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Scalar Ordinary Differential Equations

by R. Clark Robinson

In these notes we denote
dx

dt
by ẋ and

d2x

dt2
by ẍ.

The differential equation ẋ = ax is usually considered in calculus courses, where a is a fixed
parameter. An explicit expression for the solution is x(t) = x0e

at where x(0) = x0. An important
property of the solution is that x(t) has unlimited growth if a > 0 and decays to zero if a < 0.
This differential equation is linear in x. An equation such as ẋ = t3x is also linear, even though it
is nonlinear in t. An example of a nonlinear scalar equation is the logistic equation ẋ = x(1− x).
A scalar differential equations that only involve one derivative with respect to time is called a first
order differential equation.

A general first order scalar differential equation is given by ẋ = f(t, x), where f(t, x) can be
a function of possibly both x and t and is called the rate function. If the rate function depends
only x, ẋ = f(x), the differential equation is called autonomous; it is called nonautonomous if
the rate function depends explicitly on t. The differential equation ẋ = t x4 is an example of
a nonautonomous nonlinear first order scalar differential equation. A solution to the differential
equation ẋ = f(t, x), is a differentiable path x(t) in R such that ẋ(t) = f(t, x(t)). We often specify
the initial condition x0 at some time t0, i.e., we seek a solution x(t) such that x(t0) = x0.

A second order differential equations is of the form ẍ = f(t, x, ẋ). Examples of second order
linear equations are ẍ = a2x and t2ẍ + tẋ + (t2 − n2)x = 0. The latter is an example of a Bessel
equation, and we will consider it in winter quarter.

We shall concentrate on the following two questions:
(1) When possible, how can we find a solution to a given differential equation with the given

initial condition x(t0) = x0? Note that we often cannot or do not find an explicit form of
a solution for nonlinear differential equations.

(2) What are the long term properties of a solution as t goes to infinity?
In these notes, we consider the case of scalar differential equations, leaving to [5] the case of

systems of differential equations (in some Rn), such as the nonlinear predator-prey system ẋ =
x(1 − y) and ẏ = y(x − 1). A good reference for the scalar equations is Boyce and DiPrima [2].
The book by Borrelli and Coleman [1] is a good reference for modeling applied situations. Finally,
Strogatz’s book [6] had many applications of ordinary differential equations.

1. Linear Scalar Differential Equations

For continuous functions a, g : R → R, ẋ = a(t)x+ g(t) is a nonhomogeneous linear differential
equation and ẋ = a(t)x is the corresponding homogeneous linear differential equation.

Consider the homogeneous equation ẋ = a(t) x with x(t0) = x0. Letting b(t) =
∫ t
t0

a(s) ds,

ẋ

x
= a(t),

ln(x(t))− ln(x0) =
∫ t

t0

a(s) ds = b(t),

x(t)
x0

= eb(t).

This solution, x(t) = x0 eb(t), is usually found in calculus courses (at least for a constant a = a(t)).
1
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Theorem 1 (Variation of Parameters). Let I ⊂ R be an interval and a, g : I → R be given
continuous functions. Then the solution x(t) = φ(t; t0, x0) of the nonhomogeneous differential
equation ẋ = a(t)x + g(t) with t0 ∈ I and x(t0) = x0 is defined for t ∈ I and is given by

(1) x(t) = eb(t)x0 + eb(t)

∫ t

t0

e-b(s)g(s) ds,

where b(t) =
∫ t
t0

a(s) ds. This formula gives both existence and uniqueness of solutions.

Proof. Let x(t) be any solution of the nonhomogeneous differential equation with x(t0) = x0. For
each t, x(t) will lie on the solution curve for the homogeneous equation with initial condition z

at t = t0. Thus, z(t) is defined by x(t) = z(t) eb(t). The nonhomogeneous term g(t) forces the
solution x(t) from one of these curves to another as t progresses. Note that b(t0) = 0, so eb(t0) = 1
and z(t0) = x0. We can derive the differential equation that this coefficient or parameter z(t)
must satisfy:

a(t) z(t) eb(t) + g(t) = ẋ(t) = z(t)
d

dt

(
eb(t)

)
+ eb(t)ż(t) = z(t) a(t) eb(t) + eb(t)ż(t),

ż(t) = e-b(t)g(t).

