Chapter 4: Parametric Contin. and Dynamic Prog.

Math 368

© Copyright 2012, 2013 R Clark Robinson

May 22, 2013

Chapter 4: Parametric Contin. and Dynamic Prog.



1. Correspondence

Use set-valued correspondences in parametric maximization problems and

multiple period dynamic programming problems

Definition
Let S C RY, X C R".
A correspondence ¥ from S to X is a map to nonempty subsets of X:
seS — ¥(s) c X with €(s) #0
P (X) be collection of all nonempty subsets of X.
€ is function with values in & (X).
€ .S — P(X).
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Graph of Correspondences

When give examples, draw graph of correspondence

€1(s) =[0,s] for0 <s<1.

X

Definition

Graph of a correspondence € : S — £(X) is
Gr(@)={(s,x) eSxX:s€S, x€¥(s)} CSxX.
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Types of Correspondences

% :S — P(X) is a closed-graph correspondence p.t.
Gr(¥) is a closed subset of S x X.

A correspondence € : S — Z(X) is closed-valued p.t.
% (s) is a closed subset of X for each fixed s € S.

compact-valued if each €(s) is compact.

A correspondence % is bounded p.t. 3 K >0 such that
% (s) C B(0,K) for all s€S.

% is locally bounded p.t. foreach sp €S, 3 K >0 & r >0 s.t.
%(s) C B(0,K) forall sc B(fp,r)NS.
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Example

S=[0,2], X=R. Graph in S x X =[0,2] x R.

@5 (s) = [1,2] for 0 <s < 0.5,
2= [0,3] for05<s<15

3ax

2

1

0

€>
@s(s) — {[1,2] for 0 <'s < 0.5,
[0,3] for 0.5 < s < 1.5.
%> & €3 are compact-valued.
%> is closed-graph, but not %’s.
%> & €3 are bounded.

15<s<2

15<s<2

€
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Unbounded Correspondence

a(s) = {l} 2
{0} s=o0

s

%4 is a closed-graph correspondence, compact valued

%, is not bounded, nor locally bounded at s = 0.
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Parametric Maximization

Maximizing f(s,x) subject to x € #(s) C R”

s € S: parameter space

both f and domain &% can depend on s.
Fors € S,

f*(s) = max{f(s,x) :x € F(s)} €R

F*(s)={xe F(s): f(s,x)=f*(s)} CZF(s) CR"
For each s, #(s) and F*(s) are sets,

so F and F* are examples of correspondences.

f*(s) is a number, so f* is a function

Question: How do f*(s) and #*(s) vary with s?
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Example 1

Let fi(s,x)=(s—1)x for s€[0,1]=S and x € [0,1] = &
<0 fors<i
a(s,x)—(s—g) =0 fors=3
>0 fors> %
0} fors<i
. {0}~ fors i’ . 0 for s < %
Fi(s)=<[0,1] fors=3 & fi'(s) = 1 ]
1 (5 — 3) for s > 3
{1} fors> 3.
fi*(s) is continuous, Zi(s) changes dramatically at s = 3,
In game theory, #7(s) called best response correspondence
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Set and Values for Example 1, continued

{0} fors<i 1
0 f <1
Fis)={[0,1] fors=1 and £(s)= { 1 for s< )
1 (5 — g) or s > 3
{1}  fors> 3.
1 X
o} x
3
s s
0 1 0 7
3 9?(5) 3 fl*(s)

ZF73(s) is compact valued, bounded, closed graph. f;* is continuous
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Example 2

Let fo(s,x) = -3x* + 353+ 3x* for xeR=F.

fax (s, x) = =x3 + sx% + x,
Critical points: 0, xf = % [s + M}
Fors=0: xi =+1, £(0,+1)=1>0=(0,0).
fox(s,x) = =3x* +2sx + 1.
fxx(s,0) =1 > 0: local minimum at x = 0.

(5, xE) = -(xE)2 + 2 [-(xE) P +sxF + 1] —1=-(xF)? -1 <0,
local maximum at x;7, x; .
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Example 2, continued

Do not calculate f(s,xXF) but

@ o) — ) S 1 () L’
ds =V7F elds T3S 337

For s > 0, fa(s,x7) < £(0,£1) < f(s, x).
For s <0, fa(s,xg) > £(0,£1) > fH(s, x).
Thus,
{xs} fors<0
5(s)=4¢{-1,1} fors=0
{xf}  fors>0.
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Set and Values for Example 2

/ j‘ \I
F5(s) 5 (s)
Calculated numerically

ZF3(s) jumps at s = 0, not continuous

is compact valued, closed graph, locally bounded.

fy(s) is continuous by Parametric Maximization Theorem.
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Upper-Hemicontinuous

Continuity of correspondences defined using small region around set.

For a set A C R”, e-neighborhood of A is

B(A,e) = {x € R": thereisay e A with |[x —y|| <e€}.

Definition

| .

A compact-valued correspondence € : S C RY — P(X) is
upper-hemicontinuous (uhc) at sp € S p.t.
for any € > 0 exists § > 0 such that
if s € B(sp,0) NS then €(s) C B(¥(so),e).

Image set cannot get a lot bigger for small changes from sy to nearby s

% is upper-hemicontinuous on S p.t. it is uhc at each sg € S.

\
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Continuous Correspondence

A compact-valued correspondence € : S — ZL(X) is

continuous at sy € S p.t.

forany € >0, 3 >0 s.t. if s € B(sp,0) NS then
€ (s0) C B(€(s), ) &
€(s) C B(¥(so),¢).

Image sets € (sp) & €(s) within small neighborhoods of each other

not a lot smaller nor bigger for small changes from sy to nearby s

% is continuous on S p.t. it is continuous at each sy € S.
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Examples of Correspondences

%1 is continuous correspondence
%>, 9’1‘ and 9; are upper-hemicontinuous not continuous.

