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Implicit Function Theorem

For scalar fn g : Rn → R with ∇g(x∗) 6= 0 and g(x∗) = b,

level set g -1(b) = { x ∈ Rn : g(x) = b } is locally a graph.

∂g

∂xm
(x∗) 6= 0 implies

xm is locally determined implicitly as a fn of other variables.

Tangent plane

0 =
∂g

∂x1
(x∗)(x1 − x∗1 ) + · · ·+ ∂g

∂xn
(x∗)(xn − x∗n )

If m = n,

xn = −x∗n −

(
∂g
∂x1

(x∗)
∂g
∂xn

(x∗)

)
(x1− x∗1 )− · · ·−

( ∂g
∂xn−1

(x∗)

∂g
∂xn

(x∗)

)
(xn−1− x∗n−1)

linear tangent plane graph ⇒ nonlinear level set graph
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Implicit Function Theorem, Higher Dimensions

For vector fn g : Rn → Rk C 1, k constraints and n variables,

level set for constant b ∈ Rk ,

g-1(b) = { x ∈ Rn : gi (x) = bi for i = 1, . . . , k }.

To insure a graph near x∗ with g(x∗) = b, need rank(Dg(x∗)) = k

i.e., gradients {∇gi (x
∗)}k

i=1 are linearly independent
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Implicit Function Theorem, continued

If rank(Dg(x∗)) = k, can select k xm1 , . . . , xmk
s.t.

(*) det


∂g1

∂xm1

(x∗) · · · ∂g1

∂xmk

(x∗)

...
. . .

...
∂gk

∂xm1

(x∗) · · · ∂gk

∂xmk

(x∗)

 6= 0.

Below show (*) ⇒ null(Dg(x∗)) graph of z = (xm1 , . . . , xmk
)

in terms of other n − k variables w = (x`1 , . . . , x`n−k
).

Implicit Fn Thm says that for nonlinear g-1(b),

z = (xm1 , . . . , xmk
) are also determined implicitly

as functions of the other n − k variables w = (x`1 , . . . , x`n−k
)
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Theorem (Implicit Function Theorem)

Assume g : Rn → Rk C 1, g(x∗) = b, & rank(Dg(x∗)) = k,

then nonlinear level set g-1(b) is locally a graph near x∗.

If z = (xm1 , . . . , xmk
) are selected s.t. (*) det

(
∂gi

∂xmj
(x∗
)
6= 0,

then xm1 , . . . , xmk
are determined implicitly near x∗

as functions of the other n − k variables w = (x`1 , . . . , x`n−k
).

Implicitly defined (xm1 , . . . , xmk
) = h(x`1 , . . . , x`n−k

) is differentiable

∂xmi
∂x`j

calculated by chain rule and solving matrix equation (ImDiff)

0 =


∂g1

∂x`1

. . .
∂g1

∂x`n−k

...
. . .

...
∂gk

∂x`1

. . .
∂gk

∂x`n−k

+


∂g1

∂xm1

. . .
∂g1

∂xmk
...

. . .
...

∂gk

∂xm1

. . .
∂gk

∂xmk




∂xm1

∂x`1

· · · ∂xm1

∂x`n−k

...
. . .

...
∂xmk

∂x`1

· · · ∂xmk

∂x`n−k


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Implicit Function Theorem, continued

Hardest part of Implicit Fn Thm is that h exists and is differentiable.

Taking ∂
∂wj

of b = g(w, z) while considering zi = hi (w) as fns of wj ,

0 =
∂b

∂wj
=

∂g

∂wj
+
∑k

i=1

∂g

∂zi

∂zi

∂wj
.

0 =


∂g1

∂x`1

. . .
∂g1

∂x`n−k

...
. . .

...
∂gk

∂x`1

. . .
∂gk

∂x`n−k

+


∂g1

∂xm1

. . .
∂g1

∂xmk
...

. . .
...

∂gk

∂xm1

. . .
∂gk

∂xmk




∂xm1

∂x`1

· · · ∂xm1

∂x`n−k

...
. . .

...
∂xmk

∂x`1

· · · ∂xmk

∂x`n−k


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Implicit Function Theorem, continued

Group partial deriv of w = (x`1 , . . . , x`n−k
) & z = (xm1 , . . . , xmk

).

Dwg(x∗) =

(
∂gi

∂x`j

(x∗)

)
1≤i≤k, 1≤j≤n−k

Dzg(x∗) =

(
∂gi

∂xmj

(x∗)

)
1≤i≤k, n−k+1≤j≤n

rank(Dzg(x∗)) = k or det (Dzg(x∗)) 6= 0.

0 = Dwg(x∗) + Dzg(x∗) Dh(x∗) (ImDiff)

Dh(x∗) = (Dzg(x∗))-1 Dwg(x∗).

Write down (ImDiff) then solve. Easier than formula with inverse

Dwg(x∗) is matrix with determinant 6= 0.

Dwg(x∗) includes all other independent variables.
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Implicit Function Theorem, continued

null space of Dg(x∗)

null(Dg(x∗)) = {v ∈ Rn : Dg(x∗)v = 0 }

= {v ∈ Rn : v · ∇gi (x
∗) = 0 for 1 ≤ i ≤ k }

If det (Dzg(x∗)) 6= 0 then null(Dg(x∗)) is a graph, with z fn of w:

For v ∈ null(Dg(x∗)),

0 = Dg(x∗)v = [Dwg(x∗),Dzg(x∗)]

(
vw

vz

)
= Dwg(x∗)vw + Dzg(x∗)vz,

vz = (Dzg(x∗))-1 Dwg(x∗) vw,

If linear tangent space is graph of z in terms of w, then

nonlinear level set is locally a graph of z in terms of w
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Implicit Function Theorem, continued

In an example, differentiate C = g(w, z) with respect to w

thinking of z as function of w and

solve for unknown partial derivatives

(
∂zi

∂wj

)
from (ImDiff)

0 =


∂g1

∂w1
. . .

∂g1

∂wn−k
...

. . .
...

∂gk

∂w1
. . .

∂gk

∂wn−k

+


∂g1

∂z1
. . .

∂g1

∂zk
...

. . .
...

∂gk

∂z1
. . .

∂gk

∂zk




∂z1

∂w1
· · · ∂z1

∂wn−k
...

. . .
...

∂zk

∂w1
· · · ∂zk

∂wn−k


(1) matrix Dzg(x∗) includes all the partial derivatives with respect to

the dependent variables zj used to calculate the nonzero determinant

(2) matrix Dwg(x∗) includes all the partial derivatives with respect to

the independent (other) variables, wj .
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Example of Changing Technology for Production

Single fixed output, Q0.

Two inputs x and y , Q0 = xayb.

By changing technology, exponents a and b vary independently.

Total cost of the inputs is fixed,
p x + q y = 125.

where price are p and q

What are rates of change of inputs as functions of a and b

at x = 5, y = 50, p = 5, q = 2, a = 1
3 , and b = 2

3?
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Changing Technology, continued

Rather than use Q0 = xayb, take logarithm: constraints

g1(x , y , a, b, p, q) = px + qy = 125 and (1)

g2(x , y , a, b, p, q) = a ln(x) + b ln(y) = ln(Q0).

