg(x*))

Most calculus books just state that set of tangent vectors are
all vectors perpendicular to gradients of constraints, = null(Dg(x*)).
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For any curve r(t) in g 1(b) with r(0) = x*,

0= b= Zg(r(t) = Da(r(0))(0) = Dg(x )1 (0),

dt
so T(x*) C null(Dg(x*)).

Proof of null(Dg(x*)) C T(x*) uses Implicit Function Theorem:

Assume variables have been ordered x = (w, z) so that

det(D,g(x*)) # 0.
Then g 1(b) is locally a graph z = h(w).
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Proof, continued

For v = (vw,v;)" € null(Dg(x*)), w(t) =w* + tv, is line in w-space

r(t) = (hrlvv((tr.?))> is a curve in level set.

r(0) = x*, ¢¥(0) = (Dh(

Vw
W*

M) € T(x*), and

0= Gg(r())| _ = De(x’)r(0)

t=
r'(0) € null(Dg(x*)) and has same w-components as v.
null(Dg(x*)) is a graph over the w-coordinates, so
v =1r'(0) € T(x*).
null(Dg(x*)) C T(x*).

Combining, null(Dg(x*)) = T(x*). QED
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Proof of Lagrange Theorem.

Assume x* is a local extremizer of f on g"1(b), rank(Dg(x*)) = k.

For any curve r(t) in g~*(b) with r(0) = x* and ¢'(0) = v:
= Df(x*)v

0= %f(r(t)) _

i.e., Df(x*)v=0 forall ve T(x*)=null(Dg(x*))

null(Dg(x*)) = null (g%((::))>
rank = #columns — dim(null)

rank (ggé::;) = rank((Dg(x*)) = k

Last row, Df(x*), is a linear combination of first k rows,

Df(x*) = Y21, X¥ D(gi)(x*). O
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Example 1

Find highest point satisfying x +y +z =12 and z = x> + y2.
Maximize:  f(x,y,z) =z
Subject to:  g(x,y,z) =x+y+2z =12 and
h(x,y,z) = x*>+y?>—z=0.

Constraint qualification: If Vg = (1,1,1)T = s Vh = s(2x,2y,-1)T,

s=-1, x=y= %
To be on level set
2=ty =t+i=}

§(hoh-br

No points on level set where constraint qualification fails.
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Example 1, continued

Maximize:  f(x,y,z) =z
Subject to:  g(x,y,z) =x+y+z=12and
h(x,y,z) = x>+ y? —z=0.
First order conditions:
fX:Agx‘i‘,Uhx, 0:)\+M2X,
f, = \gy, + phy, 0= A+ p2y,
f, = Ag; + ph;, 1=X—p.
A =1+ p, eliminate this variable:

0=1+p+2ux,

0=1+p+2uy.
Subtracting 2nd from 1st, 0 =2u(x —y), so u =0 or x =y.
Case p=0: 0=1+4 p+2ux =1, contradiction.
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Example 1, continued

Case: y = x.
z=x>+y?>=2x% and 12 =2x+z =2x+2x%, so
0=x2+x—-6=(x+3)(x—2), and x =2, -3.
x=y=2 z=2x>=8, 0=1+pu(l+2x)=1+5p,
,u:—%, and Azl-l—,u:g.
x=y=-3 z=2x>=18, 0=1+4pu(1+2x)=1- 5y, u:%,
and A=1+pu= %.
(N, u*, x*, y*, z%) = (%, —%,2,2,8,) and (g, %, -3, -3, 18).
£(2,2,8) =8 and f(-3,-3,18) = 18.
Constraint set is compact so extrema exist.
Maximizer (-3, -3,18).
Minimizer (2,2,8) End of Ex
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Lagrangian: mnemonic device not a proof of conditions.
LA x) = F(x) + 2120 A (b — gi(x).

x* satisfies first order Lagrange multiplier conditions
with multipliers A* iff (A*,x*) is a critical point of L
with respect to all its variables,
oL
N
Dy L(A*,x*) = Df (x*) — S5, A Dgi(x*) = 0.

(A", x*) = bj — gi(x*) =0 for 1<i<k and

To insure that constraint qualification does not fail, need

k = rank (Dg(x*)) = rank (Ly, . (A*, x*))
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Interpretation of Lagrange Multipliers

How does max{f(x):x € g"1(b)} changes with changes in b,?

Theorem

Assume that f,gi : R" — R are C! with 1 < i < k < n.

For b € R¥, let x*(b) be sol'n of 15t-order Lagrange multiplier conditions
for “nondegenerate” extremum of f on g !(b)
with multipliers \j(b),...,A;(b) and rank(Dg(x*(b))) = k.

Then, 3
3 (b) = 5 F(<'(b).

Marginal value of ith-resource equals Lagrange multiplier
Like discussion for duality in linear programming
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Proof of Interpretation:

Use Lagrangian as a function of b as well as x and A,

LA x,b) = f(x) + /01 A (b — g5(x)).
For b fixed, (A*,x*) = (A*(b),x*(b)) satisfy

0= (1) - (Df(x)Tb—"_zéfg)D@(x)T) = Gx.b)
0, -Dg

(DAGaDXG) = |:_DgT D)%L

], “bordered Hessian".