€3 is not uhc at 0.5 or 1.5: [1,2] jumps to [0, 3]
with changes of s =0.5 to 0.5+¢§ or s=15to 1.5—-4

%4 is neither upper-hemicontinuous nor continuous at s = 0:

As s changes from 0 to 6, €4(0) = {0} changes to €4(d) = {%}
{%} Z B({0},€) = (-¢,¢) &
0 2B ({1}, = (et hes 1),
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Condition to be Upper-Hemicontinuous

Proposition (1)

Let € :S — P(X) be a compact-valued, locally bded correspondence.

% is upper-hemicontinuous iff € is a closed-graph correspondence.

See online class book for proof.

Cu(s) = {%} above shows why correspondence

must be locally bounded in this proposition.
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Parametric Maximization Theorem

Theorem (2 Parametric Maximization Theorem)

Assume f : S x X — R is a continuous function and
F S — P(X) is a compact-valued continuous correspondence.
Then, f*(s) = max{ f(s,x) : x € #(s) } is continuous, and
F*(s) ={xe F(s): f(s,x) =f*(s)}
is a compact-valued upper-hemicontinuous correspondence.
If F*(s) is single point for each s,

then continuous correspondence or function.

If f(s,x) is strictly concave fn of x for each s,

then each ZF*(s) is a single point and so Z#* is continuous.

Domains for Dynamic Programs often have & (s) = [0, s],

which satisfies theorem.
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Example 4

Let S=X =R, and h: Ry xRy — R, be defined by
h(S,X):X%-I-(S—X)% for x € [0,s] = Z(s).
h is continuous and % (s) continuous correspondence.
Parametric Maximization Theorem applies.

Critical point satisfies
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Example 4, continued

o _
0x2

3 3
-5_%(5_x)'§<0 for all x >0, so

) is a concave function of x on [0, s]
s

is the unique maximizer on [0, s].
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Consumer Theory

Commodity bundles are points in R .

Parameters are prices p; >0 for 1 < i < n and income | > 0.

Parameter space S = {(p, 1) € R}
Budget correspondence #:S — Z(R) is
Bp,l)={xecR} :p-x< I}

A is a continuous, compact-valued correspondence.

Proof.
Obviously, # is compact-valued.

| \

Intuitively, it is continuous.

An explicit proof is given in online class book. [
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Consumer Theory, continued

Corollary (4)
u: R} — R be a continuous utility function.
Then indirect utility function v :S — R,
v(p,1) = max{u(x) : x € B(p, 1) },
is continuous.
Also, demand correspondence d : S — £ (R]),
d(p,1) = B = {x € B(p,1): u(x) = v(p, )},

is a compact-valued uhc correspondence.
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2. Finite Horizon Dyn Prog: Consumption-Savings

T is number of time periods fixed at start of problem.
t period is integer for 0 <t < T.

we € Ry is wealth at period t, called state. wy initial state
c; consumption at period t, chosen with 0 < ¢; < wy, action
ZF(wt) = [0,wy] is feasible action correspondence, ¢; € [0, w].

Wiyl = f(we, ¢t) = k(wy — ¢¢) is transition function,
where k > 1 for fixed production rate.

u(ce) = \/cr is utility of ¢; valued at period t. For 0 < 4§ <1,

re(ce) = 6tu(cy) = 8 /¢r reward function valued at t = 0.

Problem: Given k, ¢, u(c), and wg, maximize Ez—zoétu(ct).

subject to 0 < ¢ < wy and wey1 = k(we — ct).
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Finite Horizon Dyn Prog

Can solve as KKT problem as function of wy:
maximize 3" 0% u(cr)

subject to 0 < ¢ < wy and wey1 = k(we — ¢t),

Easier to break up and solve simpler problem at each time period,
startingat t =T
called backward induction

Treat as a Dynamic Programming Problem
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Strategy and Value Function

Markovian strategy profile is rule o; at each period t for a choice of ¢;

as function of only wy, ¢t = or(we), and not of wy for t' # t.

Use backward induction to find maximal Markovian strategy profile
- 1
(T) Fort=T: maximize ry(c)=0"c2 for 0 <c=cy < wy.
ry is strictly increasing, so optimal choice is ¢ = wy.
Denote this choice by ¢, = o} (wy) = wy.

Optimal strategy at period T.

Value function at T-period is maximum payoff for period T
given wr,

Vi(wy) = re(oy(wy)) = §Tw
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Consumption-Savings Problem, continued

(T-1) Let w = w,_, at period t = T-1.

re_(c)=6""1

wy = fr_j(wy_q,¢c) = k(wy_; —¢) carry forward to period T

c? is one period payoff for action ¢

Vo(k(w—c))=46" k? (Wy_q — c)% is maximal payoff at period T
For 0 < ¢ < wy_,, seek to maximize
h(wy_y,¢) = ry_;(c) + V(k(w — c))
— 6T ez 467 k2 (wy_, — c)?

0=20 = §T11c73 45T k3L (W, — )2 (-1),

dc
1
2 =0k? (WT_l—C)_E, WT_l—c:52kc,
w
wr, = (146%k)c, c= 1+T§‘21k
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Consumption-Savings Problem, continued

W1

Optimal strategy is ¢ = o%_{(wy_;) = 1102k <wpg

Value fn at period T-1 is maximal payoff for periods t > T-1,
Vo (W) = b (wp_,) =67-122 + 67 [k(w — 2)]2

= 0T-121 467 [52k%E]) 2

1

=0T"1(1+6%kK)e?