Two eqs define x and y as functions of a, b, p, and q since

det


∂g1

∂x

∂g1

∂y
∂g2

∂x

∂g2

∂y

 = det

[
p q
a
x

b
y

]
=

pb

y
− qa

x
=

pbx − qay

xy

=
5 · 2 · 5− 2 · 1 · 50

3 · 5 · 50
=

1

15
6= 0.
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Changing Technology, continued

Considering x and y as functions of a, b, p, and q, and differentiating

equations with respect to (four) independent variables gives (ImDiff):

0 =


∂g1

∂a

∂g1

∂b

∂g1

∂p

∂g1

∂q
∂g2

∂a

∂g2

∂b

∂g2

∂p

∂g2

∂q

+


∂g1

∂x

∂g1

∂y
∂g2

∂x

∂g2

∂y




∂x

∂a

∂x

∂b

∂x

∂p

∂x

∂q
∂y

∂a

∂y

∂b

∂y

∂p

∂y

∂q



=

[
0 0 x y

ln(x) ln(y) 0 0

]
+

[
p q
a
x

b
y

]
∂x

∂a

∂x

∂b

∂x

∂p

∂x

∂q
∂y

∂a

∂y

∂b

∂y

∂p

∂y

∂q


2× 2 matrix is one with nonzero determinant and

has partial derivatives with respect to x and y , which

is same as dependent variables (rows) of last matrix.
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Changing Technology, continued

Taking first matrix across equality and inverting the 2× 2 matrix,
∂x

∂a

∂x

∂b

∂x

∂p

∂x

∂q
∂y

∂a

∂y

∂b

∂y

∂p

∂y

∂q

 = − xy

pbx − qay

 b
y q

a
x p

[ 0 0 x y
ln(x) ln(y) 0 0

]

=
xy

qay − pbx

[
q ln(x) q ln(y) bx

y b

p ln(x) p ln(y) a ay
x

]

=


xyq ln(x)

qay − pbx
xyq ln(y)

qay − pbx
bx2

qay − pbx
bxy

qay − pbx

xyp ln(x)
qay − pbx

xyp ln(y)
qay − pbx

axy
qay − pbx

ay2 ln(y)
qay − pbx

.
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Changing Technology, continued

At the point in question, qay − pbx = 100−50
3 = 50

3 and

∂x

∂a
=

xyq ln(x)
qay − pbx =

3(5)(50)(2) ln(5)

50
= 30 ln(5),

∂x

∂b
=

xyq ln(y)
qay − pbx =

3(5)(50)(2) ln(50)

50
= 30 ln(50),

∂y

∂a
=

xyp ln(x)
qay − pbx =

3(5)(50)(5) ln(5)

50
= 75 ln(5),

∂y

∂b
=

xyp ln(y)
qay − pbx =

3(5)(50)(5) ln(50)

50
= 75 ln(50).
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Outline of implicit differentiation with several constraints

First, some equations are derived (or given) relating several variables.

In the last example, there are two equations with six variables.

Second, thinking of these equations as defining some variables

in terms of the others, take partial derivatives to give equation
(ImDiff).

In last example, take partial derivatives with respect to x and y .

Finally, solve for the matrix of partial derivatives of the dependent

variables with respect to the independent variables.
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3.2 Theorem of Lagrange

Definition

C 1 constraints gi : Rn → R for i = 1, . . . , k with g(x) = (gi (x)) satisfy

constraint qualification at x∗ p.t.

rank (Dg(x∗)) = k.

i.e., gradients {∇gi (x
∗)}k

i=1 are linearly independent.
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Method of Lagrange Multipliers

Theorem

Assume f , gi : Rn → R are C 1 functions for i = 1, . . . , k.

Suppose that x∗ is a local extremizer of f on

g-1(b) = { x ∈ Rn : gi (x) = bi , i = 1, . . . , k }.

Then at least one of the following holds:

1. ∃ λλλ∗ = (λ∗1, . . . , λ
∗
k) ∈ Rk s.t.

Df (x∗) =
∑k

i=1 λ∗i Dgi (x
∗),

i.e., ∇f = linear combination of ∇gi of constraints

2. rank(Dg(x∗)) < k, constraint qualification fails at x∗.

Could add condition rank(Dg(x∗)) = k to assumptions.

But emphasize that max/min could come a point with lower rank.
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Singular Example, R2

Let g(x , y) = x3 + y2 = 0 and f (x , y) = y + 2x .

f -1(0)

f -1( 1
2
)

f -1( 1)
g -1(0)

Maximum of f (x , y) is at singular point (0, 0), where ∇g = 0.

∇f (0) = (2, 1)>>> 6= 0 = λ∇g .

Chapter 3: Constrained Extrema 18



Singular Example, R3

g1(x , y , z) = x3 + y2 + z = 0, g2(x , y , z) = z = 0, f (x , y , z) = y + 2x .

Level set is that of last example in (x , y)-plane

g-1(0) = { (x , y , 0) : x3 + y2 = 0 }

Maximum at 0.

Gradients parallel at 0:

∇g1(x , y , z) = (3x2, 2y , 1)>>>, ∇g2(x , y , z) = (0, 0, 1)>>>

∇g1(0, 0, 0) = (0, 0, 1)>>>, ∇g2(0, 0, 0) = (0, 0, 1)>>>

rank(Dg(0)) = rank

[
0 0 1
0 0 1

]
= 1.

∇f (0) = (2, 1, 0)>>> 6= λ1∇g1(0) + λ2∇g2(0) = (0, 0, λ1 + λ2)
>>>.
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Tangent Space to Level Set

For g(x∗) = b, denote set of tangent vectors at x∗ to g-1(b) by

T(x∗) =
{
v = r′(0) : r(t) is a C 1 curve with r(0) = x∗,

g(r(t)) = b for all small t }.

Called tangent space of g-1(b) at x∗

null(Dg(x∗)) = { v : v · ∇gj(x
∗) = 0 for j = 1, . . . , k }.

Proposition (3.8)

Assume g : Rn → Rk is C 1, g(x∗) = b, and rank(Dg(x∗)) = k.

Then T(x∗) = null(Dg(x∗)), set of tangent vectors is null(Dg(x∗))

Most calculus books just state that set of tangent vectors are

all vectors perpendicular to gradients of constraints, = null(Dg(x∗)).
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Proof:

For any curve r(t) in g-1(b) with r(0) = x∗,

0 =
d

dt
b =

d

dt
g(r(t))

∣∣∣∣
t=0

= Dg(r(0))r′(0) = Dg(x∗)r′(0),

so T(x∗) ⊂ null(Dg(x∗)).

Proof of null(Dg(x∗)) ⊂ T(x∗) uses Implicit Function Theorem:

Assume variables have been ordered x = (w, z) so that

det(Dzg(x∗)) 6= 0.

Then g-1(b) is locally a graph z = h(w).
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Proof, continued

For v = (vw, vz)
T ∈ null(Dg(x∗)), w(t) = w∗ + t vw is line in w-space

r(t) =

(
w(t)

h(w(t))

)
is a curve in level set.

r(0) = x∗, r′(0) =

(
vw

Dh(w∗) vw

)
∈ T(x∗), and

0 = d
dt g(r(t))

∣∣∣
t=0

= Dg(x∗)r′(0)

r′(0) ∈ null(Dg(x∗)) and has same w-components as v.

null(Dg(x∗)) is a graph over the w-coordinates, so

v = r′(0) ∈ T(x∗).

null(Dg(x∗)) ⊂ T(x∗).

Combining, null(Dg(x∗)) = T(x∗). QED
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Proof of Lagrange Theorem.

Assume x∗ is a local extremizer of f on g-1(b), rank(Dg(x∗)) = k.

For any curve r(t) in g-1(b) with r(0) = x∗ and r′(0) = v:

0 =
d

dt
f (r(t))

∣∣∣∣
t=0

= Df (x∗) v

i.e., Df (x∗)v = 0 for all v ∈ T(x∗) = null(Dg(x∗))

null(Dg(x∗)) = null

(
Dg(x∗)
Df (x∗)

)
rank = #columns− dim(null)

rank

(
Dg(x∗)
Df (x∗)

)
= rank((Dg(x∗)) = k

Last row, Df (x∗), is a linear combination of first k rows,

Df (x∗) =
∑k

i=1 λ∗i D(gi )(x
∗).
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Example 1

Find highest point satisfying x + y + z = 12 and z = x2 + y2.

Maximize: f (x , y , z) = z
Subject to: g(x , y , z) = x + y + z = 12 and

h(x , y , z) = x2 + y2 − z = 0.

Constraint qualification: If ∇g = (1, 1, 1)>>> = s∇h = s (2x , 2y , 1)>>>,

s = 1, x = y = 1
2 .

To be on level set

z = x2 + y2 = 1
4 + 1

4 = 1
2

g
(

1
2 , 1

2 , 1
2

)
= 1

2 6= 12

No points on level set where constraint qualification fails.
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Example 1, continued

Maximize: f (x , y , z) = z
Subject to: g(x , y , z) = x + y + z = 12 and

h(x , y , z) = x2 + y2 − z = 0.

First order conditions:

fx = λgx + µhx , 0 = λ + µ2x ,

fy = λgy + µhy , 0 = λ + µ2y ,

fz = λgz + µhz , 1 = λ− µ.

λ = 1 + µ, eliminate this variable:

0 = 1 + µ + 2µx ,

0 = 1 + µ + 2µy .

Subtracting 2nd from 1st, 0 = 2µ(x − y), so µ = 0 or x = y .