If x*(b) is nondegenerate extremizer on g (b), then
. . _ 0« -Dg
det(D)G, DxG)(A*(b),x*(b),b) = det [—DgT DEL] # 0.
See Addendum 3.5 of online class book

Therefore, x*(b) and A*(b) are differentiable functions of b.
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Proof of Interpretation, continued

LA, x,b) = £(x) + X251 A (b — g(x))-

DAL(x*) = (b1 — g1(x*), ..., bk — gk(x")) =0
DyL(x*) = Df(x*) — ZJ 1 )\J*ng(x*) =0
oL . s
2E (' (b),X'(b), ) = N (b)
f(x*(b)) = L(A*(b),x"(b),b)

a_bif(x (b)) = DyL 6b,-)‘ (b) + Dy Lab x*(b) + (%i(x (b),A*(b), b)

= X (b).
QED
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3.3 Inequality Constraints, Necessary Conditions

Maximize f(x) on Fgp={x€cR":gi(x)<b; i=1,....,m}
gi(x) < b; isslack at x =p € F p.t. gi(p) < b;.

gi(x) < b; is effective or tight at x =p € & p.t. gi(p) = b;.
( = in constraint, p is on the boundary of &#.)

E(p) ={/:gi(p) = bi } be set of tight constraints at p,
|E(p)| be cardinality of E(p), and

gE(p)(x) = (&i(x) )ieE(p)-

g(x) satisfies constraint qualification at p p.t.

rank(Dge(p)(P)) = [E(P)],

gradients of tight constraints are linearly independent.
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Constraint Qualification Fails

Consider the constraints
gilx,y)=x+(y-10°<0 (x<-(y-1)%)
o(x,y)=-x<0
g(x,y)=-y <0

At (0,1), E(0,1)={1,2}, gE(O,l)(XaY) =M+ - 1)3’ _X)Tv

-1 0 -1 0
<2=[E(0,1)]
Constraint qualification fails at (0, 1).

_ 2
rank(Dge(o.1)(0, 1)) — rank[l 3(y —1) ] _ rank[l o] _1
y=1
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Theorem (3.12 KKT Necessary Condtions for Extrema w/ Ineq)
Suppose that f,gi : U — R are C! functions for1 <i<m
where U C R” is open,
F={xecU:g(x)<bj for i=1,...,m}.
If f attains a local extrema at x* on &, then either

(a) the constraint qualification fails at x*,
rank(DgE(x*)(x*)) < |E(x*)
(b) there exist \* = (A},...,\},) such that KKT-1,2 hold:

, or

KKT-1. Df(x*) =™, A Dgi(x*).

KKT-2. X (b —gi(x*))=0 for1<i<m
(soXi =0 fori¢ E(x*)).

KKT-3. [If x* is a local maximum, then X >0 for1 <i<m.

KKT-3'. If x* is a local minimum, then A7 <0 for1<i<m.
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Necessary Cond for Extrema, cont.

Homewk probl with max at point where constraint qualification fails.
Call KKT-1,2,3 first order KKT conditions. More direct to use, and
equivalent to derivatives of Lagrangian.
KKT-1 Vf(x*) perpendicular to tangent space to g™ !(b)
KKT-2 X7 (bj — gi(x*)) =0 is called
complementary slackness because
both gi(x*) < b & Af >0 can't be slack
All ¥ > 0 at max x* means Vf(x*) points out of feasible set

Inequalities gj(x) < b; are resource type and signs like Max Lin Prog

All' A¥ <0 at min x* means Vf(x*) points into feasible set
Maximizes -f(x) & -Vf(x*)=>"",(-\7) Vgi(x*)
with -A7 > 0, so signs compatible with Min Lin Prog
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Assume constraint qualification holds at maximizer x*
Rearrange indices of gj so that E(x*) = {1,...,k},
gi(x*)=b; for 1 <i<k and gi(x*) < bj for k+1<i<m.

Rearrange indices of x; so that det <%(x*)> # 0.
0 1<ij<k

Set \f =0 for i ¢ E(x*), i.e., AT =0for k+1 <7< m.
(Drop these ineffective constraints in the argument.)

f attains a maximum at x* on

{x : gi(x) = b; for i € E(x*) }, so by Lagrange Mult Thm,

3 Af for 1 < i< k so that Df(x*) = > 1<i<k A7 Dgi(x¥).
Since AT =0for k+1<i<m,

DF(x*) = Y 1ciem Af Dgi(x*)  KKT-1 hold
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Proof, continued

Af =0 for i ¢ E(x*) & b; — gi(x*) =0 for i € E(x*) so KKT-2 holds
Why are \; > 0 for £ € E(x*)? KKT-3 for maximizer

ﬂ,-# gi_l(bi)

gg_l(bé)
Want a curve r(t) in & such that gy(r(t)) < by for t >0,
gi(r(t)) =bj for i #0& 1 <i<k,

ri(t)=x for k+1<i<n.  det (%(x*)) #0.
1<ij<k

xj
Let 6;; =0 ifi;ﬁf,&égg:l.
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Proof, continued

Apply Implicit Function Theorem to
Gi(x,t) = gi(x) — bj +djpt for 1 <i < k = |E(x")]
Gi(x,t) =x; —x; for k+1<i<n. G(x*,0) = 0.

m  m om om
8X1 3Xk 8Xk+1 8X,,
Ogi Ogr  Ogx Dgx
Dx *, 0))=det | =2 ... ==& _~=% ... ==X
det(DxG(x", 0) ¢ Ox1 Oxk  OXky1 OXn
0O --- 0 1 .0
0 --- 0 0 o1