1
:5T—1(1+62k)[ T ]2

=6T1(1+62k)2w
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Consumption-Savings Problem, continued

By backward induction Vj(w;) =& (14 6%k +--- + 52T—2jkT'j)% WJ%
Valid for j =T and T-1. Assume true t + 1.
(t) Given w = wy: For 0 < ¢ < w, maximize
h(w,c) = ri(c) + Viri(k(w-c))
1

= 5tch 4 6 (1 2T 22T )3 e ()
1
0= % = 5t%c_% 4 4ttl (1 4 52T—2t—2kT_t_1)2 ik %(W—C)'%(—l)
(W—C)% = (5 (]_ + .+ 52T*2t72k7’_t_1)% k% C%
w-c = 6%k (1 NS 52T—2t—2k7_t_1) c
— (52k 4+ 4+ 52T—2tkT-t) c

w = (1 +52k+,,,+52T—2tkT—t) c

_ w
=TT =W
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Consumption-Savings Problem, continued

9*h

Since 02 < 0, this critical point is a maximum.

Wt
14 ... 45272ty T-t < W

~ ]% =0k [1 I 52T72t72kT7t71]% z3
Vit (k(Wt_ C))

_l’_
T L N ¢ 52T—2t—2kT—t—1)% [k (we — ©)]
6t+2k (1 + . 52T—2t—2kT—t—1) ¢

Optimal strategy: ¢ = o;(w;) =

N|—=

NI

—

1+ 62k 4+ (52T—2tkT—t) E%

1
St (1 4. +52T—2tkT—t) Wt2
(14 + 52T—2tkT—t)%
1
=5t(1+- -+ 52T—2tkT—t)% wZ = Vi(wy).
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Consumption-Savings Problem, continued

Shown if the maximum from t+1 to T has form of Vii1(w) given
then maximum from ¢ to T has form of Vi(w) given.
Therefore, valid forall t=T, T —-1,...,0.

Maximal payoff all periods t =0 to T
Vo(wo) = (14 62k + ---+52TkT)% WO%.
Optimal strategy profile is 0* = (0§, ...,0%) where

Wt

144 52T -2t T-t

Tt =o0f(we) = End of Example
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Example with Production

Include some production in feasibility correspondence for 0 <t < T.
w; be wealth or capital; labor force is held fixed so
production is wt’g with 0 < 8 < 1.
0<c< wtﬁ consumption
f(we, ct) = Wf — Ct = Wiyl

re(w, c) = 0% In(c), where 0 < § < 1.

(T) Maximizer 67 In(c) for 0<c < w?,

o (w) =c* = wh

Vr(w) =367 In(w?) =67 3 In(w)
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Example with Production, contin.

(T—1) h(w,c)=6""1In(c) + Vr(w? —¢)
=35""In(c)+ 47 B In(w? —¢)

1 1
_0h _ sT-11 T
0=52=0 e ) ﬂwﬂ—c
wl —c=68pc wl=(1+68)c
B
c=of (W)= < wP

14+68 ~

Vr-1(w) =6771In(E) + Vie(w? —2)
=0T"tIn(e) +67BIn(0B¢)
=0T 1+ 68][BIn(w) —In(1 4+ B)] + 6T BIn(6 B)
=611+ 68] In(w) + vo_,.
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Example with Production, contin.

Induction hypothesis with v; a constant
Viw) =& B[1+68+ - +6"7877] In(w) + v
h(w, c) = 6t In(c) + Vip1(w? —¢)
=8tn(c) + 631+ + 5T I3 In(wP — ¢) + viyg

1
0= % — 51’% _ 5t+lﬁ[1 N 5T—t—15T—t—1]

wh — ¢
wl —c=[68+---+07"t37 ¢
Wh = L4 8T t3T 1

W

c=o07_(w)= 1t .- foTtpT-t < w?
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Example with Production, contin.

Vi(w) = 6*In(€) + Vea(w” - )
=6In(@) + Verr ([68 + -+ 0771871 ¢)
= 6tIn(C) + 6t (63 + - -+ 6T t3T 1] In(c)
+HOB+ -+ T RTINS B + -+ 6T TIBT ) + veg
=014+ 6T BT BlIn(w)
—OtL 4+ 6T BT In(L + -+ 5T7ERT )
+HOB+ -+ ST RTINS B + -+ 6T TIBT ) £ veg

=80+ +66 In(w) + vt
End of Example
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Supremum

Supremum or least upper bound for f : X - R is
M such that f(x) < M for all x € X,

and no small number works.
sup{ f(x) : x € X }.

If function is bounded above, a finite supremum exists.

Supremum = oo if f(x) is not bounded above.

arctan(x) is bounded above on R but no maximum,

sup{arctan(x) : x eR} = 7

sup{1:x>0}=00 sup{1:x<0}=0
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Infimum

Infimum or greatest lower bound for f : X — R is
m such that f(x) > m for all x € X,

and no larger number works.
inf{ f(x) : x € X}.

Infimum = -oo iff f(x) is not bounded below.

If function is bounded below, a greatest lower bound or infimum exists.

arctan(x) is bounded below on R but no minimum,

inf{arctan(x) : x c R} = -7,

inf{%:x>0}:O, inf{%:x<0}:—oo
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General Finite-Horizon Dynamic Program

A general FHDP consists of {S,A, T, (rt, ft,,?t)tT:O}.
e T is a positive integer; periods t are taken with 0 <t < T.

@ S is state space, with state at period t given by s; € S.
(In C-S problem, s; = w; € [0,00) =S.)
@ A is action space, with action at period t given by a;.
(In C-S problem, ¢; € [0,00) = A.)
@ Foreach 0 <t < T, following are defined:
e r; : S X A — R is continuous period-t reward function.
(In C-S problem, ri(w,c) = dtc?.)
e f; : S X A — S is continuous period-t transition function,
Str1 = fe(st,a:)  (In C-S problem, fi(w,c) = k(w — ¢).)
o F.:S — P(A) is feasible action correspondences, and is assumed
to be a continuous and compact-valued correspondence on S.