Case µ = 0: 0 = 1 + µ + 2µx = 1, contradiction.
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Example 1, continued

Case: y = x .

z = x2 + y2 = 2x2 and 12 = 2x + z = 2x + 2x2, so

0 = x2 + x − 6 = (x + 3)(x − 2), and x = 2, 3.

x = y = 2: z = 2x2 = 8, 0 = 1 + µ(1 + 2x) = 1 + 5µ,

µ = 1
5 , and λ = 1 + µ = 4

5 .

x = y = 3: z = 2x2 = 18, 0 = 1 + µ(1 + 2x) = 1− 5µ, µ = 1
5 ,

and λ = 1 + µ = 6
5 .

(λ∗, µ∗, x∗, y∗, z∗) =
(

4
5 , 1

5 , 2, 2, 8,
)

and
(

6
5 , 1

5 , 3, 3, 18
)
.

f (2, 2, 8) = 8 and f ( 3, 3, 18) = 18.

Constraint set is compact so extrema exist.

Maximizer ( 3, 3, 18).
Minimizer (2, 2, 8) End of Ex
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Lagrangian

Lagrangian: mnemonic device not a proof of conditions.

L(λλλ, x) = f (x) +
∑k

i=1 λi (bi − gi (x)).

x∗ satisfies first order Lagrange multiplier conditions

with multipliers λλλ∗ iff (λλλ∗, x∗) is a critical point of L

with respect to all its variables,

∂L

∂λi
(λλλ∗, x∗) = bi − gi (x

∗) = 0 for 1 ≤ i ≤ k and

DxL(λλλ∗, x∗) = Df (x∗)−
∑k

i=1 λ∗i Dgi (x
∗) = 0.

To insure that constraint qualification does not fail, need

k = rank (Dg(x∗)) = rank
(
Lλi ,xj

(λλλ∗, x∗)
)
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Interpretation of Lagrange Multipliers

How does max{f (x) : x ∈ g-1(b) } changes with changes in b`?

Theorem

Assume that f , gi : Rn → R are C 1 with 1 ≤ i ≤ k < n.

For b ∈ Rk , let x∗(b) be sol’n of 1st-order Lagrange multiplier conditions

for “nondegenerate” extremum of f on g-1(b)

with multipliers λ∗1(b), . . . , λ∗k(b) and rank(Dg(x∗(b))) = k.

Then,

λ∗i (b) =
∂

∂bi
f (x∗(b)).

Marginal value of i th-resource equals Lagrange multiplier

Like discussion for duality in linear programming
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Proof of Interpretation:

Use Lagrangian as a function of b as well as x and λλλ,

L(λλλ, x,b) = f (x) +
∑k

j=1 λj (bj − gj(x)).

For b fixed, (λλλ∗, x∗) = (λλλ∗(b), x∗(b)) satisfy

0 =

(
Lλi

Lxi

)
=

(
bi − gi (x)

Df (x)>>> −
∑

j λj Dgj(x)
>>>

)
= G(λλλ, x,b)

( DλλλG,DxG ) =

[
0k Dg

Dg>>> D2
xL

]
, “bordered Hessian”.

If x∗(b) is nondegenerate extremizer on g-1(b) , then

det(DλλλG,DxG)(λλλ∗(b), x∗(b),b) = det

[
0k Dg

Dg>>> D2
xL

]
6= 0.

See Addendum 3.5 of online class book

Therefore, x∗(b) and λλλ∗(b) are differentiable functions of b.
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Proof of Interpretation, continued

L(λλλ, x,b) = f (x) +
∑k

j=1 λj (bj − gj(x)).

DλλλL(x∗) = (b1 − g1(x∗), . . . , bk − gk(x∗)) = 0

DxL(x∗) = Df (x∗)−
∑k

j=1 λ∗j Dgj(x
∗) = 0

∂L

∂bi
(x∗(b),λλλ∗(b),b) = λ∗i (b).

f (x∗(b)) = L(λλλ∗(b), x∗(b),b)

∂

∂bi
f (x∗(b)) = DλλλL

∂

∂bi
λλλ∗(b) + DxL

∂

∂bi
x∗(b) +

∂L

∂bi
(x∗(b),λλλ∗(b),b)

= λ∗i (b).
QED
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3.3 Inequality Constraints, Necessary Conditions

Maximize f (x) on FFF g,b = { x ∈ Rn : gi (x) ≤ bi i = 1, . . . ,m }

gi (x) ≤ bi is slack at x = p ∈FFF p.t. gi (p) < bi .

gi (x) ≤ bi is effective or tight at x = p ∈FFF p.t. gi (p) = bi .

( = in constraint, p is on the boundary of FFF .)

E(p) = { i : gi (p) = bi } be set of tight constraints at p,

|E(p)| be cardinality of E(p), and

gE(p)(x) = ( gi (x) )i∈E(p).

g(x) satisfies constraint qualification at p p.t.

rank(DgE(p)(p)) = |E(p)|,

gradients of tight constraints are linearly independent.
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Constraint Qualification Fails

Consider the constraints

g1(x , y) = x + (y − 1)3 ≤ 0 ( x ≤ −(y − 1)3 )

g2(x , y) = x ≤ 0

g3(x , y) = y ≤ 0

x + (y − 1)3 ≤ 0

x ≤ 0
(0, 1)

At (0, 1), E(0, 1) = {1, 2}, gE(0,1)(x , y) = (x + (y − 1)3, x)>>>,

rank(DgE(0,1)(0, 1)) = rank

[
1 3(y − 1)2

1 0

]
y=1

= rank

[
1 0
1 0

]
= 1

< 2 = |E(0, 1)|
Constraint qualification fails at (0, 1).
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Theorem (3.12 KKT Necessary Condtions for Extrema w/ Ineq)

Suppose that f , gi : U → R are C 1 functions for 1 ≤ i ≤ m

where U ⊂ Rn is open,

FFF = { x ∈ U : gi (x) ≤ bi for i = 1, . . . ,m }.

If f attains a local extrema at x∗ on FFF , then either

(a) the constraint qualification fails at x∗,

rank(DgE(x∗)(x
∗)) < |E(x∗)|, or

(b) there exist λ∗ = (λ∗1, . . . , λ
∗
m) such that KKT-1,2 hold:

KKT-1. Df (x∗) =
∑m

i=1 λ∗i Dgi (x
∗).

KKT-2. λ∗i (bi − gi (x
∗)) = 0 for 1 ≤ i ≤ m

( so λ∗i = 0 for i /∈ E(x∗) ).

KKT-3. If x∗ is a local maximum, then λ∗i ≥ 0 for 1 ≤ i ≤ m.

KKT-3′. If x∗ is a local minimum, then λ∗i ≤ 0 for 1 ≤ i ≤ m.
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Necessary Cond for Extrema, cont.

Homewk probl with max at point where constraint qualification fails.

Call KKT-1,2,3 first order KKT conditions. More direct to use, and

equivalent to derivatives of Lagrangian.

KKT-1 ∇f (x∗) perpendicular to tangent space to g-1(b)

KKT-2 λ∗i (bi − gi (x
∗)) = 0 is called

complementary slackness because

both gi (x
∗) ≤ bi & λ∗i ≥ 0 can’t be slack

All λ∗i ≥ 0 at max x∗ means ∇f (x∗) points out of feasible set

Inequalities gi (x) ≤ bi are resource type and signs like Max Lin Prog

All λ∗i ≤ 0 at min x∗ means ∇f (x∗) points into feasible set

Maximizes f (x) & ∇f (x∗) =
∑m

i=1( λ∗i )∇gi (x
∗)

with λ∗i ≥ 0, so signs compatible with Min Lin Prog
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Proof

Assume constraint qualification holds at maximizer x∗

Rearrange indices of gj so that E(x∗) = { 1, . . . , k },
gi (x

∗) = bi for 1 ≤ i ≤ k and gi (x
∗) < bi for k + 1 ≤ i ≤ m.

Rearrange indices of xj so that det

(
∂gi

∂xj
(x∗)

)
1≤i ,j≤k

6= 0.

Set λ∗i = 0 for i /∈ E(x∗), i.e., λ∗i = 0 for k + 1 ≤ i ≤ m.