Since g(t) is given and b(t) is determined by integration of a(t), we know the derivative of z(t).
Integrating ż(t) = e-b(t)g(t) from t0 to t,

z(t) = z(t0) +
∫ t

t0

ż(t) ds = x0 +
∫ t

t0

e-b(s)g(s) ds and

x(t) = eb(t)z(t) = eb(t) x0 + eb(t)

∫ t

t0

e-b(s)g(s) ds.

This derivation shows both that any solution must satisfy (1) and that (1) is a solution. �

Second Derivation. The function b(t) is the antiderivative of a(t), so b′(t) = a(t) and
d

dt
e-b(t) =

a(t) e-b(t). Therefore,

d

dt

[
e-b(t)x(t)

]
= e-b(t) ẋ(t)− a(t) e-b(t)x(t)

= e-b(t) [ẋ(t)− a(t)x(t)]

= e-b(t)g(t).

Integrating from t0 to t, we get

e-b(t)x(t)− e-b(t0)x0 =
∫ t

t0

e-b(s)g(s) ds

x(t) = x0 eb(t) + eb(t)

∫ t

t0

e-b(s)g(s) ds

since b(t0) = 0. �

Remark. Because the derivative of e-b(t)x(t) is a function of t alone, the differential equation
can be solved by integrals and e-b(t) is called an integrating factor.

Notice that (i) eb(t) x0 is solution of the associated homogeneous equation with x(t0) = x0 and
(ii) y(t) = eb(t)

∫ t
t0

e-b(s)g(s) ds is a particular solution of the nonhomogeneous equation with initial
condition y(t0) = 0.
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Example 1. Consider the equation t ẋ = −x+t2 or ẋ = x/t+t. The solution of the homogeneous

equation is e
R 1/s ds = e ln(t) = t-1. If we set x(t) = z(t) 1

t with z(t) the coefficient of the solution
of the homogeneous equation, then

ẋ =
x

t
+ t =

z

t2
+ t and

ẋ =
d

dt

(
z(t)

1
t

)
= ż

1
t
− z

1
t2

, so

ż = t2,

z(t) = 1
3 t3 + C,

x(t) = 1
3 t2 +

C

t
,

x(1) = 1
3 + C,

C = x(1)− 1
3 ,

x(t) = 1
3 t2 +

3 x(1)− 1
3 t

.

The plots of x(t) = φ(t;±1, x0) for x0 = 0, 1/3, 2/3 are shown in Figure 1. �

x

t

φ(t; 1, 2
3 )

φ(t; 1, 1
3 )

φ(t; 1, 0)

φ(t; 1, 2
3 )

φ(t; 1, 1
3 )

φ(t; 1, 0)

Figure 1. Solutions φ(t;±1, x0) of t ẋ = −x + t2 for x0 = 0, 1/3, 2/3.

Example 2. Consider the differential equation ẋ = cos(t) x + 2 cos(t), with x(0) = 3.
The solution of the homogeneous equation is e- R

cos(t) dt = e- sin(t). If x(t) = z(t) e- sin(t), then

cos(t) z(t) e sin(t) + 2 cos(t) = ẋ = ż e- sin(t) − z(t) e- sin(t) cos(t),

ż = 2 cos(t) esin(t),

z(t) =
∫

2 esin(t) cos(t) dt + C = 2
∫

eu du + C

= 2 eu + C = 2 esin(t) + C

x(t) = 2 + C e- sin(t).