Only a; € F(st) are allowed.
(In C-S problem, ¢; € [0, we] = F+(w).)
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Value Function

Total reward for sy, allowable {at}tT:o, & si11 = fe(st,ae) is
T
W (so, {at}tT:o) =2 e—o (s, at)
Value function of continuation FHDP starting at period t,

Ve(s) = sup {2, (5. 2)) : 3 € (),
sit1 = fi(sj,aj) forj=t,..., T}

= sup{ w (st, {aj}jT:t> : {aj}jT:t aIIowabIe}

V(s0) = Vo(so) is value function for whole FHDP.

Problem: Find actions that realize supremum so maximum value.
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Markovian Strategies

A Markovian strategy profile is a collection of (choice) functions
o= (00,...,07), each 0::S — A, a; = 0¢(st) € F+(st),
ot function of only s;
A non-Markovian strategy o is a function of (sp,...,s:) and not just s;.
Strategy o and initial state sp, determines all a; and s;:  sp(sp,0) = so;
Given sy = s¢(sp,0) for 0 <t < T,
ar = at(s0,0) = o+(st),
re(so,0) = re(st, ar), and
St+1 = St+1(S0,0) = fe(st, ar).
Total reward for a strategy profile ¢ and initial state sp is
W(so,0) = ZZ-:O re(so,0).
o* is optimal strategy profile p.t. realizes max in defn of value fn,
W(so,0*) = V(s0) for all sp € S.
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FHDP Bellman Equation & Optimal Strategy

Theorem (4.15)

If a FHDP satisfies assumptions, then following holds:

a. For 0<t< T, Vi(st) < oo foreach s, is continuous,
and satisfies Bellman equation
Vi(s) = maxaeg,(s) re(s; a) + Viqa(f(s, a)),
where V111(fr(s,a)) =0.
b. There is optimal Markovian strategy profile ¢* s.t.

W (so,0*) = V(s0) for all sp.
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Use backward induction to get Bellman equation.

For j=T, r(s,a) continuous & & r(s) is compact, so
Vr(s) = max{rr(s,a):ac Fr(s)} exists for each s.
By Parametric Maximization Theorem,
Fr(s)={acFr(s):rr(s,a) = Vr(s)} #0
uhc correspondence and V7 (s) is continuous function of s.
Pick o%(s) € F%(s) forall s€S, o%:S—A.

rr(s,0%(s)) = W(s,o%) = Vr(s), so o% is an optimal strategy.

Have proved result for j = T.
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Induction Step

Lemma

For 0 <t < T, suppose that continuation FHDP starting a period t + 1
has continuous Vii1 with Vip1(se41) < oo for each spy1,
also admits a optimal Markovian strategy profile (o}, 1,...,0%)
with Viyi(sev1) = W(str1, (0511, --,07))-
Then following hold

a. For each s;, Vi(s:) attains a finite max value,

V; is continuous, and satisfies

Vi(st) = max{ ri(st, ar) + Vier1(fe(st, ar)) : ar € Fi(se) }.

b. There exists of(st), s.t. (0f,...,0%)

is a optimal Markovian strategy profile for starting at period t.
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Proof of Lemma

By induction, V:;1 is a continuous function,
f¢ and ry are continuous, so
he(st, at) = re(se, ar) + Vipa(fe(st, at)) is continuous
& is is continuous and compact-valued correspondence.
By Param. Maxim. Thm, #*(s;) # 0 (points that realize max)
max value hi(s;) is continuous
If select point of(s;) € F*(s¢), then
hi(se) = re(se, 07 (se)) + Vega(fe(se, o7 (st))).
optimal strategy.

Need to show, Vi(s;) = hi(s¢), i.e., satisfied Bellman equation.
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Proof of Lemma, contin.

For any s; & allowable sequences 59 = S,

e Fi(si) & 0, =fi(sP,a?) for i >t

SLeri(s?al) = re(sP, ad) + o1 (s, af)
re(s?, a7)
+ maX{ZiT:tH ri(si,ai) - ai € Fi(si), siy1 = fi(si,ai) }
= re(se, @) + Vera(fi(se, a2)) = he(st, a2)
< max{ hi(st,ar) : ar € Fe(st) }
= hi(st).
Taking supremum over allowable sequences

Vi(se) < hi(st).

IA
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Proof of Lemma, contin.

hi(st)

he(st, 0 (st))

*
t
*

rt(St, (o
*
t

(st)) + Vega(fe(se, 07 (st))
= re(se, 07 (st)) + S pi1 ri(sF,07(s7)) < Vi(se),
where s; =s; and sf; = fi(s], 07 (s]))
Vi(se) < hi(se) < Vi(st) so Vi(st) = hi(st) < oo.
Vi(st) = hi(st) = max{ re(st, ar) + Vier1(fe(se, at)) - ar € Fe(se) |
V; satisfies Bellman equation & is continuous.
Vi(se) = re(se, 07 (se)) + Vega(fe(se, o7 (st)))
= re(se, 07 (st)) + W(fi(se, 07 (st)), (0811, -, 07))
= W(s, (0f,...,0%)).

so optimal Markovian strategy profile as claimed.
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Solution of FHDP by Bellman Equation

Bellman equation determines solution method for a FHDP.

(T) Maximize rr(st,ar) with parameter st determines
strategy at = 0% (sT)
value function V7 (s7) = r*(st) = rr(st,0%(s7)).

By backward induction, once strategies UJ’-‘ and value functions V;

have been determined for T > j > t + 1, then
ar = o;(st) maximizes
he(s,a) = ri(s,a) + Viyi1(fi(s, a)).
Period t value function
Vi(se) = hi(st) = re(se, 07 (st)) + Vera(fe(se, o7 (st)))-
By induction, get back to Vp(sp) = V(o).
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Infinite Horizon Dynamic Program

A stationary dynamic program (SDP) is
{S, A, &, f, r, 6} with infinite horizon:

@ S C R” is state space. e A C R is action space.

e F:S— P(A), feasible action correspondence,
is compact-valued, nonempty, continuous correspondence.