= det (%(x*)> # 0.
O 1<ij<k
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Proof, continued

By Implicit Function theorem, there exists x = r(t) such that
r(0) = x* and G(r(t),t) = 0:
gi(r(t)) =bj —djpt for 1 < i<k, ri(t)=x fork+1<i<n.
Dgi(x*)¥'(0) = %g,- o r(t)‘t:0 = -0y for 1 <i<k.

f(x*) > f(r(t)) fort >0, so

0> %f or(t) s = Df(x*)¥'(0)
= Zlgigk A7 Dgi(x*) r'(0)
= Zlgigk ‘)‘7 die
= -}
A, > 0. QED
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Steps to use KKT

1. Verify that a maximum (resp. minimum) exists
by showing either that the feasible set is compact

or that f(x) takes on smaller values (resp. larger values) near co.

2. Find all possible extremizers:
(i) Find all points on O(&#) where constraint qualification fails;

(ii) find all points that satisfy KKT-1,2,3 (resp. KKT-1,2,3).

3. Compare f(x) at all points found in 2(i) and 2(ii).
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Example 2

Let f(x,y) =x? —y and g(x,y) = x> +y?> < 1.
Constraint set is compact so max & min exist
Derivative of constraint is Dg(x,y) = (2x,2y),
which has rank one at all points on boundary, where g(x,y) =1

(At least one variable is nonzero at each of points.)

Constraint qualification is satisfied at all points in .

KKT-1,2 are

O0=Ff—Agx=2x—A2x=2x(1-}),
0=f —Ag,=—-1-A2,
0=X\(1-x%—y2).

From 1st equation, x =0 or A = 1.
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Example 2, continued

Case (i): A =1 > 0. Left with equations

1=-2,
1=x>+y2
yz—%, xzzl—%z%, xz%g.
Case (ii): x =0.
1=-)\2y
0=A(1-y?).

A # 0 from 1st equation.
y = %1 from 2nd equation

Ify=1 2A=-1 A=-1 <0,
lfy=-1: 2A=1 A=1%>0.
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Example 2, continued

A>0 for  (53.-1) & (0,-1)

maximum is %, attained at <¥, —%)
A <0 for (0,1) f(0,1) = -1 minimum

(0,-1) saddle: A > 0 so decreases into &,
but local min within boundary, so not a local maximum.

End of Example
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Example 3

Maximize f(x,y,z) = x? +2y? + 322,

Subject to:
l=x+y+z=goxy,2)
0>-x=gl(x,y,
0>-y=g(xy,
0>-z=gs(x,y,

(
z),
z), a
z).
Feasible set # compact, so max exists
Check constraint qualification at all points of %:
go(x,y,z) =1 and gi(x,y,z) <0fori=1,23
rank (Dge(x, y,z)) = rank (Dgo(x, y, z)) = rank ([1 1 1]) =1,

ank (Dge(0..2)) = rank (Dl 1)) —roni | & ) =2

Chapter 3: Constrained Extrema 43



Example 3, constrain qualification continued

rank (D(g0,g2) ") (x,0, 2) = rank ([l L ID _ >

0 -1 0
rank (D(go,&3)") (x,y,0) = rank L1 2
9y ) 9 0 0 _1
At vertices where three constraints are tight,
1 1 1
rank (D(go, &2,83)"(1,0,0)) =rank | [0 -1 O =3
0 0 -1
Similarly

rank (Dgg(0,1,0)) = rank (D(go, &1,83)"(0,1,0)) =3
rank (Dgg(0,0,1)) = rank (D(go, 1,82)7(0,0,1)) =3

All ranks are as large as possible,

so constraint qualification is satisfied on feasible set.
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Example 3, continued

Maximize f(x,y,z)=x?>+42y?+32% for 1=x+y+z=go(x,y,2),
0> -x=glxy,2), 0=-y=glx,y,2), 0>-z=gs(xy,2).
KKT-1,2 are
0=1Ffi—Aogix — A1 81x — A282x — A3 g3x = 2x — Ao + A1
0=1 —Xogiy —A181y — A&y —A3g3y =4y — Ao+ X2
0=1f;— X081z —A181z — A28z —A383, =62 — Ao+ A3
l=x+y+z
0=XMx, 0=Xy, 0=XA3z

Because 0tM-equation involves an equality, Ao can have any sign.
For1<i<3, need \; > 0.
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Example 3, continued

M =2x+A1 =4y + X =62+ A3 (eliminate \p)

Case 1: Point with x >0,y >0,and z>0. \;=0for1 </ <3.

X

Ao = 2x =4y = 6z, y=5 z=

= wix

Substituting into go, 1 =x+y+z=x(1+3+3) =1

_ 6 _ 3 _ 2
X_ﬁ'y_ﬁ’z__l'
Case 2: x=0,y>0,andz>0. A=A3=0

2
Ao =4y =6z, soz=7%.

l=y(1+3) =2, y

Xo=4y+X=4(3)=2 M=x-2x=2>0

3 — 2.3
50 £=3°'5 =5

(0,2, 2) is an allowable point for maximum.

U‘IIW
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Example 3, continued

Case3: y=0, x>0,z>0 AM=X3=0
A =2x =06z, x=3z.

l=x+y+z=2z(3+1), z=1, x=3, Ao=3.
X=X —4y=3>0
(%,0, 711) is an allowable point for a maximum.
Cased: z=0, x>0,y >0 AN =X=0
A =2x =4y, x=2y.
l=x+y+z=y(2+1), y=1 x=% X=4y=3

)\3:>\o—622%>0
(3.3,0) is an allowable point for maximum.