This is the general solution with parameter C. Using the initial conditions, 3 = 2 + C, C = 1,
and x(t) = 2 + e- sin(t). �

Example 3 (Periodically Forced). Consider the equation ẋ = x + sin(t) with x(0) = x0,
which has a periodic forcing term. The solution of the homogeneous equation is e- R

1dt = e-t. If
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x(t) = z(t) e-t, then

z(t) e-t + sin(t) = ẋ = ż e-t − z(t) e-t,

ż = et sin(t),

z(t)− x0 =
∫ t

0
es sin(s) ds

= 1
2

[
et sin(t)− et cos(t) + 1

]
x(t) = x0 e-t + 1

2

[
sin(t)− cos(t) + e-t

]
.

The first term, xh(t) = x0 e-t, is a solution of the homogeneous equation with initial condition
x0 and decays with time (is a transient). The second group of terms is a response to the forc-
ing term and is a particular solution of the nonhomogeneous equation with initial condition 0,
xnh(t) = (1/2)

[
sin(t)− cos(t) + e-t

]
. Note that xnh(t) − (1/2)e-t oscillates with the period of the

forcing term. Figure 2 contains a plot of the two terms and the whole solution; the solution of
the homogeneous equation with initial condition x0 = 2 is dashed, the plot of the particular so-
lution of the nonhomogeneous equation is shown with a dot-dash curve, and the solution of the
nonhomogeneous solution with initial condition x0 = 2 is shown as solid curve.

Because the solution of the homogeneous equation decays to zero, solutions of the nonhomoge-
neous equation with different initial conditions are asymptotic to each other as t goes to infinity.
See Figure 3. �
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Figure 2. Example 3: x(t) (solid), xh(t) (dashed), and xnh(t) (dot-dash)
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Figure 3. Example 3: Several initial conditions

Example 4 (Compound Interest). An initial amount of money x0 is put in an account with
an annual rate of interest of r > 0. If the interest is compounded n times a year than the amount
at the end of a year would be (1 + r/n)n x0. As n goes to infinity, this converges to erx0, which is
the solution of the differential equation ẋ = r x at t = 1. The solution of this differential equation
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is called continuous compounding, which has an effective annual rate of er. (For r = 0.05, daily
compounding has an effective rate of .051267 and continuous an effective rate of .051271096.)

Now, assume that money is added continuously to the account at the constant rate g, giving the
differential equation governing the amount of money in the account of ẋ = r x + g. The solution
is determined as follows: a(t) = r, b(t) = rt, eb(t) = ert, and

x(t) = x0 ert + ert

∫ t

0
e-rsg ds = x0 ert + ert

[
g

r
e-rs

∣∣∣t
0

]
= x0 ert + ert g

r

[
1− e-rt

]
=

[
x0 +

g

r

]
ert − g

r
.

In the long term, the amount in the account approaches the amount that would result from an
initial deposit of x0 +

g

r
with no money added. �

Example 5 (Cooling Body). This example is an example of cooling of a body relative to the
temperature of the surrounding air. The cooling is determined by Newton’s law of cooling which
says that the rate of change of the temperature of the body is proportional to the difference of the
temperature of the body and the surrounding air.

Let T (t) and T0 be the temperature of the body at times t and 0 and A be the temperature
of the air. For a positive parameter k the differential equation is

dT

dt
= k (T −A) = k T + k A.

The solution of the homogeneous equation is e-kt. If T (t) = z(t) e-kt, then

k z(t) e-kt + k A = Ṫ = ż e-kt − z(t) k e-kt,

ż = k A ekt,

z(t)− T0 = k A

∫ t

0
eks ds = A (ekt − 1),

T (t) = A + (T0 −A) e-k t.

The cooling parameter k can be determined by measuring the air temperature and the temper-
ature of the body at two times, T (0) = T0 and T (t1) = T1:

T1 −A = (T0 −A) e-k t1 ,

ek t1 =
T0 −A

T1 −A
,

k =
1
t1

[ln(T0 −A)− ln(T1 −A)] .