Z(s) C A is set of allowable actions given s € S.

@ f:Sx A — S, continuous transition function:
St+1 = f(st,ar) from s; and a; to sy1 for t > 0.

@ r:S x A — R continuous, one-period reward function
that specifies reward r(s, a) for an action a taken at state s.

@ 0 <4 <1 discount factor.
r(st,ar) discounted back to period-0 is & 'r(s¢, at).
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Value Function

Same r, f, & for all t.

Definition

For allowable actions a; € & (s;) and states s;y1 = f(s¢, ar)
W (s0, {at}) = D pop 0 tr(st, a¢) total reward.

Discount factor allows infinite sum possibly to be finite.

v

Value function V : S — R is supremum of total reward,

V(so) = sup{ W (so,{a:}) : {a:} allowable sequence }.

Problem: Maximize total reward W (sp,{a:}) = > 1og 0 'r(st, at),
for allowable actions a; € & (s;) and states s;11 = f(s¢, ar).

So realize V/(sp) as a maximum with some sequence of actions.
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Optimal Stationary Strategy

A stationary strategy o is a choice o(s) € #(s) C A foreachs € S

that is same for all periods.

Given a stationary strategy o and sy, by induction,
ar = ai(s0,0) = o(st),

St4+1 = St+1(50,0) = f(s¢,a¢), and

W(so,0) = 1000 tr(st, a) total reward.

An optimal stationary strategy o™ is a stationary strategy s.t.

W (sg,0*) = V(so) for all sp €S.
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SDP Bellman Equation

Theorem (9 SDP Bellman Equation)

Value function V(s) satisfies Bellman Equation

V(s) = supacg(s) r(s,a) + 6 V(£(s,a)).

Note that for an infinite horizon SDP,

same function V is on both sides of Bellman equation.
Necessary to solve equation for a function

and not just value for a given value of s.
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Proof of Bellman Equation:

For any choice of actions, reward satisfies
S 2208 r(st,ar) = r(so,a0) + 6 Yoo 8t Lr(st, ar)
= r(s0,a0) +0 3720 7 r(sjt1, aj+1).
< r(s0,0) + 8 SUP,, 12125700 07 r(Sjt1, 3j41)
< r(so,a0) + 9 V(f(s0,a0))-
Taking supremum over all allowable ag,
V(s0) < Supayeg(sy) {7505 a0) + 0 V(f(s0, a0)) }-
Also, can get a sequence of allowable actions s.t.
W (so,{at}) is within e of right hand side,
V(so) + € is > right hand side, so equality.

Valid even if = co. QED
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Outline of Theorems

For properties of value function assume either (i) r(s, a) is bounded or
(i) 1 sector economy with assumptions E1-E2 on f, r,
Finite value function: V(s) < co for each s € S,
so V(s) well defined function: (i) Thm 10, (ii) Thm 13
Continuity: 3 unique bounded fn satisfying Bellman equation.
By an iterative process like for FHDP, get sequence of Vj(s) that
converge uniformly to V/(s) on bounded intervals [0, 5],
so V/(s) is continuous. (i) Thm 11, (ii) Thm 13
Optimal Strategy: Exists by Param Max: Thms 12, 14(b)

First give examples finding value function using Bellman Equation

Then give precise theorems and proofs to show why works.
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Example of Optimal Growth for One-Sector Economy

Optimal Growth of one-sector economy:  More general case later
Determine Value Function and Optimal Strategy for

0<d<1,

S=R,,

A=R,,

Z(s) =1[0,],

f(s,a) = k(s — a), with k>1 and k62 <1,

r(s,a) = u(a) = az.
r(s,a) = a> is not bounded on R, but s; < kfsy, ar < ks,

so 8tr(st,ar) < 0tu(ktsy) = 6 (ktsp) 2= <5k2> ¢,
1

1\t 1 1
V(so) < >72 (5/{5) s§ = mso < 0.
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Iterative Solution to get V

Solution Method 1: Form sequence of continuous fns V;(s)
that converge to value function V/(s)
Assume Vj(s) is continuous
hysa(s.a) = r(s,a) + 0 V(£(5.2)) = a* + 0 V,(k(s — 2))
Via(s) = 7,y (5) = maxd hysa(s.2) : 2 € Z(5) )
continuous by Param Max Thm. ZF*(s) # 0.
Start Vo(s) =0.
hi(s,a) = a? + 6 Vo (k(s — k)) = as.
hi1 is an increasing fn of a, is maximized on [0,s] for 3 =s,

Vi(s) = hi(s,3) = s2, max 1 period, t =0
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lterative Solution Method, contin.

ho(s,a) = a2 + 6 Vi (k(s — a)) = a2 + 6 k2(s — a)2.

8/12 1 1 _1
OZE:% 2-%5/{2(5—3) 2,
(s—a)z—ék%% s—a=06%ka,
— 2 5_ S
5—(1+(5 k)a, a—m.
o . 0?hy
Maximizer since 972 < 0 everywhere on [0, s]

N

Va(s) = h(s,3) = (3)2 + 6 k2(s — 3)
= (3)2 + 0 k25 k2 (3)2
= (14 62k)s2(1+ 82 k)2
=(1+42 k)% 3, max?2 periods, t =0, 1.
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lterative Solution Method, contin.