Vertices (1,0,0), (0,1,0), (0,0,1) are possibilities. (2+1 tight)
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Example 3, continued

Values of f(x,y,z) = x>+ 2y? + 322 at these points are as follows:
36+ 18+12 46

6 3 2 _ ~
f (ﬁ: 110 ﬁ) T 127 0.5454,
18412
3 2\ _ _ 30 _
F0,55) =~ =»-12
943
3 1\ _ 12
442

21 _ _6
f(1,0,0) =1, f(0,1,0) = 2, f(0,0,1) = 3.

Maximum value of 3 is attained at (0,0, 1).
Minimum value of 0.5454 is attained at (&, <, &)

End of Example
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Deficiencies of Nec KKT Theorem

Not easy to use Thm 3.12 to determine maximizers.

© Need to verify that max exists: either &# compact or
f(x) smaller near infinity.

@ Need to find all “critical points”:
(i) all points where constraint qualification fails
(ii) all points that satisfy KKT-1,2,3.
Not easy to show constraint qualification always holds, or

find all points on boundary where constraint qualification fails.

Overcome by means of convexity and concavity.
Convex constraints eliminates need for constraint qualification.

Concave (convex) objective fn insures that a KKT critical point
is a global maximizer (minimizer).
Like an assumption on second derivative at all points of feasible set
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3.4 Convex Structures

Definition
A set 9 C R" is called convex p.t.
(1—t)x+tye P forall x,ye 2 and 0<t<1.

@ O L

convex convex convex
not convex not convex
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Concave/Convex Functions

Standard definitions of convex and concave functions

do not require C* and use only use values of function,

related to convex set.

Walker's definition of convex and concave functions assumes fn C?!

and gives a condition in terms of the tangent plane (p. 372).

A theorem given later shows that our condition is equivalent
to Walker's for C! function.

Also see problem 7.5:5 in Walker

Use our defn in some proofs.
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Concave Functions

f(x¢) : i f(y)
f(x) (1—1t)f(x)+ tf(y)

X Xt y

Definition

f:92 CcR" — R isconcave on 2 p.t. forall x,ye 2 & 0<t<1,
xt=(1—t)x+tyePD & f(x:)>(1—1t)f(x)+tf(y).

equiv. to: set of points below graph,
{(x,y) €2 xR:y < f(x)}, is convex subset of R™1.

f is strictly concave p.t. for all x,y € D withx#y & 0 <t <1,
xt=(1—t)x+tye@ & f(x¢)>(1—t)f(x)+tf(y).
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Convex Functions

f:92CR" =R is convexon @, p.t. forall x,ye 2 & 0<t<1,
xe=(1—-t)x+tye P & f(x¢) < (1—t)f(x)+tf(y).

equiv. to: set of points above graph,
{(x,y) €2 xR :y > f(x)}, isa convex set.

f is called strictly convex p.t. for all x,y € Z withx#y & 0<t <1,
xt=(1—t)x+tye @ & f(x¢)<(1—t)f(x)+tf(y).

Note that if f is either concave or convex on & then & is convex.
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Continuity of Concave/Convex Functions

If f: 92 CcR" — R is aconcave or convex function on 9,

then f is continuous on int(2).

The proof is given in Sundaram “A First Course in Optimization Theory".

Since concave/convex functions are continuous,

reasonable to seek their maximum
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Convexity of Feasible Set

Assume that 9 C R" is an open convex subset, and

gi 9D — R are C' convex functions for 1 < i < m.

Then, for any b € R,
Fep={x€cD:gi(x)<bj for1<i<m} isa convex set.

.

Take x,y € Fgp andlet x;, = (1 —t)x+ty for 0 <t < 1.

Forany 1 < < m,
gi(xt) < (1 —t)gi(x) + tgi(y) < (1 — t)bi + tb; = b;,
so X¢ € Fgp.

Fgp is convex. O

v
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Slater Condition

Need a condition on feasible set & to insure that

an extremizer of f satisfies KKT-1,2.

Definition

let gi: 2 — R for 1 << m,
Fep={x€D:gi(x) <bjfor1<i<m}.

Constraint functions {g;} satisfy Slater Condition on &4}, p.t.
there exists X € Fgp s.t. gi(X) < b forall 1 <i<m.

If Slater Condition is satisfied then ZFg} has nonempty interior.
Very mild in comparison to constraint qualification.

Not needed to show soln of KKT-1,2 is an extremizer.
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Theorem (Karush-Kuhn-Tucker under Convexity)
Assume f,gi ' R" =R Cl for1 <i<m,
X*€Fgp={xeR":gi(x)< b for1<i<m} for becR™.

a. Assume f is concave.

i. If Fgp isconvex and (x*,X*) satisfies KKT-1,2,3 with all A} > 0,
then f has a maximum on Fgp at x*.
ii. If f has a maximum on Fg at x*, all g; are convex,

and &F b satisfies Slater condition, then there exist
A= (A],...,A5) > 0 such that (x*,A*) satisfies KKT-1,2,3.

b. If f is convex rather than concave, then conclusions of part (a) are
true with maximum replaced by minimum and

A7 >0 replaced by A7 <0.