(Drop these ineffective constraints in the argument.)

f attains a maximum at x∗ on

{x : gi (x) = bi for i ∈ E(x∗) }, so by Lagrange Mult Thm,

∃ λ∗i for 1 ≤ i ≤ k so that Df (x∗) =
∑

1≤i≤k λ∗i Dgi (x
∗).

Since λ∗i = 0 for k + 1 ≤ i ≤ m,

Df (x∗) =
∑

1≤i≤m λ∗i Dgi (x
∗) KKT-1 hold
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Proof, continued

λ∗i = 0 for i /∈ E(x∗) & bi − gi (x
∗) = 0 for i ∈ E(x∗) so KKT-2 holds

Why are λ∗` ≥ 0 for ` ∈ E(x∗)? KKT-3 for maximizer

g -1
` (b`)

⋂
i 6=` g -1

i (bi )

r(t)
x∗

Want a curve r(t) in FFF such that g`(r(t)) < b` for t > 0,

gi (r(t)) = bi for i 6= ` & 1 ≤ i ≤ k,

ri (t) = x∗i for k + 1 ≤ i ≤ n. det

(
∂gi

∂xj
(x∗)

)
1≤i ,j≤k

6= 0.

Let δi` = 0 if i 6= `, & δ`` = 1.
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Proof, continued

Apply Implicit Function Theorem to

Gi (x, t) = gi (x)− bi + δi` t for 1 ≤ i ≤ k = |E(x∗)|

Gi (x, t) = xi − x∗i for k + 1 ≤ i ≤ n. G(x∗, 0) = 0.

det(DxG(x∗, 0)) = det



∂g1

∂x1
· · · ∂g1

∂xk

∂g1

∂xk+1
· · · ∂g1

∂xn

...
. . .

...
...

. . .
...

∂gk

∂x1
· · · ∂gk

∂xk

∂gk

∂xk+1
· · · ∂gk

∂xn

0 · · · 0 1 · · · 0
...

. . .
...

...
. . .

...
0 · · · 0 0 · · · 1


.

= det

(
∂gi

∂xj
(x∗)

)
1≤i ,j≤k

6= 0.
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Proof, continued

By Implicit Function theorem, there exists x = r(t) such that

r(0) = x∗ and G(r(t), t) ≡ 0:

gi (r(t)) = bi − δi` t for 1 ≤ i ≤ k, ri (t) = x∗i for k + 1 ≤ i ≤ n.

Dgi (x
∗) r′(0) = d

dt gi ◦ r(t)
∣∣
t=0

= δi` for 1 ≤ i ≤ k.

f (x∗) ≥ f (r(t)) for t ≥ 0, so

0 ≥ d

dt
f ◦ r(t)

∣∣∣∣
t=0

= Df (x∗) r′(0)

=
∑

1≤i≤k λ∗i Dgi (x
∗) r′(0)

=
∑

1≤i≤k λ∗i δi`

= λ∗` .

λ∗` ≥ 0. QED
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Steps to use KKT

1. Verify that a maximum (resp. minimum) exists

by showing either that the feasible set is compact

or that f (x) takes on smaller values (resp. larger values) near ∞.

2. Find all possible extremizers:

(i) Find all points on ∂(FFF ) where constraint qualification fails;

(ii) find all points that satisfy KKT-1,2,3 (resp. KKT-1,2,3′).

3. Compare f (x) at all points found in 2(i) and 2(ii).
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Example 2

Let f (x , y) = x2 − y and g(x , y) = x2 + y2 ≤ 1.

Constraint set is compact so max & min exist

Derivative of constraint is Dg(x , y) = (2x , 2y),

which has rank one at all points on boundary, where g(x , y) = 1

(At least one variable is nonzero at each of points.)

Constraint qualification is satisfied at all points in FFF .

KKT-1,2 are

0 = fx − λ gx = 2x − λ 2x = 2x (1− λ),

0 = fy − λ gy = −1− λ 2y ,

0 = λ (1− x2 − y2).

From 1st equation, x = 0 or λ = 1.
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Example 2, continued

Case (i): λ = 1 > 0. Left with equations

1 = −2y ,

1 = x2 + y2.

y = 1
2 , x2 = 1− 1

4 = 3
4 , x =

±
√

3

2
.

Case (ii): x = 0.

1 = −λ 2y

0 = λ (1− y2).

λ 6= 0 from 1st equation.

y = ±1 from 2nd equation

If y = 1: 2λ = −1 λ = 1
2 < 0.

If y = 1: 2λ = 1 λ = 1
2 > 0.
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Example 2, continued

λ > 0 for
(
±
√

3
2 , 1

2

)
& (0, 1),

f
(
±
√

3
2 , 1

2

)
= 3

4 + 1
2 = 5

4 and

f (0, 1) = 1.

maximum is 5
4 , attained at

(
±
√

3
2 , 1

2

)
.

λ < 0 for (0, 1) f (0, 1) = 1 minimum

(0, 1) saddle: λ > 0 so decreases into FFF ,

but local min within boundary, so not a local maximum.

End of Example
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Example 3

Maximize f (x , y , z) = x2 + 2y2 + 3z2,

Subject to:

1 = x + y + z = g0(x , y , z),

0 ≥ x = g1(x , y , z),

0 ≥ y = g2(x , y , z), and

0 ≥ z = g3(x , y , z).

Feasible set FFF compact, so max exists

Check constraint qualification at all points of FFF :

g0(x , y , z) = 1 and gi (x , y , z) < 0 for i = 1, 2, 3

rank (DgE(x , y , z)) = rank (Dg0(x , y , z)) = rank
([

1 1 1
])

= 1,

rank (DgE(0, y , z)) = rank
(
D(g0, g1)

T
)

= rank

([
1 1 1
1 0 0

])
= 2
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Example 3, constrain qualification continued

rank
(
D(g0, g2)

T
)
(x , 0, z) = rank

([
1 1 1
0 1 0

])
= 2

rank
(
D(g0, g3)

T
)
(x , y , 0) = rank

([
1 1 1
0 0 1

])
= 2

At vertices where three constraints are tight,

rank
(
D(g0, g2, g3)

T (1, 0, 0)
)

= rank

1 1 1
0 1 0
0 0 1

 = 3

Similarly

rank (DgE(0, 1, 0)) = rank
(
D(g0, g1, g3)

T (0, 1, 0)
)

= 3

rank (DgE(0, 0, 1)) = rank
(
D(g0, g1, g2)

T (0, 0, 1)
)

= 3

All ranks are as large as possible,

so constraint qualification is satisfied on feasible set.
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Example 3, continued

Maximize f (x , y , z) = x2 + 2y2 + 3z2, for 1 = x + y + z = g0(x , y , z),

0 ≥ x = g1(x , y , z), 0 ≥ y = g2(x , y , z), 0 ≥ z = g3(x , y , z).

KKT-1,2 are

0 = fx − λ0 g1x − λ1 g1x − λ2 g2x − λ3 g3x = 2x − λ0 + λ1

0 = fy − λ0 g1y − λ1 g1y − λ2 g2y − λ3 g3y = 4y − λ0 + λ2

0 = fz − λ0 g1z − λ1 g1z − λ2 g2z − λ3 g3z = 6z − λ0 + λ3

1 = x + y + z ,

0 = λ1 x , 0 = λ2 y , 0 = λ3 z .

Because 0th-equation involves an equality, λ0 can have any sign.

For 1 ≤ i ≤ 3, need λi ≥ 0.
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Example 3, continued

λ0 = 2x + λ1 = 4y + λ2 = 6z + λ3 (eliminate λ0)

Case 1: Point with x > 0, y > 0, and z > 0. λi = 0 for 1 ≤ i ≤ 3.

λ0 = 2x = 4y = 6z , y = x
2 z = x

3

Substituting into g0, 1 = x + y + z = x
(
1 + 1

2 + 1
3

)
= 11 x

6

x = 6
11 , y = 3

11 , z = 2
11 .

Case 2: x = 0, y > 0, and z > 0. λ2 = λ3 = 0

λ0 = 4y = 6z , so z = 2y
3 .

1 = y
(
1 + 2

3

)
= 5 y

3 , y = 3
5 , z = 2

3 ·
3
5 = 2

5

λ0 = 4y + λ2 = 4
(

3
5

)
= 12

5 , λ1 = λ0 − 2x = 12
5 > 0.(

0, 3
5 , 2

5

)
is an allowable point for maximum.
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Example 3, continued

Case 3: y = 0, x > 0, z > 0. λ1 = λ3 = 0

λ0 = 2x = 6z , x = 3z .