Induction hypothesis Vj(s) = (1+ 6%k +--- 46472 kj_l)% s
oi(s)= (1+ 0%k + -+ 832K 1) s,
Assume true for j =t,
het1(s, a) = r(s,a) + 0 Vi(f(s, a))
—at 0 (1t + 022 k)2 (k(s — a))2.

oh
0= t+1

95 :% _%—%6/(2 (]_+ +62t—2kt—1)% (5—3)_%_
s—a=0d8%k (1 4§22 kt—l) a
s=(1+--.+52rkr)a

a=(1+4---+6* kt)_l s.  Verify induction for form of o7, (s).
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lterative Solution Method, contin.

a=(14--- 462kt s,

Vt+1(5) = h:—i—l(s) = ht+1(5, 5)

5% +94 (1 I kt—l)% (k(s _ 5))%.

32 46 (14 +52’-‘—2kt—1)%(52k2 (T4 40272k )%

= a2 +52k (1 + ... +52t—2 kt—]_) 5%

= (14 + 82k (1+...+52tkt)‘%5%_
= (14402 KE) 2 sE,

Verifies induction for form of V4, 1(s).
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lterative Solution Method, contin.

1
Vo (s) = lim Vi(s) = lim_ (1462 k4402 2k1)2 52

Voo(s) = tILrEOVtH(s) = tILrgo max{ az +6 Vi(k(s—a)):0<a<s}

= max{a% +0Veol(k(s—a):0<a<s}
Vo(s) satisfies Bellman equation

Since V/(s) is unique locally bounded solution of Bellman eq,

1
V(s) = Vioo(s) = ﬁ%— value function.

o*(s) = tli)r’r;oo't(s) = t||_>r20 (]_ 44522 kt_l)-l s

=(1—kd%)s  optimal strategy
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Steps Solving SDP by lteration, Method 1

@ Start with Vp(s) =0 for all s.
@ Using Param Max Thm, by induction continuous
Viy1(s) = max{r(s,a)+ 6 Vj(f(s,a)) :ac F(s)}.

Vi(s) max over 1 period, t =0

NN

(s) max over 2 periods, t =0,1

i(s) max over j periods, t =0,...,j—1

Vi(s)
@ Vj(s) — V(s) for each s. max over all periods.
Converges uniformly on compact intervals so continuous.

Q 0j(s) — o*(s) optimal strategy
o*(s) e F*(s)={ae F(s):r(s,a)+ 06 V(f(s,a)) is maximal }
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One-Sector Economy, Solution Method 2

Solution Method 2: Find V & ¢* by guessing form of V.  Guess
V(s) = Msz, M unspecified parameter, related to r(s, a).
Use Bellman equation to determine parameter M of guess.

h(s,a) =r(s,a) +dV(f(s,a)) = az + 5I\/Ik%(s - a)%.

OZ%h(s,a):% 3 6Mk2 (s—a)'%,

-1 1 -1 1 11
a2=0Mk2(s—a) 2, (s—a)2 =0Mk2az,
s—a=ad’M?k, s=a(l+ 5?°M?3k), and
- S - .
a—= m <s critical point

82

P =5 h(s;a) <0 on [0,s], so a is a maximizer and an optimal strategy.

Chapter 4: Parametric Contin. and Dynamic Prog.



One-Sector Economy, Solution Method 2, continued

a=o0"(s) and V(s) must satisfy Bellman equation:
V(s) = r(s,0*(s)) + V(s, f(s,0%(s))).
Ms? = 32 +5Mk%(s—§)%
— 32 + 6 Mk26 M k23> = (14 62M2k) 33
1
= (14 82M2k) [1%} TS (14 2MPK)E s}
+ 62 M?k
M? =1+ §2M?k,
M2(1 - 6%k) =1
M? = ﬁ, and

_ 1 2 5
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One-Sector Economy, Solution Method 2, continued

Therefore, value function is
S 3
V(s) = [—1 — 52/(} .

The optimal strategy is
s

() = 3= T ek
s
T
=(1-6%)s <s.
End of Example
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Steps Solving SDP using Method 2

© Guess form of value function with unspecified parameters
Use r(s,a) or 1st few V; from Method 1, to make guess.

@ Determine the critical point 2 of h(s,a) = r(s,a)+ 0 V(f(s,a))
using guess for V/(s)

Verify that 3 is maximizer for a € Z(s).
© Calculate h*(s) = h(s,3) in terms of parameters.

Q Use Bellman equat. V/(s) = h*(s)
to solve for unspecified parameters in guess.
Gives V/(s) in terms of original data of problem.

@ Substitute parameters found into 2

to get optimal strategy, o*(s) = 3
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Vintner Example Attributed to Weitzman

On each day, a vintner can split his effort between:

be € [0,1] is effort for baking bread and

1 — b; is effort for squeezing grapes for wine.

Wwer1 = 1 — by € [0,1] is amount of wine in next period.
r(we, by) = /web: is reward or utility function for each period.
0 < < 1 is discount factor.

Maximized > 508" v/ web.
w; is state variable,
b; is action, and
wer1 = 1 — by is transition function.

Bellman equation
V(w) =max{vwb+0V(1—b):bel0,1]}.
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Iterative Solution Method for Vintner Ex

Method 1: function to be maximized as function of b is
hisi(w,b) = w2bz +5Vi(1—b)  be[0,1].
Vo(w) =0 for all w,
hi(w, b) = w2b> is an increasing function of b
Max at b=1: Vi(w) = h1(w,1) = we.
ho(w, b) = w2 bz +§ (1 — b)?.
_om
b
wb™l =62(1—b)71,
w(l — b) = 62 b,

w = (w+82) b,
- w

w4 §2°

1

—15(1-p)2,

N|=

0 — lwab
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Iterative Solution Method for Vintner Ex, contin.

Va(w) = ho(w, b) = w2b? +§ (1 — b)?