(Assumptions on Fg and g; stay same.)
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Karush-Kuhn-Tucker Theorem, continued

Kuhn-Tucker published in 1951, and popularized result.
Karush thesis in 1939 had earlier result.

Fritz John has a related result in 1948.

Verify that &g, is convex by conditions on constraint functions.
If all gi(x) are convex then Fg}, is convex.

Later, allow rescaled convex function — still insures Fg}, is convex.

In examples, once find a solution of KKT-1,2,3 then done.
Don't need to verify separately that max exists,

don't need Slater condition, or constraint qualification.
Give some further results about convexity and examples before proof.
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Affine Function

Proposition
Fora € R" and b € R, affine function on R" given by
g(x)=a-x+b=ayx3+---+apx,+b

is both concave and convex.

Proof.
Po,P1 € R”, pr=(1—1t)po+tp:1.
g(pe)=a-[(1—t)po+tpi]+b
=(1—t)[a-po+b]+t[a-p1+b
= (1—t)g(po) + tg(p1).

have equality so both concave and convex. O
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Second Derivative Test for Convexity/Concavity

Theorem

Let 9 C R" be open and convex and f: 9 — R be C°.

a. f is convex (resp. concave) on 9 iff D?>f(x) is positive

semidefinite (resp. negative semidefinite) for all x € 9.

b. If D?f(x) is positive (resp. negative ) definite for all x € 9,
then f is strictly convex (resp. strictly concave) on 9.

Idea: If D2f(x) is positive (resp. negative) definite,
then locally graph of f lies above (resp. below) tangent plane.

Proof makes this global.

Online Course Materials have proof based on Sundaram
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Example 4

Minimize :  f(x,y) =x* +y*+12x>+6y? —xy — x + y,
Subject to :  gi(x,y)=—x—y < -6
g(x,y)=—2x+y<-3
-x <0, -y <0.
Constraints are linear and so are convex. % is convex

Objective function:

12 x2 + 24 -1
D*f(x,y) = -1 12y2 + 12

12x24+24>24>0 & det(D?*f(x,y)) >24(12) —1 >0,

so D?f(x,y) is positive definite at all x € # and f is convex.
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Example 4, continued

KKT-1 with A1, Aa, w1, po multipliers for g1, g2, -x <0, -y <0.
0=4x3+24x —y — 1+ +2\2+ 11
0=4y3+ 12y —x+ 1+ A1 — A + 12

If x=0,then y <-3s0o-y>0. -x<0in 92, never tight uy =0
0=pua(-y): If y=0, then x = -g1(x,0) > 6,
so g@(x,0) = -2x < -12 < -3, X =0.
If x>6,then \y =0, 0=4x3+24—1. x =6, contradiction
For x =6 & y =0, 2nd equation gives

0=—-6+1+4 A1+ p2, or
5= X1+ p2.

Both these multipliers cannot be < 0, so not minimum.
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Example 4, continued

x,y >0, so pup =0. If both g1 & g» tight then
6=gi(x,y)=x+y
3=g(x,y)=2x—y
solving yields x =y = 3.
If solution of KKT-1 then

0=4(3%)+24(38) =3 -1+ A +2X2 =)\ +2) + 176
0=4(3%)+12(38) =3+ 14+ A1 — Ay = A1 — A2 + 140.
solving yields A\; = -152 <0, A» = -12 < 0.

(x*,y*) = (3, 3), )\1 = —152, )\2 = —12, H1 = U2 = 0

satisfy KKT-1,2,3" and is minimizer.
End of Example
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Example 5: Lifetime of Equipment

Two machines with lifetimes x and y and costs $1,600 and $5,400,
1600 5400
X y

average cost per year

Machine A has operating costs of $50; in jt year
for average operating cost per year for lifetime of machine is
50 +2(50) +--- +x(50) 50 x(x+1)

X X 2

= 25(x +1).

Machine B has operating costs of $200; in jt year
for average operating cost per year of

100(y + 1).

Want combined total use of at least 20 years use, x + y > 20.
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Example 5, continued

1600 5400
Minimize :  f(x,y) =25(x + 1) + 100(y + 1) + — 4

Subject to :  gi(x,y) =20—x—y <0 g
&(x,y) =-x<0
g3(X7y) ="y S 0.
Constraints are linear and convex, so % is convex.
200
D?f(x,y) = [ x 10800] is positive definite all pts in R%Hr,
O T

. 2
so f is convex on RY .

f (cost) gets arbitrarily large near x =0 or y =0,
so minimum occurs for x > 0 and y > 0,

can ignore those multipliers
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Example 5, continued

KKT-1,2 become

1
0=25- 90,
X

4
0=100- 20 1
y

0=XA20—x—y)

Assume constraint is effective and y = 20 — x.

first two equations give

1 5400
0 = 75x%y? — 5400x? + 1600y
0 = 75x* — 3000x3 + 26200x2 — 64000x + 640000
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Example 5, continued

0 = 75x* — 3000x> + 26200x2 — 64000x + 640000
has positive roots of x & 12.07 and 28.37.
If x = 28.37 then y = 20 — x < 0 so not feasible.

1600

If x ~12.07, then y ~7.03 and A\~ -25+ o~

Minimizer.

~ -14.02 < 0.

Since a min exists on boundary, not necessary to check pts in interior;
However, if A=0, then x=8 & y =+vb4 = 7.5
(8,v/54) is not in feasible set.