1 = x + y + z = z(3 + 1), z = 1
4 , x = 3

4 , λ0 = 3
2 .

λ2 = λ0 − 4y = 3
2 > 0(

3
4 , 0, 1

4

)
is an allowable point for a maximum.

Case 4: z = 0, x > 0, y > 0 λ1 = λ2 = 0

λ0 = 2x = 4y , x = 2y .

1 = x + y + z = y(2 + 1), y = 1
3 x = 2

3 λ0 = 4y = 4
3

λ3 = λ0 − 6z = 4
3 > 0(

2
3 , 1

3 , 0
)

is an allowable point for maximum.

Vertices (1, 0, 0), (0, 1, 0), (0, 0, 1) are possibilities. (2+1 tight)
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Example 3, continued

Values of f (x , y , z) = x2 + 2y2 + 3z2 at these points are as follows:

f
(

6
11 , 3

11 , 2
11

)
=

36 + 18 + 12

121
= 66

121 ≈ 0.5454,

f
(
0, 3

5 , 2
5

)
=

18 + 12

25
= 30

25 = 1.2,

f
(

3
4 , 0, 1

4

)
=

9 + 3

16
= 12

16 = 0.75,

f
(

2
3 , 1

3 , 0
)

=
4 + 2

9
= 6

9 ≈ 0.667,

f (1, 0, 0) = 1, f (0, 1, 0) = 2, f (0, 0, 1) = 3.

Maximum value of 3 is attained at (0, 0, 1).

Minimum value of 0.5454 is attained at
(

6
11 , 3

11 , 2
11

)
End of Example
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Deficiencies of Nec KKT Theorem

Not easy to use Thm 3.12 to determine maximizers.

1 Need to verify that max exists: either FFF compact or
f (x) smaller near infinity.

2 Need to find all “critical points”:

(i) all points where constraint qualification fails

(ii) all points that satisfy KKT-1,2,3.

Not easy to show constraint qualification always holds, or

find all points on boundary where constraint qualification fails.

Overcome by means of convexity and concavity.

Convex constraints eliminates need for constraint qualification.

Concave (convex) objective fn insures that a KKT critical point
is a global maximizer (minimizer).
Like an assumption on second derivative at all points of feasible set
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3.4 Convex Structures

Definition

A set DDD ⊂ Rn is called convex p.t.

(1− t) x + t y ∈ DDD for all x, y ∈ DDD and 0 ≤ t ≤ 1.

convex convex convex

not convex not convex
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Concave/Convex Functions

Remark

Standard definitions of convex and concave functions

do not require C 1 and use only use values of function,

related to convex set.

Walker’s definition of convex and concave functions assumes fn C 1

and gives a condition in terms of the tangent plane (p. 372).

A theorem given later shows that our condition is equivalent

to Walker’s for C 1 function.

Also see problem 7.5:5 in Walker

Use our defn in some proofs.
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Concave Functions

x xt y

f (x)

f (xt) f (y)

(1− t) f (x) + t f (y)

Definition

f : DDD ⊂ Rn → R is concave on DDD p.t. for all x, y ∈ DDD & 0 ≤ t ≤ 1,

xt = (1− t) x + t y ∈ DDD & f (xt) ≥ (1− t) f (x) + t f (y).

equiv. to: set of points below graph,

{(x, y) ∈ DDD × R : y ≤ f (x) }, is convex subset of Rn+1.

f is strictly concave p.t. for all x, y ∈ DDD with x 6= y & 0 ≤ t ≤ 1,

xt = (1− t) x + t y ∈ DDD & f (xt) > (1− t) f (x) + t f (y).
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Convex Functions

Definition

f : DDD ⊂ Rn → R is convex on DDD , p.t. for all x, y ∈ DDD & 0 ≤ t ≤ 1,

xt = (1− t) x + t y ∈ DDD & f (xt) ≤ (1− t) f (x) + t f (y).

equiv. to: set of points above graph,

{(x, y) ∈ DDD × R : y ≥ f (x) }, is a convex set.

f is called strictly convex p.t. for all x, y ∈ DDD with x 6= y & 0 < t < 1,

xt = (1− t) x + t y ∈ DDD & f (xt) < (1− t) f (x) + t f (y).

Remark

Note that if f is either concave or convex on DDD then DDD is convex.
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Continuity of Concave/Convex Functions

Theorem

If f : DDD ⊂ Rn → R is a concave or convex function on DDD ,

then f is continuous on int(DDD).

The proof is given in Sundaram “A First Course in Optimization Theory”.

Since concave/convex functions are continuous,

reasonable to seek their maximum
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Convexity of Feasible Set

Theorem

Assume that DDD ⊂ Rn is an open convex subset, and

gi : DDD → R are C 1 convex functions for 1 ≤ i ≤ m.

Then, for any b ∈ Rm,

FFF g,b = { x ∈ DDD : gi (x) ≤ bi for 1 ≤ i ≤ m } is a convex set.

Proof.

Take x, y ∈FFF g,b and let xt = (1− t)x + ty for 0 ≤ t ≤ 1.

For any 1 ≤ i ≤ m,

gi (xt) ≤ (1− t)gi (x) + tgi (y) ≤ (1− t)bi + tbi = bi ,

so xt ∈FFF g,b.

FFF g,b is convex.
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Slater Condition

Need a condition on feasible set FFF to insure that

an extremizer of f satisfies KKT-1,2.

Definition

Let gi : DDD → R for 1 ≤ i ≤ m,

FFF g,b = {x ∈ DDD : gi (x) ≤ bi for 1 ≤ i ≤ m }.
Constraint functions { gi } satisfy Slater Condition on FFF g,b p.t.

there exists x ∈FFF g,b s.t. gi (x) < bi for all 1 ≤ i ≤ m.

If Slater Condition is satisfied then FFF g,b has nonempty interior.

Very mild in comparison to constraint qualification.

Not needed to show soln of KKT-1,2 is an extremizer.
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Theorem (Karush-Kuhn-Tucker under Convexity)

Assume f , gi : Rn → R C 1 for 1 ≤ i ≤ m,

x∗ ∈FFF g,b = { x ∈ Rn : gi (x) ≤ bi for 1 ≤ i ≤ m } for b ∈ Rm.

a. Assume f is concave.

i. If FFF g,b is convex and (x∗,λλλ∗) satisfies KKT-1,2,3 with all λ∗i ≥ 0,

then f has a maximum on FFF g,b at x∗.

ii. If f has a maximum on FFF g,b at x∗, all gi are convex,

and FFF g,b satisfies Slater condition, then there exist

λλλ∗ = (λ∗1 , . . . , λ
∗
m) ≥ 0 such that (x∗,λλλ∗) satisfies KKT-1,2,3.

b. If f is convex rather than concave, then conclusions of part (a) are
true with maximum replaced by minimum and

λ∗i ≥ 0 replaced by λ∗i ≤ 0.

(Assumptions on FFF g,b and gi stay same.)
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Karush-Kuhn-Tucker Theorem, continued

Kuhn-Tucker published in 1951, and popularized result.

Karush thesis in 1939 had earlier result.

Fritz John has a related result in 1948.

Verify that FFF g,b is convex by conditions on constraint functions.

If all gi (x) are convex then FFF g,b is convex.

Later, allow rescaled convex function – still insures FFF g,b is convex.

In examples, once find a solution of KKT-1,2,3 then done.

Don’t need to verify separately that max exists,

don’t need Slater condition, or constraint qualification.

Give some further results about convexity and examples before proof.
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Affine Function

Proposition

For a ∈ Rn and b ∈ R, affine function on Rn given by

g(x) = a · x + b = a1x1 + · · ·+ anxn + b

is both concave and convex.

Proof.

p0,p1 ∈ Rn, pt = (1− t)p0 + t p1.

g(pt) = a · [(1− t)p0 + t p1] + b

= (1− t) [a · p0 + b] + t [a · p1 + b]

= (1− t) g(p0) + t g(p1).

have equality so both concave and convex.
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Second Derivative Test for Convexity/Concavity

Theorem

Let DDD ⊂ Rn be open and convex and f : DDD → R be C 2.

a. f is convex (resp. concave) on DDD iff D2f (x) is positive

semidefinite (resp. negative semidefinite) for all x ∈ DDD .

b. If D2f (x) is positive (resp. negative ) definite for all x ∈ DDD ,

then f is strictly convex (resp. strictly concave) on DDD .