Similar calculations show
Vs(w) = (1+ 62)2 [w + 62]

NI=

Va(w) = (1+62)% [w + 8% + 6]
Vaj(w) = (14024 +62972)2 [w+52+---+621]%

Vapsa(w) = (144 6%) 2 w482 4 4 62

Note that constants appeared both before and under square root sign
Converges to value function

- (s22) o]
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Vintner Example, Solution Method 2

Method 2: Assume
V(w) = A(w + C)%, A and C unspecified parameters.

Let
h(w, b) = bzw3 + SA(1 — b+ C)2.

Critical point
Oh 11 -1
O:%:%b 2w? — L6A(C+1-b) 2

w(C +1— b) = §2A2b
w(C+1) = b[w+ §2A?]

w(C+1)
w + 62A%°
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Vintner Example, Solution Method 2, continued

As a preliminary step to calculate maximum value:

(C+1-b)= (é) §2A2,

w

. /B\?
5A(C+1—b)z=(w) §2A2

_(C+1)252A2
Max value h(W,E):(WB)%-i-(sA(l—Z)-l- C)% is
(C+1)zw N (C+1)26242  (C+1)7 [w+8%A%)
wt+2A0 [wR2AE [w 2AY
= (C+1)3 [w+ 02477,
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Vintner Example, Solution Method 2, continued

Bellman equation becomes
1
Alw 4 C)2 = (C+1)2 [w+ 52422

Equating similar coefficients, we get A= (C + 1)% and C =4%A2?, so

A% = 52A% +1,
(1-5%)A2=1,
/_42:1_;62, and
- 52

C= 152

Value function is

V(W):( 1 )5 [W+1i252];: [W(1_52)+52]%_

1-462 1-—62
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Vintner Example, Solution Method 2, continued

Using
- 1
2 _
A_1—52
- 52 82 4+1— 62 1
CHl=g—mtl=—7—m ~1_52

optimal strategy is

w(C+1) W [ﬁ]

* :Z): = =
o (W) w + 02A2 W+ 1i252
. w
©ow(l —62) 462

End of Example
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3.2 Optimization for Bounded r

First assume bounded r:

SDB Reward fn r is continuous and bounded on S x A:

r(s,a) < K forall (s,a) €S x A.

Show if SDB, then V(s) < co, V is continuous,

and optimal strategy exists.
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Finite Value Function

Theorem (10)
Assume SDP with bounded r (SDB).

Then value function V/(s) is a bounded function,
J0< K <o st V(s) <K' for each s.

| N\

Proof.

Total reward for any choice of actions is bounded:
K
220200 (st ae)| < 32007 |r(se, ar)| < 30720 0°K = 1-06 K’

Taking supremum over all allowable {a;},
V(sp) < K' < o for all s5. V is bounded function. O

\
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Continuous Value Function

Theorem (11)

Assume a SDP satisfies SDB & has bounded V/(s).

Then, 3 unique bounded fn that satisfies Bellman equation.

Unique sol’'n is continuous.

So, V/(s) is continuous.

Continuity of V : S — R cannot be proved directly from Bellman equat

because do not know a priori that right hand side is continuous.

Instead continuity is proved by means of a process that

takes a bounded fn and returns another bounded fn.

Earlier showed process for two examples.
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Proof of Continuity

Proof: Assume G :S — R is any bounded function.
hg(s,a) = r(s,a) + d G(f(s, a)),
T(G)(s) = hi(s) =sup{r(s,a) +G(f(s,a)) : ac F(s)}.
Can shown Z(G):S — R is a new bounded function,
if G and Gy are two such functions
then J(Gi) and J(Gy) are closer together than
Gy and Gy, i.e., J is a contraction on space of bounded fns.
Need to show set of bounded functions is complete,
i.e., a Cauchy sequence of fns getting closer together

must converge to a bounded function.

Follows that there is a unique bounded function that & takes to itself.

So V/(s) is unique function satisfying Bellman eq.
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Proof of Continuity, contin.

If Vo:S — R is any bounded function and inductively V1 =2 (V)),
then Vj(s) converges to unique bounded function fixed by .
If Vo is continuous, then all Vj(s) are continuous

by Parametric Maximization Theorem.

In terms of distance on function space,
distance between functions V;(s) and V(s) goes to zero,

Vj(s) converges uniformly to V(S), so V(s) is continuous.

More details in online class book.

QED
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Value Function as Limit of Finite Horizon Problem

Take Vo(s) =0 & Vi1 =F(V))
Vi(s) max over 1 period t =0
V(s) max over 2 periods t =0, 1
Vj(s) max over j periods t=0,...,j—1

Theorem proves lim;_ Vj(x) is max for all periods t > 0,

so value function V(s).
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Optimal Strategy

Theorem (12 Optimal Strategy)
Assume a SDP has continuous, finite valued value function V/(s) s.t.
|imt_,oo 5t\/($t) =0

for any allowable sequences of {a;} with si11 = f(x¢, ar).

Then, an optimal stationary strategy exists:

any choice function

0*(s) € F*(s) =argmax{r(s,a)+dVof(s,a):aec F(s)}.
is an optimal strategy.