End of Example
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Cobb-Douglas Functions

f(x,y) = x7y® ,

Proposition

Let f(x,y) = x?y? with a,b > 0.
a. If a+ b<1, then f is concave and —xayb is convex on Rﬁ_.

b. If a+ b > 1, f is neither convex nor concave.
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) B a(a _ 1)Xa—2yb ab a—lyb—l
(X y) €R++, D f(Xay) — < abxaflylfb b(b_ ]_) 3 b—2

ala—1)x*2yP <0 if a<1
det (D%f(x,y)) = ab(1 — a — b)x?3~2y2b-2

>0 fatb<l1
=0 ifa+b=1
<0 ifa+b>1.

If a4+ b < 1, D?f(x,y) is neg. def., f is strictly concave on R++;
f is continuous on R?, so strictly concave on R? = cl(R3,).

If a+ b =1, then D?f(x,y) is neg. semi-def. on R2

f is concave on ]R%r;

If a+ b > 1, D?f(x,y) is indefinite and f neither concave nor convex. [

v
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Cobb-Douglas Functions, contin.

f(x,y) = xy is neither concave nor convex

(but it is rescaled concave function: discussed later)
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Proposition

For ay+---+a,<1 and a; >0 forl <i<n.
f(x) = x{*x32---x2" concave on R} and -xi*---x3" is convex.
If a1 +---+a, > 1, then f is neither concave nor convex.

Proof: xc R,

f, = aixat - .Xl?f*1 Cexan
fux; = ai(ai — 1)x* - - -x,fa"_2 coexdn = aj(a; — L)X 2f
fax; = aiajxy" - AT -xjaj_1 S xpn = ajapx; X
al(al — 1)X1_2f alakxl'lx,;lf
Ay = det .
akax gt ar(ak — 1)xg3f
dy — 1 .- ak
:al---akxl'2---x,;2fkdet :
dai ak—l
:al'--akxl'z---xlzszﬁk defines Ay
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Proof of Cobb-Douglas R", continued

By induction A, = (-1)k — (-1)*(ay + - - - + ax).

A;[ = det[al—l] = (—1)1 — (—1)131.

31—1 ce dk
Ay = det :
ai a,-1
81—1 dk—1 =) 31—1 di—1 0
— det : " : “ | +det : :
al s ak_l—l ak al s ak_l—l 0
a o a1 A a o a1 -1

2nd det = -Ayp_; = -(-1)F 1+ (-1 Yay + - + ax_1)
= (D~ (D o+ 3er)
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Proof of Cobb-Douglas R", continued

By column operations on 1st det

31—1 di—1 dy -1 - 0 1

det | * ' C o= ak = (-1)k1ay
ai ak_l—l =)% 0 oo =101
ai “e. ak*l ak O 0 1

Ak = (—1)k_lak + (—l)k — (—l)k (31 4+ .+ ak—l)
= (‘1)k - (‘1)k (a1 + -+ ak).
Ap=(-1kay - apxg?- - x 2 (L—ar — - — ak)
Ay alternate signs as required for D?f to be negative definite on R,

f is strictly concave on R, . Since f is continuous,

f is concave on cl(R},) =R". QED
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Rescaling a Function

For KKT Thm, need Fgp ={xec F :gi(x) < b; forall i} convex.
By rescaling allow more fns than just convex fns.

Definition

g:9 CR"— R isa rescaling of §: 2 CR" - R p.t.
3 increasing function ¢ : R — R s.t. g(x) = ¢ o g(x).
Since ¢ has an inverse, g(x) = ¢! o g(x).

¢ isa C! rescaling p.t. ¢ is C* and ¢/(y) > 0 for all y € R.

If g(x) is a rescaling of a convex function g(x), then

g(x) is called a rescaled convex function.
Similarly, a rescaled concave function,

If g(x) isa C! rescaling, then g is
C! rescaled convex function, and C! rescaled concave function. |
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Rescaling Constraints

If g:9 CR" — R is a rescaled convex function, then
Fep=1{x€D:g(x) < b} isconvex for any b e R.

g(x) = ¢dog(x) with ¢:R — R increasing and g convex.
Fep={x€D:g(x) §¢'1(b)} is convex. Ol

v

A function is called quasi-convex p.t. all the sets &, ;, are convex.

(See Sundaram).

Showed a rescaled convex function is quasi-convex
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All Cobb-Douglas Fns are Rescaled Concave Fns

Proposition

If a1,...,an >0, then g(x) = -+ x2 is
a C! rescaled C' concave function on R’

-g(x) is a C! rescaling of a C! convex function on R", .

Proof
Let b; =

aj
(231+-"+23n)
b+ +b,=3<1

, for 1 <i<n.

b .
h(x,y,z) = X1 ---x7" is convex on R

#(s) = s?@1tF22 is monotone on R, .

g(x) = ¢ o h(x) is a C! rescaling on R’ by theorem. O
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Example of Non-Concave Cobb-Douglas Function

f(x,y) = xy s a rescaled concave function, but not concave

Xy
4 X% y%
v .
//
&7
L

(—
g

y

X X
Non-concave Concave
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Example of Rescaled Convex Function

f(x) =x®—2.9x%+3x2
f(x) xb

-1.3 1.3 -13 13
f'(x) = x[6x* —11.6x2 + 6],  single critical point x = 0.

f"(x) = 30x* — 34.8x% +6, f"(40.459) = 0 = ”(£0.974).

f"(x) <0 for 0.459 < x < 0.974, f(x) is not convex.
f(x) is a rescaling of f(x) = x® that is convex:

d(y) = [F1(y)]° satisfies ¢ o F(x) = F(x).
f(x) is a rescaled convex function that is not convex.
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KKT with Rescaled Functions

Following corollary of KKT Theorem allows

rescaling of objective function as well as constraints.