If the air temperature is A = 68 and it takes 2 hours to cool from 85 to 74, then

k =
1
2

ln
(

85− 68
74− 68

)
= 12 ln

(
17
6

)
≈ 0.5207 degrees per hour.

Given that value of k, if the body has cooled from 98.6 to 85, then the time is

tc =
1
k

ln
(

T0 −A

T1 −A

)
=

1
0.5207

ln
(

98.6− 68
85− 68

)
≈ 1.129 hours.

�

Example 6 (Falling Body). Suppose that an object is thrown straight up with initial velocity
v0 and initial height y0. Assume that the friction is proportional to the velocity so the acceleration
satisfies

m ÿ = m g − c ẏ,
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where m is the mass and g is the force of gravity. Since the equation only involves the velocity
v = ẏ and its derivative v̇ = ÿ, we get a first order linear equation for the velocity

v̇ =
c

m
v − g.

The solution of the homogeneous equation is e-c′t where c′ = c/m, to simplify the expressions in
the calculation. If v(t) = z(t) e-c′t, then

c′ z(t) e-c′t − g = ż e-c′t − z(t) c′ e-c′t,

ż = g ec′t,

z(t) = v0 +
g

c′

(
1− ec′t

)
v(t) =

(
v0 +

g

c′

)
e-c′t − g

c′
.

This has a terminal velocity v∞ = g/c′ = gm/c.
A large, light object has small mass m and large coefficient of friction c, so large c′. Thus, the

term e-c′t decays rapidly to zero and the object comes close to its terminal velocity quickly. �

Example 7 (Radioactive Decay). (Based on Borrelli and Coleman) Consider a situation where
material contains uranium-234 that undergoes radioactive decay to thorium-230 with a half-life of
approximately τ1 = 2 × 105 years. In turn, thorium-230 undergoes radioactive decay with a
half-life of approximately τ2 = 8 × 104. Let x be the amount of uranium-234 and y be the
amount of thorium-230. Since the decay rate is proportional to the amount of substance present,
ẋ = k1 x. The rate of change of thorium-230 is determined by the amount created from uranium-
234, k1 x, and the amount lost through decay, k2 y. Thus, the situation is modeled by a cascade
of differential equations,

ẋ = k1 x,

ẏ = k1 x− k2 y,

with initial conditions x(0) = x0 and y(0) = y0. (We discuss below how the rate constants are
determined in terms of the half-life.)

x(t) = x0 e-k1t, then

ẏ = k2 y + k1x0 e-k1t,

y(t) = y0 e-k2t + e-k2t

∫ t

0
ek2sk1x0 e-k1s ds

= y0 e-k2t + k1x0 e-k2t

∫ t

0
e(k2−k1) s ds

= y0 e-k2t +
k1x0

k2 − k1
e-k2t

[
e(k2−k1) t − 1

]
=

[
y0 −

k1x0

k2 − k1

]
e-k2t +

k1x0

k2 − k1
e-k1 t

For uranium-234, the half-life is the time when half the original amount is left:
1
2
x0 = x0 e-k1τ1,

k1τ1 = ln(2).

In the same way, k2τ2 = ln(2).
Because we have aggregated the amount of each of the two radioactive materials, this model is

considered a two compartmental model. �
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Problem 1. Find the solution of the differential equation ẋ = 2x, which satisfies the following
initial conditions: a. x(0) = 0; b. x(0) = 1; c. x(2) = 3.

Problem 2. Find the solution of the differential equation ẋ = 2tx, which satisfies the initial
condition x(0) = 1.

Problem 3. Find the solution of the differential equation ẋ = cos(t) x, which satisfies the initial
condition x(-π/2) = 1.

Problem 4. Find the solution of the differential equation ẋ = 2tx+ t, which satisfies the condition
x(0) = 0. Hint: Use the formula of Theorem 1.