Theorem is valid for bounded r(s,a) (SDB) so bounded V/(s).
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Proof of Optimal Strategy Thm, contin.

h(s,a) = r(s,a) + 0 V o f(s,a) is continuous. By Parm Max Them
h*(SO) = MaXa,c(0,s0] r(so’ 30) +0 V(f(So, a0))
= MaX;,¢(0,5] [r(so, ag) + 0 maxg, r>1 5t 1r(st, at)}
= maX,,, t>00°r(se, ar) = V(sp).
Select o*(s) € F*(s) #0  Show V(s) = W(s,o").
V(st) = r(st,0%(st)) + 0 Vo f((st,0*(st)) = r(se, ar) + 6 V(set1),
V(So) = I’(So, 0) + 6 V(Sl)
= r(sp,a0) + 0 (r(s1,a1) + 0 V(s2))
= r(sg,a0) + 0 r(s1, a1) + 62V(sp)
= r(s0,a0) + 0 r(s1,a1) + 0%r(s2, a2) + 63V(s3)
=r(so,a0) +0r(s;,a1) +---+0 " tr(st_1,ar-1) + 67 V(sT).
— W(sp,0*) as T — co.  Optimal strategy QED
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3.3 Optimal Growth for Gen One Sector Economy, 1-SecE

s € Ry supply of good (state), ¢ € [0,s] = F(s) consumption (action),
r(s,c) = u(c) utility, st+1 = f(st — ¢¢) production to next period,

0 < < 1 discount. Assumptions on, u & f:

El. v: Ry — R is continuous, strictly increasing, with u(0) = 0.
No longer assume r(s,c) = u(c) is bounded.
E2. a. f : Ry — R continuous and increasing.
b. f(0) = 0: no free production.
c. Either

(()I3 x>0s.t f(x)<x for x>x or
([ I A<1, st
du(f(x)) < Au(x) for x > 0.
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General One-Sector Economy, continued

No longer assume r(s,c) = u(c) is bounded.
Example considered earlier: u(c) = cz, f(x) = kx.
u(c) is unbounded but

u & f satisfy E1 & E2 with c(ii) using A = d k2 < 1:
ou(f(x))=24 kixz = \ u(x) for x > 0.
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General One-Sector Economy, continued

V/(s) for 1-SecE satisfies Bellman equation by Theorem 9.

Theorem (13)
If a 1-SecE satisfies EI- E2, then following are true.

a. V(s) < oo foreach se R

b. V(s) is unique bounded solution of Bellman equation

and is continuous. )
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Proof using E2c(i)

Take any 5 > x. Restrict to [0,5]. Take sp € [0,5].
If st €[0,5] & sty1 = (st — ct), then
0=1(0) <f(st—ct) =5se+1 < f(se) < f(5) <5.
all s; €0,5],
r is bounded on [0, 3].
(a) By Theorem 10, V/(sp) is bounded and finite valued on [0, 5].
(b) By Theorem 11, 3 unique bounded solution of Bellman equation
V(s) is continuous on [0,5].
5 > X arbitrary, so V/(s) is locally bounded, finite valued, continuous
on all R,.
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Proof using E2c(ii)

(a) Take sp > 0. For allowable sequence,
ou(c) <du(se) =0u(f(se—1 — ce—1)) <0 u(f(st—1)) < Au(st—1).
0tu(cr) < d0tu(se) < Nu(sp).
V(so) =sup{d_,0%u(c) } <>, AMu(sp) < .

(b) For V*(s) = Au(s) with A=,
u(@)+dAu(f(s—c)) <u(s)+dAu(f(s))
< u(s)+AXu(s)
= Au(s).

T (V*)(s) =sup{u(c)+0Au(f(s,c)):a€[0,s]}
< Au(s) = V*(s).




Proof using E2(iii)(b), contin.

Let Vg (s) = V*(s) and Vi, =T (V) for j > 0.
Since Vi'(s) = Z(V§)(s) < V5 (s) for all s,

Vi 1(s) < Vi(s) forall s by induction.

For each s > 0,
V(s) > 0 is a decreasing sequence,
limj_oo V/*(s) converges to VI (s)

that satisfies the Bellman equation and so is the value function.

QED
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General One-Sector Economy, continued

Theorem (14)

If a 1-SecE satisfies E1- E2, then following hold.
a. V:R; — R s increasing.

b. There is an optimal strategy o*(s).
V(s) = u(c*(s)) + 0 V(f(s —a*(s))).

Proof (a).

Let ¢; & s; be optimal sequences with ¢/ = o*(s}), s;; = f(sf — cf).

sp >S5 Set = —s5g+s5>¢f <5
ss—C=55—¢ >0, sos; =f(sy—ch)=-si.
Let ¢, =c¢} & s, =s; fort > 1. Allowable, not necessarily optimal

V(sg) > 32, 0tulct) = V(s3) — u(cg) + u(ch) > V(s5). a
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Proof of Optimal Strategy

Proof (b).
If E2c(i) is satisfied & 5 > X, then

V/(s) is bounded on [0,5] by proof of Thm 12(a)

Theorem 11 shows optimal strategy exists on [0,5], so R.

If E2c(ii) is satisfied, then by proof of Theorem 12(a),
STV(st) =216 u(cr) <32+ A u(sg) =0 as T — oo,

since series » .~ A" converges.

Theorem 11 shows optimal strategy exists on all R.. O

These theorems show why the examples worked to find optimal strategy

and continuous, increasing value function.
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General One-Sector Economy, continued

More of the properties of value function and optimal strategy

of earlier example hold generally with following assumptions:

Assumptions on 1-SecE

E3. Utility function u is strictly concave on R;.

E4. Production function f is concave on R;.

E5. Utility function uis C* on Ry, with /(0+) = limc_o4 t/(c) = .
E6. Production fn f is C! on Ry, with f/(0+) = limy_oy f'(x) > 0.

E3-EGb are satisfied for u(c) = c: & f(x) = kx.
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General One-Sector Economy, continued

If a 1-SecE satisfies E1I- E4 with u & f concave,
then the following hold.
a. V is concave.

b. Correspondence F* that gives maximizers of Bellman Equation

is single-valued.

Therefore, optimal strategy o* is uniquely determined

and is a continuous function on R..

Proofs this and following are given in online class book.

Chapter 4: Parametric Contin. and Dynamic Prog.



General One-Sector Economy, continued

Theorem (20, S12.27)
If a 1-SecE satisfies EI- EB6,

with u'(04+) = oo & f'(0+) >0,

then optimal strategy o* is increasing on R .
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