Corollary

Assume that f,g; : R" — R are Cl for1<i<m,
each g; is a C* rescaled convex function
f isa C! rescaled concave (resp. convex) function
X*€Fgp={xeR":gi(x) < b for1<i<m} for becR™.
With these assumptions, the conclusions of the different parts of

KKT Theorem are valid.

Bazaraa et al allow f to be pseudo-concave.
Rescaled concave implies pseudo-concave.
See online class book.
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8i(x) = ¢j o gi(x) with ¢%(b;) >0 for all b; € R.
f(x) = Tof(x) with T'(y) >0 for all y = f(x) with x € &

Let b = ¢;(b;). If gi(x*) = b; is tight, then &(x*) = b/,
Dgi(x*) = ¢/(b})Dgi(x*) and  DF(x*) = T'(f(x*)) Df (x*).
(i) Fep={xecR":gi(x) < b} ={xeR":g(x) < b} is convex.
If f satisfies KKT-1. then
DF (x*) = T'(f(x*)) Df (x") = T'(f(x")) 22; Ai Dgi(x"),
so f satisfies KKT-1,2 with multipliers T'(f(x*)) A; > 0.
By Theorem KKT(a.i),  has a maximum at x*.

Since T71isincreasing, f = T"!of has a maximum at x*.
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Proof, continued

(a.ii) If f has a maximum at x*, then since T is increasing,

f has a maximum at x*.
Applying Theorem KKT(a.ii) to # and g on Feb,
T/(f(x*)) Df (x*) = DF (x*) = 32, i D&i(x*) = 32; A 6(bi) Dgi(x"),
using that A; = 0 unless g;(x*) = b;.
Since, T'(f(x*)) > 0 and ¢/(b;) > 0 for all effective i,
conditions KKT-1.2 hold for f and the g;

Ai T;(bi)

Wlth multipliers W

> 0.
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Example 6

Maximize:  f(x,y,z) = xyz

Subject to:  gi(x,y,z) =2x+y+2z—-5<0
o(x,y,z)=x+2y+z—-4<0,
g3(X7ya ) -X S Ov
g4(X7y7 ) -y < 0, and
g5(X7.y7 ) 4 S 0.

All g; are linear so convex
F={(x,y,2) €ER3: gi(x,y,z) <0for1 <i <5} is convex

f is C! rescaling of concave fn on R%

- 1 . .
Could maximize (xyz)#, but equations are more complicated.
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Example 6, continued

0=f(0,y,z) = f(x,0,z) = f(x,y,0), so max in R4 |
gi slack for 3 < i <5, so multipliers A3 =X 3 = X5 =0

KKT-1: yz =21 + Ag,
Xz = A1 + 2o,
xy = 2A1 + Ao,

KKT-2: 0=X1(5—2x—y —2z2),
0=X(4—x—2y—2).

KKT-3: all \; >0,

From 1st and 3rd equation, yz = yx, so x =z (since y > 0)
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Example 6, continued

If both g1 and g» are effective,
5=4x+y
4 =2x 4 2y.

with solution 1=x=y, z=x=1. (1,1,1) e &.
KKT-1 become

1=2\+ X2
1=X+2)

with solution A\ = Ao = % > 0.
f is rescaling of concave fn and all g; are convex functions on R:”H.
p* = (1,1,1) satisfies KKT-1,2 with A\; = A, = 1 > 0.
By KKT Theorem, f must have a maximum on &% at p*. QED
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Slater Condition for Example 6

Don't need Slater condition to conclude that p* is a maximizer.
Since p =(0.5,0.5,0.5) € & has all g;(p) <0,
constraints satisfy Slater condition.

There are many other points with same property.
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Slater Condition and Constraint Qualification

Remark

For previous example, constraint qualification is satisfied on %

However, if add another constraint, x + y +z — 3 <0,
p* is still a solution of KKT-1,2,3

and a maximizer by KKT Theorem under convexity.

For this new example, there are three effective constraints at p*,
but the rank is still 2.

Does not satisfy the constraint qualification on .
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Global Maximizers of Concave Functions

If M =max{f(x):x€ZF} < oo exists,
Fr={xeF f(x)=M}

If max doesn't exist, ZF* = ().

Assume that f : F C R" — R is concave. Then following hold:
a. Any local maximum point of f is a global maximum point of f.

b. &#* is either empty or convex set.

c. If f is strictly concave, then F* is either empty or a single point.
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(a) If not global max, then 3 loc max x* and z # x* s. t. f(z) > f(x*).
For ;) =(1—t)x*+tz & 0<t<1, x€F
f(xe) > (1 —t)f(x*) + tf(z) > (1 — t)f(x*)+ t F(x*) = F(x*).
Since f(x¢) > f(x*) for small ¢, x* cannot be a local max.
(b) Assume xqg,x; € F*.
Let x; = (1 — t)xo + tx1, & M =max{f(x):x€ F}. Then
M > f(x¢) > (1 —t)f(xo) +tf(x1) =(1—t)yM+tM = M,
f(xt) =M & x € F* for 0<t<1.

F* is convex.