Problem 5. For k = 2, 1, 0, 1, 2 find the solution (for t > 0) of the differential equation ẋ = x/t+t,
which satisfies the initial condition x(1) = k. Graph these solutions in the (t, x) plane. What
happens to these solutions when t → 0? Notice that at t = 0 the function a(t) = 1/t is undefined!

Problem 6. Consider the nonhomogeneous linear equation (NH) ẋ = a(t)x + g(t) with the asso-
ciated homogeneous linear equation (H) ẋ = a(t)x.

a. If xp(t) is one (particular) solution of the nonhomogeneous equation (NH) and xh(t) is
a solution of the homogeneous equation (H), show that xp(t) + xh(t) is a solution of the
nonhomogeneous equation (NH).

b. Assume that xp(t) is a particular solution of the nonhomogeneous equation (NH). Show
that the general solution of the nonhomogeneous equation (NH) is xp(t)+Ceb(t) where b(t)
is given as in Theorem 1 and C is an arbitrary constant. Hint: For any solution x(t) of
(NH), show that x(t)− xp(t) satisfies (H).

Problem 7. For the supply qs = a + bp and demand qd = c − ep with scalars a, b, c, e, f > 0,
consider a continuous price adjustment given by

dp

dt
= f(qd − qs) = −f(e + b)p + f(c− a).

a. Assuming that c > a, find the equilibrium p∗ where ṗ = 0.
b. Find an explicit expression for the solution p(t) such that p(0) = p0 > 0.

2. Existence of Solutions for Nonlinear Equations

Before considering a few solution methods for nonlinear equations, we discuss the existence and
uniqueness of solutions. The rate function f(t, x) is often define for all t and x, but sometimes
that is not the case. So we define an open set. (Also see page 98 in [4].)

Definition. A subset D of R2 is open provided that for each (t0, x0) ∈ D , there exist δ1 > 0 and
δ2 > 0 such that { (t, x) : t0 − δ1 < t < t0 + δ1, x0 − δ2 < x < x0 + δ2 } ⊂ D .

The following theorem generalizes Theorem 3.1 in [5] to include the case for time dependent
differential equations. It states the existence and uniqueness of solutions, as well as the continuity
and differentiability of solutions with respect to initial conditions.

Theorem 2 (Existence and Uniqueness for Scalar Differential Equations). Consider a
scalar differential equation ẋ = f(t, x), where f : D → R is a continuous function on an open

subset D of R2 such that
∂f

∂x
(t, x) is also continuous.

a. For an initial condition (t0, x0) ∈ D , there exists a solution x(t) to ẋ = f(t, x) such that
(t, x(t)) ∈ D for some time interval t0 − δ < t < t0 + δ and x(t0) = x0. Moreover, the solution
is unique in the sense, that if x(t) and y(t) are two such solutions with x(t0) = x0 = y(t0), then
they must be equal on the largest interval of time about t = t0 where both solutions are defined. Let
φ(t; t0, x0) = x(t) be this unique solution with φ(t0; t0, x0) = x(t0) = x0.
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b. The solution φ(t; t0, x0) depends continuously on the initial conditions (t0, x0). Moreover,
let (i) T > 0 be a time for which φ(t; t0, x0) is defined for t0 − T ≤ t ≤ t0 + T and (ii) let ε > 0
be any bound on the distance between solutions. Then, there exists a δ > 0 which measures the
distance between allowable initial conditions, such that if |x′0 − x0| < δ and |t′0 − t0| < δ, then
φ(t; t′0, x

′
0) is defined for t0 − T ≤ t ≤ t0 + T and∣∣φ(t; t′0, x

′
0)− φ(t; t0, x0)

∣∣ < ε for t0 − T ≤ t ≤ t0 + T.

c. In fact, the solution φ(t; t0, x0) depends differentiably on the initial condition, x0.

The proof follows of this theorem follows from the multidimensional version of the preceding
theorem in in Section 3.3 of [5]. Note for a linear equation, the solution exists and is unique on the
interval I on which the coefficients a(t) and b(t) exist and are continuous.