Idea: If D2f (x) is positive (resp. negative) definite,

then locally graph of f lies above (resp. below) tangent plane.

Proof makes this global.

Online Course Materials have proof based on Sundaram
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Example 4

Minimize : f (x , y) = x4 + y4 + 12 x2 + 6 y2 − xy − x + y ,

Subject to : g1(x , y) = −x − y ≤ 6

g2(x , y) = −2x + y ≤ 3

x ≤ 0, y ≤ 0.

Constraints are linear and so are convex. FFF is convex

Objective function:

D2f (x , y) =

[
12 x2 + 24 1

1 12 y2 + 12

]
.

12 x2 + 24 ≥ 24 > 0 & det(D2f (x , y)) ≥ 24(12)− 1 > 0,

so D2f (x , y) is positive definite at all x ∈FFF and f is convex.
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Example 4, continued

KKT-1 with λ1, λ2, µ1, µ2 multipliers for g1, g2, x ≤ 0, y ≤ 0.

0 = 4x3 + 24x − y − 1 + λ1 + 2λ2 + µ1

0 = 4y3 + 12y − x + 1 + λ1 − λ2 + µ2

If x = 0, then y ≤ 3 so y > 0. x < 0 in DDD , never tight µ1 = 0

0 = µ2( y): If y = 0, then x = g1(x , 0) ≥ 6,

so g2(x , 0) = 2x ≤ 12 < 3, λ2 = 0.

If x > 6, then λ1 = 0, 0 = 4x3 + 24− 1. x = 6, contradiction

For x = 6 & y = 0, 2nd equation gives

0 = −6 + 1 + λ1 + µ2, or

5 = λ1 + µ2.

Both these multipliers cannot be ≤ 0, so not minimum.
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Example 4, continued

x , y > 0, so µ2 = 0. If both g1 & g2 tight then

6 = g1(x , y) = x + y

3 = g2(x , y) = 2x − y

solving yields x = y = 3.

If solution of KKT-1 then

0 = 4(34) + 24(3)− 3− 1 + λ1 + 2λ2 = λ1 + 2λ2 + 176

0 = 4(33) + 12(3)− 3 + 1 + λ1 − λ2 = λ1 − λ2 + 140.

solving yields λ1 = 152 < 0, λ2 = 12 < 0.

(x∗, y∗) = (3, 3), λ1 = 152, λ2 = 12, µ1 = µ2 = 0

satisfy KKT-1,2,3′ and is minimizer.
End of Example
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Example 5: Lifetime of Equipment

Two machines with lifetimes x and y and costs $1,600 and $5,400,

average cost per year
1600

x
+

5400

y
.

Machine A has operating costs of $50j in j th year

for average operating cost per year for lifetime of machine is

50 + 2(50) + · · ·+ x(50)

x
=

50

x
· x(x + 1)

2
= 25(x + 1).

Machine B has operating costs of $200j in j th year
for average operating cost per year of

100(y + 1).

Want combined total use of at least 20 years use, x + y ≥ 20.
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Example 5, continued

Minimize : f (x , y) = 25(x + 1) + 100(y + 1) +
1600

x
+

5400

y
Subject to : g1(x , y) = 20− x − y ≤ 0

g2(x , y) = x ≤ 0
g3(x , y) = y ≤ 0.

Constraints are linear and convex, so FFF is convex.

D2f (x , y) =

[
3200
x3 0

0 10800
y3

]
is positive definite all pts in R2

++,

so f is convex on R2
++.

f (cost) gets arbitrarily large near x = 0 or y = 0,

so minimum occurs for x > 0 and y > 0,

can ignore those multipliers
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Example 5, continued

KKT-1,2 become

0 = 25− 1600

x2
+ λ

0 = 100− 5400

y2
+ λ

0 = λ(20− x − y)

Assume constraint is effective and y = 20− x .

first two equations give

λ = 25− 1600

x2
= 100− 5400

y2

0 = 75x2y2 − 5400x2 + 1600y2

0 = 75x4 − 3000x3 + 26200x2 − 64000x + 640000
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Example 5, continued

0 = 75x4 − 3000x3 + 26200x2 − 64000x + 640000

has positive roots of x ≈ 12.07 and 28.37.

If x ≈ 28.37 then y = 20− x < 0 so not feasible.

If x ≈ 12.07, then y ≈ 7.93 and λ ≈ 25 +
1600

12.072
≈ 14.02 < 0.

Minimizer.

Since a min exists on boundary, not necessary to check pts in interior;

However, if λ = 0, then x = 8 & y =
√

54 ≈ 7.5

(8,
√

54) is not in feasible set.

End of Example

Chapter 3: Constrained Extrema 67



Cobb-Douglas Functions

x

y

f (x , y) = xayb

x

y

f (x , y) = xayb

a = b = 1
3 a = b = 1

Proposition

Let f (x , y) = xayb with a, b > 0.

a. If a + b ≤ 1, then f is concave and xayb is convex on R2
+.

b. If a + b > 1, f is neither convex nor concave.
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Proof.

(x , y) ∈ R2
++, D2f (x , y) =

(
a(a− 1)xa−2yb abxa−1yb−1

abxa−1y1−b b(b − 1)xayb−2

)
a(a− 1)xa−2yb < 0 if a < 1

det
(
D2f (x , y)

)
= ab(1− a− b)x2a−2y2b−2


> 0 if a + b < 1

= 0 if a + b = 1

< 0 if a + b > 1.

If a + b < 1, D2f (x , y) is neg. def., f is strictly concave on R2
++;

f is continuous on R2
+, so strictly concave on R2

+ = cl(R2
++).

If a + b = 1, then D2f (x , y) is neg. semi-def. on R2
++

f is concave on R2
+;

If a + b > 1, D2f (x , y) is indefinite and f neither concave nor convex.
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Cobb-Douglas Functions, contin.

f (x , y) = x y is neither concave nor convex

(but it is rescaled concave function: discussed later)

Chapter 3: Constrained Extrema 70



Proposition

For a1 + · · ·+ an < 1 and ai > 0 for 1 ≤ i ≤ n.
f (x) = xa1

1 xa2
2 · · · xan

n concave on Rn
+ and xa1

1 · · · xan
n is convex.

If a1 + · · ·+ an > 1, then f is neither concave nor convex.

Proof: x ∈ Rn
++,

fxi = aix
a1
1 · · · xai−1

i · · · xan
n

fxixi = ai (ai − 1)xa1
1 · · · xai−2

i · · · xan
n = ai (ai − 1)x -2

i f

fxixj = aiajx
a1
1 · · · xai−1

i · · · xaj−1
j · · · xan

n = aiajx
-1
i x -1

j f .

∆k = det

a1(a1 − 1)x -2
1 f · · · a1akx -1

1 x -1
k f

...
. . .

...
aka1x

-1
k x -1

1 f · · · ak(ak − 1)x -2
k f


= a1 · · · akx -2

1 · · · x -2
k f k det

a1 − 1 · · · ak
...

. . .
...

a1 · · · ak − 1


= a1 · · · akx -2

1 · · · x -2
k f k ∆̄k defines ∆̄k
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Proof of Cobb-Douglas Rn, continued

By induction ∆̄k = ( 1)k − ( 1)k(a1 + · · ·+ ak).

∆̄1 = det[a1 1] = ( 1)1 − ( 1)1a1.

∆̄k = det

a1 1 · · · ak
...

. . .
...

a1 · · · ak 1



= det


a1 1 · · · ak−1 ak

...
. . .

...
...

a1 · · · ak−1 1 ak

a1 · · · ak−1 ak

+det


a1 1 · · · ak−1 0

...
. . .

...
...

a1 · · · ak−1 1 0
a1 · · · ak−1 1


2nd det = ∆̄k−1 = ( 1)k−1 + ( 1)k−1(a1 + · · ·+ ak−1)

= ( 1)k − ( 1)k (a1 + · · ·+ ak−1).
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Proof of Cobb-Douglas Rn, continued

By column operations on 1st det

det


a1 1 · · · ak−1 ak

...
. . .

...
...

a1 · · · ak−1 1 ak

a1 · · · ak−1 ak

 = ak


1 · · · 0 1
...

. . .
...