(c) If xo,x1 € F* & xg # x1, strict convexity implies f(x;) > M.

Contradiction implies at most one point. O
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First Order Derivative Conditions for Convexity/Concavity

For C! fns on convex domain, our defn is equiv to Walker's

Assume 9 C R" be open and convex and f : 9 — R is CL.

a. f is concave iff f(y) < f(x)+ Df(x)(y —x) Vx,ye€9.
b. f is convex iff f(y)> f(x)+ Df(x)(y —x) Vx,ye€ 2.

Concavity iff every p graph of f(x) lies below tangent plane at p
f(x) < f(p) + Df(p)(x — p)
Convexity iff every p graph of f(x) lies above tangent plane at p

f(x) = f(p) + Df(p)(x — p)
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Proof First Order Derivative Conditions

Proof: (a) (=) xr = (1 —t)x+ ty = x + t(y — x).

Df (x)(y — x) = lim¢—o+ Lt—f(x) Chain Rule
> limy_oyp (1= 1)) —:t fly) = f(x) concave
= lim¢_o4 w = f(y) — f(x)
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Proof First Order Derivative Conditions

(<) Assume Df(x)(y —x) > f(y) — f(x)

Let x; = (1 —t)x+ty and wy =y —x; = (1 — t)(y — x), so

t
X—Xt:—(l_t>wt.

F(x) — F(xe) < DF(xe)(x — x¢) = — (i) Df (x;)w;  and

F(y) — f(xe) < Df(xe)(y — x¢) = Df (x¢)w.

Multiplying first inequality by (1 — t), the second by t, and adding
(L—1t)f(x)+tf(y)—f(xt) <0, or
(1 —¢t)f(x)+ tf(y) < f(x¢). f is concave

QED
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Directional Derivative Condition

Assume that f : & C R" — R is concave. and x* € &.

x* maximizes f on & iff

Df(x*)v < 0 for all vectors v that point into & at x*.

For x* € int(&), it follows that x* is a maximizer iff it is a critical point.

So result generalizes critical point condition.
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Concave implies directional derivatives exist, so don't need C!.

(=) Assume x* is maximizer and v points into & at x*.
For small t >0, x* +tve ZF and f(x* + tv) < f(x*).

f(x* + tv) — f(x*)

<0.
t

Df (x*)v = im0+
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Proof, continued

(<) Assume Df(x*)v < 0 for all vectors v that point into & at x*.
If x* is not a maximizer, then there exists z € 9 s.t. f(z) > f(x*).

v =z — x* points into & at x*.

For0<t<1 xs=(1—-t)x*+tz=x*"+tveF and

f(x¢) > (1 —t)f(x*)+tf(z) =F(x*)+t [f(z) — F(x*)] so
D) = e g, (D=1 170 =)
= f(z) — f(x*) > 0.
contradiction
x* must be a maximizer. QED
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Proof of KKT Under Convexity Theorem 3.17.a.i

Assume KKT-1,2,3 conditions at (A*,x*) A¥ > 0.

ZF is convex. f restricted to & is concave.

E = E(x*) be effective constraints

v a vector that points into & at x*.

If i ¢ E, then \¥ =0, and A7Dgi(x*)v=0.

If i € E, then gij(x*) = b;, gi(x* + tv) < b; = gi(x*),
gi(x* + tv) — gi(x*)

t

<0 for t >0, and

gi(x" + tv) — gi(x)
t
Since A¥ >0, AfDgj(x*)v < 0.
Df(x*)v = > ; A\iDgi(x*)v < 0. if v points into #.
By previous theorem, x* is a maximizer. QED

Dg,-(x*) vV = Iimt_>0+

<0.
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Proof of KKT Theorem a.ii

Assume that f has a maximum on & at x*.

For correct choice of A7 > 0 show x* is an interior maximizer of
L(x,A*) = f(x) + >_; AT (bi — gi(x)) with A* fixed

Use two disjoint convex sets in R™1  space of values of constraints + 1

z

T wh = F(x*)
¥

Y ={(w,z2) eRxR":w>f(x*)&z>0}

is convex.
Z ={(w,z) e RxR":w < f(x) & z < b — g(x) for some x € R" }
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Proof of Karush-Kuhn-Tucker, continued
i

w* = f(x*)

@

Z

Z is shown to be convex. XN =0.
By convex separation theorem, 3 (p,q) # 0 s.t.
pw+q-z<pu+q-v forall (w,z) e &, (u,v)e . (1)
It is shown that (p,q) > 0. Slater = p > 0.
Any x € R", w = f(x) and z=b — g(x),
(u,v) € & converge to (f(x*),0),
pf(x)+q-(b—g(x)) < pf(x*) for all x € R".
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Proof of Karush-Kuhn-Tucker, continued

Setting A\* = (%) q= <%,...,%’"> >0, KKT-3.
f(x)+X* - (b—g(x)) < f(x*) for all x € U.
L(x,A") = f(x) + >, Ai(bj — gi(x)) < f(x*) for all x € U.
For x = x*, get > . A¥(bi — gi(x*)) <0.
But A\¥ > 0 and b; — gi(x*) > 0, so each
Ni(bi - gi(x) =0 KKT-2
L(x,A*) < f(x*) = L(x*,X*) for all x € U.
With A* fixed, L(x,A*) has an interior maximum at x* and
0 = DeL(x*, X*) = DF(x*, A*) — 33, A% Dgi(x*, A*)  KKT-1.
QED
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