Example 3.3 in [5] discusses the example f(x) = 3
√

x, for which the solutions are not unique;

both x1(t) =
(
2t/3

) 3
2 and x2(t) ≡ 0 are solutions for t ≥ 0 with x1(0) = 0 = x2(0). Note that

f ′(0) does not exist.
In the case when the solutions exist and are unique and the right hand side depends only on x,

ẋ = f(x), we write φ(t;x0) for φ(t; 0, x0) and call it the flow of the differential equation. The
uniqueness of solutions implies that the flow satisfies the group property φ(t;φ(t1;x0) = φ(t+t1;x0).
See Figure 2 of Section 3.1.1 of [5].

2.1. Solutions Tangent to Slope Field. If a solution x(t) of ẋ = f(t, x) is plotted in (t, x)-
plane, the slope of a tangent line at a point (t, x(t)) is f(t, x(t)). Therefore, if we plot vectors at
points (t, x) with slopes f(t, x), a solution curve is tangent to these vectors. Figure 4 gives such
a slope field and several solution curves for the logistic equations ẋ = x(1 − x). Note that the
uniqueness of solutions implies that the plot of two different solution curves cannot cross in the
(t, x)-plane.

x

t

1

0

1

2

Figure 4. Slope field and several solutions for ẋ = x(1− x)

3. Separation of Variables

The solution of a linear differential equation can be found by means of an integral. In this section,
we consider another class of equations that can be solved by means of integrals.

A nonlinear equation of the form ẋ = f(x)g(t) is called separable because it can be written as

1
f(x)

dx

dt
= g(t),
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where the left side depends only on x and the right side depends only on t. Integrating with respect

to t and applying the change of variables to the left hand side, the term
dx

dt
dt changes the integral

into one with respect to x, ∫ (
1

f(x)

)
dx =

∫
g(t) dt.

The result of these integrals gives an implicit solution with some function of x equal to some
function of t. In general, it is difficult to get an explicit solution by solving this implicit relation
for x.

Example 8. Consider the equation
ẋ = t x4.

We solve this equation by the method of separation of variables, that converts it into a problem of
integrals: taking the term involving x to left side by dividing by x2 we get

ẋ

x4
= t.

Integrating with respect to t, the term ẋ dt changes it to and integral with respect to x:
1
2
t2 + C =

∫
t dt =

∫
ẋ

x4
dt =

∫
1
x4

dx =
1

3x3
.

Solving for x in terms of t yields

x3 =
1

3
2 t2 + 3C

and x(t) =

[
1

3
2 t2 − 3C

] 1
3

.

The initial conditions at t = 0 satisfies x0 = 1/(3C)
1
3 or 3C = 1/x3

0, so

x(t) =

 1
1
x3

0
− 3

2 t2

 1
3

=
[

2 x3
0

2− 3 t2 x3
0

] 1
3

.

Note that for x0 > 0, this becomes undefined for t = ±
[
2/3x3

0

] 1
2 . Thus the solution is not defined

for all time. So while linear equations with coefficients defined for all time have solutions that are
defined for all time, this is not true for nonlinear equations. �

Example 9. Consider ẋ =
3 + 2t

4x3 − 2x− 5
. The solutions satisfy∫

4 x3 − 2 x− 5 dx =
∫

3 + 2t dt + C

x4 − x2 − 5 x = 3 t + t2 + C.

This is an implicit solution and cannot be solved for x in terms of t. This is another difference
between linear and nonlinear equations: Linear differential equations always have explicit solutions
while we cannot always find one for a nonlinear differential equation. �

Problem 8. Solve the nonlinear differential equation ẋ = 3
√

tx by separation of variables.

Problem 9. Consider the equation ẋ =
t2

x2(1 + t3)
with x(0) = 2. Solve by separation of variables.