...
0 · · · 1 1
0 · · · 0 1

 = ( 1)k−1ak

∆̄k = ( 1)k−1ak + ( 1)k − ( 1)k (a1 + · · ·+ ak−1)

= ( 1)k − ( 1)k (a1 + · · ·+ ak).

∆k = ( 1)ka1 · · · akx -2
1 · · · x -2

k f k (1− a1 − · · · − ak)

∆k alternate signs as required for D2f to be negative definite on Rn
++,

f is strictly concave on Rn
++. Since f is continuous,

f is concave on cl(Rn
++) = Rn

+. QED
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Rescaling a Function

For KKT Thm, need FFF g,b = { x ∈FFF : gi (x) ≤ bi for all i } convex.

By rescaling allow more fns than just convex fns.

Definition

g : DDD ⊂ Rn → R is a rescaling of ĝ : DDD ⊂ Rn → R p.t.

∃ increasing function φ : R → R s.t. g(x) = φ ◦ ĝ(x).

Since φ has an inverse, ĝ(x) = φ-1 ◦ g(x).

φ is a C 1 rescaling p.t. φ is C 1 and φ′(y) > 0 for all y ∈ R.

If g(x) is a rescaling of a convex function ĝ(x), then

g(x) is called a rescaled convex function.

Similarly, a rescaled concave function,

If g(x) is a C 1 rescaling, then g is

C 1 rescaled convex function, and C 1 rescaled concave function.
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Rescaling Constraints

Theorem

If g : DDD ⊂ Rn → R is a rescaled convex function, then

FFF g ,b = { x ∈ DDD : g(x) ≤ b } is convex for any b ∈ R.

Proof.

g(x) = φ ◦ ĝ(x) with φ : R → R increasing and ĝ convex.

FFF g ,b = { x ∈ DDD : ĝ(x) ≤ φ-1(b) } is convex.

A function is called quasi-convex p.t. all the sets FFF g ,b are convex.

(See Sundaram).

Showed a rescaled convex function is quasi-convex
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All Cobb-Douglas Fns are Rescaled Concave Fns

Proposition

If a1, . . . , an > 0, then g(x) = xa1
1 · · · xan

n is

a C 1 rescaled C 1 concave function on Rn
++.

g(x) is a C 1 rescaling of a C 1 convex function on Rn
++.

Proof.

Let bi =
ai

(2a1 + · · ·+ 2an)
, for 1 ≤ i ≤ n.

b1 + · · ·+ bn = 1
2 < 1

h(x , y , z) = xb1
1 · · · xbn

n is convex on Rn
+.

φ(s) = s2a1+···+2an is monotone on R+.

g(x) = φ ◦ h(x) is a C 1 rescaling on Rn
+ by theorem.
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Example of Non-Concave Cobb-Douglas Function

f (x , y) = xy is a rescaled concave function, but not concave

x

y

xy

x

y

x
1
3 y

1
3

Non-concave Concave
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Example of Rescaled Convex Function

f (x) = x6 − 2.9 x4 + 3 x2

x

1.31.3

f (x) x6

1.31.3

f ′(x) = x [6 x4 − 11.6 x2 + 6], single critical point x = 0.

f ′′(x) = 30 x4 − 34.8 x2 + 6, f ′′(±0.459) = 0 = f ′′(±0.974).

f ′′(x) < 0 for 0.459 < x < 0.974, f (x) is not convex.

f (x) is a rescaling of f̂ (x) = x6 that is convex:

φ(y) =
[
f -1(y)

]6
satisfies φ ◦ f (x) = f̂ (x).

f (x) is a rescaled convex function that is not convex.
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KKT with Rescaled Functions

Following corollary of KKT Theorem allows

rescaling of objective function as well as constraints.

Corollary

Assume that f , gi : Rn → R are C 1 for 1 ≤ i ≤ m,

each gi is a C 1 rescaled convex function

f is a C 1 rescaled concave (resp. convex) function

x∗ ∈FFF g,b = { x ∈ Rn : gi (x) ≤ bi for 1 ≤ i ≤ m } for b ∈ Rm.

With these assumptions, the conclusions of the different parts of

KKT Theorem are valid.

Bazaraa et al allow f to be pseudo-concave.

Rescaled concave implies pseudo-concave.

See online class book.
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Proof

ĝi (x) = φi ◦ gi (x) with φ′i (bi ) > 0 for all bi ∈ R.

f̂ (x) = T ◦ f (x) with T ′(y) > 0 for all y = f (x) with x ∈FFF

Let b′i = φi (bi ). If gi (x
∗) = bi is tight, then ĝi (x

∗) = b′i ,

Dĝi (x
∗) = φ′i (b

′
i )Dgi (x

∗) and Df̂ (x∗) = T ′(f (x∗))Df (x∗).

(a.i) FFF g,b = { x ∈ Rn : gi (x) ≤ bi } = { x ∈ Rn : ĝi (x) ≤ b′i } is convex.

If f satisfies KKT-1. then

Df̂ (x∗) = T ′(f (x∗))Df (x∗) = T ′(f (x∗))
∑

i λi Dgi (x
∗),

so f̂ satisfies KKT-1,2 with multipliers T ′(f (x∗))λi > 0.

By Theorem KKT(a.i), f̂ has a maximum at x∗.

Since T -1 is increasing, f = T -1 ◦ f̂ has a maximum at x∗.
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Proof, continued

(a.ii) If f has a maximum at x∗, then since T is increasing,

f̂ has a maximum at x∗.

Applying Theorem KKT(a.ii) to f̂ and ĝi on FFF g,b,

T ′(f (x∗))Df (x∗) = Df̂ (x∗) =
∑

i λi Dĝi (x
∗) =

∑
i λi φ

′
i (bi )Dgi (x

∗),

using that λi = 0 unless gi (x
∗) = bi .

Since, T ′(f (x∗)) > 0 and φ′i (bi ) > 0 for all effective i ,

conditions KKT-1.2 hold for f and the gi

with multipliers
λi T

′
i (bi )

T ′(f (x∗))
> 0.

Chapter 3: Constrained Extrema 81



Example 6

Maximize: f (x , y , z) = xyz

Subject to: g1(x , y , z) = 2x + y + 2z − 5 ≤ 0

g2(x , y , z) = x + 2y + z − 4 ≤ 0,

g3(x , y , z) = x ≤ 0,

g4(x , y , z) = y ≤ 0, and

g5(x , y , z) = z ≤ 0.

All gi are linear so convex

FFF = { (x , y , z) ∈ R3 : gi (x , y , z) ≤ 0 for 1 ≤ i ≤ 5 } is convex

f is C 1 rescaling of concave fn on R3
+

Could maximize (xyz)
1
4 , but equations are more complicated.
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Example 6, continued

0 = f (0, y , z) = f (x , 0, z) = f (x , y , 0), so max in R4
++

gi slack for 3 ≤ i ≤ 5, so multipliers λ3 = λ4 = λ5 = 0

KKT-1: yz = 2λ1 + λ2,

xz = λ1 + 2λ2,

xy = 2λ1 + λ2,

KKT-2: 0 = λ1(5− 2x − y − 2z),

0 = λ2(4− x − 2y − z).

KKT-3: all λi ≥ 0,

From 1st and 3rd equation, yz = yx , so x = z (since y > 0)
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Example 6, continued

If both g1 and g2 are effective,

5 = 4x + y

4 = 2x + 2y .

with solution 1 = x = y , z = x = 1. (1, 1, 1) ∈FFF .

KKT-1 become

1 = 2λ1 + λ2

1 = λ1 + 2λ2

with solution λ1 = λ2 = 1
3 > 0.

f is rescaling of concave fn and all gi are convex functions on R3
++.

p∗ = (1, 1, 1) satisfies KKT-1,2 with λ1 = λ2 = 1
3 > 0.

By KKT Theorem, f must have a maximum on FFF at p∗. QED
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Slater Condition for Example 6

Don’t need Slater condition to conclude that p∗ is a maximizer.

Since p̄ = (0.5, 0.5, 0.5) ∈FFF has all gi (p̄) < 0,

constraints satisfy Slater condition.

There are many other points with same property.
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Slater Condition and Constraint Qualification

Remark

For previous example, constraint qualification is satisfied on FFF

However, if add another constraint, x + y + z − 3 ≤ 0,

p∗ is still a solution of KKT-1,2,3

and a maximizer by KKT Theorem under convexity.

For this new example, there are three effective constraints at p∗,

but the rank is still 2.

Does not satisfy the constraint qualification on FFF .
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Global Maximizers of Concave Functions

If M = max{ f (x) : x ∈FFF } < ∞ exists,

FFF ∗ = { x ∈FFF : f (x) = M }

If max doesn’t exist, FFF ∗ = ∅.

Theorem

Assume that f : FFF ⊂ Rn → R is concave. Then following hold:

a. Any local maximum point of f is a global maximum point of f .

b. FFF ∗ is either empty or convex set.

c. If f is strictly concave, then FFF ∗ is either empty or a single point.
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Proof.

(a) If not global max, then ∃ loc max x∗ and z 6= x∗ s. t. f (z) > f (x∗).

For xt = (1− t) x∗ + t z & 0 < t ≤ 1, xt ∈FFF

f (xt) ≥ (1− t)f (x∗) + t f (z) > (1− t)f (x∗) + t f (x∗) = f (x∗).

Since f (xt) > f (x∗) for small t, x∗ cannot be a local max.

(b) Assume x0, x1 ∈FFF ∗.

Let xt = (1− t)x0 + tx1, & M = max{ f (x) : x ∈FFF }. Then

M ≥ f (xt) ≥ (1− t)f (x0) + t f (x1) = (1− t)M + tM = M,

f (xt) = M & xt ∈FFF ∗ for 0 ≤ t ≤ 1.

FFF ∗ is convex.

(c) If x0, x1 ∈FFF ∗ & x0 6= x1, strict convexity implies f (xt) > M.

Contradiction implies at most one point.
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First Order Derivative Conditions for Convexity/Concavity

For C 1 fns on convex domain, our defn is equiv to Walker’s

Theorem

Assume DDD ⊂ Rn be open and convex and f : DDD → R is C 1.

a. f is concave iff f (y) ≤ f (x) + Df (x)(y − x) ∀ x, y ∈ DDD .

b. f is convex iff f (y) ≥ f (x) + Df (x)(y − x) ∀ x, y ∈ DDD .

Concavity iff every p graph of f (x) lies below tangent plane at p

f (x) ≤ f (p) + Df (p)(x− p)

Convexity iff every p graph of f (x) lies above tangent plane at p

f (x) ≥ f (p) + Df (p)(x− p)

Chapter 3: Constrained Extrema 89



Proof First Order Derivative Conditions

Proof: (a) (⇒⇒⇒) xt = (1− t)x + ty = x + t(y − x).

Df (x)(y − x) = limt→0+
f (xt)− f (x)

t
Chain Rule

≥ limt→0+
(1− t) f (x) + t f (y)− f (x)

t
concave

= limt→0+
t [f (y)− f (x)]

t
= f (y)− f (x)
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Proof First Order Derivative Conditions

(⇐⇐⇐) Assume Df (x)(y − x) ≥ f (y)− f (x)

Let xt = (1− t) x + t y and wt = y − xt = (1− t)(y − x), so

x− xt = −
(

t

1− t

)
wt .

f (x)− f (xt) ≤ Df (xt)(x− xt) = −
(

t

1− t

)
Df (xt)wt and

f (y)− f (xt) ≤ Df (xt)(y − xt) = Df (xt)wt .

Multiplying first inequality by (1− t), the second by t, and adding

(1− t) f (x) + t f (y)− f (xt) ≤ 0, or

(1− t) f (x) + t f (y) ≤ f (xt). f is concave

QED
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Directional Derivative Condition

Theorem

Assume that f : FFF ⊂ Rn → R is concave. and x∗ ∈FFF .

x∗ maximizes f on FFF iff

Df (x∗) v ≤ 0 for all vectors v that point into FFF at x∗.

Remark

For x∗ ∈ int(FFF ), it follows that x∗ is a maximizer iff it is a critical point.

So result generalizes critical point condition.
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Proof

Concave implies directional derivatives exist, so don’t need C 1.

(⇒⇒⇒) Assume x∗ is maximizer and v points into FFF at x∗.

For small t ≥ 0, x∗ + tv ∈FFF and f (x∗ + tv) ≤ f (x∗).

Df (x∗) v = limt→0+
f (x∗ + tv)− f (x∗)

t
≤ 0.
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Proof, continued

(⇐⇐⇐) Assume Df (x∗) v ≤ 0 for all vectors v that point into FFF at x∗.

If x∗ is not a maximizer, then there exists z ∈ DDD s.t. f (z) > f (x∗).

v = z− x∗ points into FFF at x∗.

For 0 ≤ t ≤ 1, xt = (1− t) x∗ + t z = x∗ + t v ∈FFF and

f (xt) ≥ (1− t) f (x∗) + t f (z) = f (x∗) + t [f (z)− f (x∗)] so

Df (x∗) v = limt→0+
f (xt)− f (x∗)

t
≥ limt→0+

t [f (z)− f (x∗)]

t

= f (z)− f (x∗) > 0.

contradiction

x∗ must be a maximizer. QED
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Proof of KKT Under Convexity Theorem 3.17.a.i

Assume KKT-1,2,3 conditions at (λλλ∗, x∗) λ∗i ≥ 0.

FFF is convex. f restricted to FFF is concave.

E = E(x∗) be effective constraints

v a vector that points into FFF at x∗.

If i /∈ E, then λ∗i = 0, and λ∗i Dgi (x
∗) v = 0.

If i ∈ E, then gi (x
∗) = bi , gi (x

∗ + tv) ≤ bi = gi (x
∗),

gi (x
∗ + tv)− gi (x

∗)

t
≤ 0 for t > 0, and

Dgi (x
∗) v = limt→0+

gi (x
∗ + tv)− gi (x

∗)

t
≤ 0.

Since λ∗i ≥ 0, λ∗i Dgi (x
∗)v ≤ 0.

Df (x∗)v =
∑

i λ
∗
i Dgi (x

∗)v ≤ 0. if v points into FFF .

By previous theorem, x∗ is a maximizer. QED
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Proof of KKT Theorem a.ii

Assume that f has a maximum on FFF at x∗.

For correct choice of λ∗i ≥ 0 show x∗ is an interior maximizer of

L(x,λλλ∗) = f (x) +
∑

i λ
∗
i (bi − gi (x)) with λλλ∗ fixed

Use two disjoint convex sets in Rm+1 space of values of constraints + 1

w∗ = f (x∗)

w

z

YYY

XXX

YYY = { (w , z) ∈ R× Rm : w > f (x∗) & z � 0 } is convex.

XXX = { (w , z) ∈ R× Rm : w ≤ f (x) & z ≤ b− g(x) for some x ∈ Rn }
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Proof of Karush-Kuhn-Tucker, continued

w

z
w∗ = f (x∗)

YYY

XXX

XXX is shown to be convex. XXX ∩YYY = ∅.
By convex separation theorem, ∃ (p,q) 6= 0 s.t.

p w + q · z ≤ p u + q · v for all (w , z) ∈XXX , (u, v) ∈ YYY . (†)
It is shown that (p,q) ≥ 0. Slater ⇒ p > 0.

Any x ∈ Rn, w = f (x) and z = b− g(x),

(u, v) ∈ YYY converge to (f (x∗), 0),

p f (x) + q · (b− g(x)) ≤ p f (x∗) for all x ∈ Rn.
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Proof of Karush-Kuhn-Tucker, continued

Setting λλλ∗ =
(

1
p

)
q =

(
q1
p , . . . , qm

p

)
≥ 0, KKT-3.

f (x) + λλλ∗ · (b− g(x)) ≤ f (x∗) for all x ∈ U.

L(x,λλλ∗) = f (x) +
∑

i λ
∗
i (bi − gi (x)) ≤ f (x∗) for all x ∈ U.

For x = x∗, get
∑

i λ
∗
i (bi − gi (x

∗)) ≤ 0.

But λ∗i ≥ 0 and bi − gi (x
∗) ≥ 0, so each

λ∗i (bi − gi (x
∗)) = 0 KKT-2

L(x,λλλ∗) ≤ f (x∗) = L(x∗,λλλ∗) for all x ∈ U.

With λλλ∗ fixed, L(x,λλλ∗) has an interior maximum at x∗ and

0 = DxL(x∗,λλλ∗) = Df (x∗,λλλ∗)−
∑

i λ
∗
i Dgi (x

∗,λλλ∗) KKT-1.

QED
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