Then, solve for x in terms of t. What interval of t (that includes t = 0) is the solution defined? Note
the rate function becomes infinite when x(t) = 0 but the explicit form of the solution continues
through this value.
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3.1. Growth Models. We consider some population growth models and related problems that
can be solved by separation of variables.

Example 10 (Logistic Equation). Consider a single population measured by the variable x. If
there is competition within a population for resources (crowding), then the growth rate per unit
population, ẋ/x, would decrease as the population increases. For the simplest model with crowding,
this rate decreases linearly, or ẋ/x = r − cx = r (1− cx/r) with r, c > 0. Letting K = r/c > 0, we
get the nonlinear scalar differential equation

ẋ = rx
(
1− x

K

)
,

which is called the logistic differential equation. The time derivative ẋ = 0 for x = 0 and K, with
corresponding constant solutions φ(t; 0) ≡ 0 and φ(t;K) ≡ K. These points where ẋ = 0 are
called fixed points or equilibria or steady states of the differential equation. For x 6= 0,K, applying
separation of variables, we take all the terms involving x to the left side, we get

K ẋ

x (K − x)
= r.

Using the method of partial fractions with constants A and B to be determined,

K

x (K − x)
=

A

x
+

B

K − x
=

AK −Ax + Bx

x (K − x)
,

so K = AK and 0 = B −A, or B = A = 1. Thus we get the differential equation

ẋ

x
+

ẋ

K − x
= r.

Integrating with respect to t, the term ẋ dt changes it to and integral with respect to x:∫
1
x

dx +
∫

1
K − x

dx =
∫

r dt,

ln(|x|)− ln(|K − x|) = rt + C1, and

|x|
|K − x|

= C ert, where C = eC1 .

Assuming 0 < x < K so we can drop the absolute value signs, we can solve for x:

x = CKert − Certx,

(1 + Cert)x = CKert, and

x =
CKert

1 + Cert
=

CK

C + e-rt
.

If x0 is the initial condition at t = 0, then some more algebra shows that C = x0/(K − x0), so

φ(t;x0) =
x0K

x0 + (K − x0)e-rt
.

A direct calculation shows that this form of the solution is valid for any x0 and not just those with
0 < x0 < K. See Figure 5.

A solution φ(t;x0) can be continued for a maximal interval of definition t−x0
< t < t+x0

. Given
the form of the solution, it can be continued until the denominator becomes zero. For 0 ≤ x0 ≤ K,
the denominator is never zero and φ(t;x0) is defined for all t, t−x0

= ∞ < t < ∞ = t+x0
. On the



11

x

t0

K

Figure 5. Logistic Equation: plot of x = φ(t;x0) as a function of t for several x0

other hand, if x0 > K > 0, then the denominator is zero for

ert =
x0 −K

x0
< 1 and

t−x0
=

1
r

(ln(x0 −K)− ln(x0)) < 0,

while t+x0
= ∞. Finally, if x0 < 0, then t−x0

= ∞ and

t+x0
=

1
r

(ln(K − x0)− ln(|x0|)) > 0.

Thus, some solutions are defined for all time, others for a bounded forward time, and others for a
bounded backward time.

Some of the long term forward behavior can be determined by looking at only the form of the
rate function and not using the solution itself. For an initial condition 0 < x0 < K, ẋ > 0 along
the solution φ(t;x0), and φ(t;x0) increases toward K. Also, for x0 > K, ẋ < 0 along the solution,
and φ(t;x0) decrease toward K. So we can conclude that for any x0 > 0, even without solving
the differential equation, φ(t;x0) tends toward K as t goes to infinity. For this reason, K is called
the carrying capacity.

Notice that the fact that f ′(K) = r − 2r = r < 0 ensures that ẋ > 0 for x < K and x near
K, and that ẋ < 0 for x > K and x near K; therefore, the fact that f ′(K) < 0 is enough to
ensure that the fixed point x = K is attracting from both sides. �

Definition. Assume that the rate function f(x) is continuous with a continuous partial derivative
with respect to x. Since any two solutions of ẋ = f(x) with the same initial condition x0 agree on
their common interval of definition, we can continue φ(t;x0) to some maximal interval of definition
t−x0

< t < t+x0
. As the logistic equation illustrates, sometimes t+x0

is infinity and other times it can
be a finite positive value. Similarly, sometimes t−x0

is minus infinity and other times it can be a
finite negative value.

The only way that a solution is not defined for all time is that the solution goes to infinity or
a point where the differential equation is not defined. See the following theorem. Then, if the
solution is defined for all time and is bounded it must converge to a fixed point by the argument
used in the next to last paragraph of the example of the logistic equation. (See Theorem 4.4 of [5].)

Theorem 3. Consider a scalar autonomous differential equation ẋ = f(x) on R, for which f(x)
has a continuous derivative. Assume that x(t) = φ(t;x0) is the solution, with initial condition x0.
Assume that the maximum interval containing 0 for which it can be defined is (t−, t+).
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a. Further assume that the solution φ(t;x0) is bounded for 0 ≤ t < t+, i.e., there is a constant
C > 0 such that |φ(t;x0)| ≤ C for 0 ≤ t < t+. Then as t converges to t+, φ(t;x0) must converge
either to a fixed point or to a point where f(x) is undefined.

b. Similarly, if the solution φ(t;x0) is bounded for t− < t ≤ 0, then, as t converges to t−, φ(t;x0)
must converge either to a fixed point or to a point where f(x) is undefined.

c. Assume that f(x) is defined for all x in R . (i) If f(x0) > 0, assume that there is a fixed point
x∗ > x0, and in fact, let x∗ be the smallest fixed point larger than x0. (ii) If f(x0) < 0, assume
that there is a fixed point x∗ < x0, and in fact, let x∗ be the largest fixed point less than x0. Then,
t+ = ∞ and φ(t;x0) converges to x∗ as t goes to infinity.

The consequence of the sign of the derivative at a fixed point is given in the following theorem.
The proof is basically that given in the See Theorem 4.5 of [5].

Theorem 4. Assume that x∗ is a fixed point for the autonomous scalar differential equation
ẋ = f(x), where f and f ′ are continuous.

a. If f ′(x∗) < 0, then x∗ is an attracting fixed point.
b. If f ′(x∗) > 0, then x∗ is a repelling fixed point.
c. If f ′(x∗) = 0, then the derivative does not determine the stability type.

Example 11 (Harvesting). Assume that from a population that is governed by the logistic
equation that the population is decreases at a rate of h < 0 due to external aspects, e.g., from
harvesting or fishing:

ẋ = r x
[
1− x

K

]
− h = f(x).

The fixed points satisfy rx− (r/K) x2 − h = 0 or rx2 − rKx + hK = 0, and are

x± =
rK ±

√
r2K2 − 4rhK

2r
=

1
2

K ± 1
2r

√
r2K2 − 4rhK.

If rK > 4h, then both roots are real with 0 < x− < x+ and

f(x) =


< 0 for x < x−

> 0 for x− < x < x+

< 0 for x+ < x.

By Theorem 4.4(c) in [5], if φ(t;x0) is bounded then it must converge to a fixed point. Without
solving the equation explicitly, we can see that

(i) if 0 ≤ x0 < x−, then x(t) decreases down to 0 in finite time as t increases,
(ii) if x− < x0 < x+, then x(t) increases up to x+ as t →∞,
(ii) if x+ < x0, then x(t) decreases down to x+ as t →∞.

Therefore, x = x− is a threshold for survival and x = x+ is the steady state population for a
population large enough to survive, i.e. x0 > x−. �

A discussion of the effect of harvesting with other models of population growth is given in Chapter
1 of [3] by Brauer and Castillo-Chávez.

Example 12 (Economic Growth). The Solow-Swan model of economic growth is given by

K̇ = sA KaL1-a − δ K

L̇ = n L,

where K is the capital, L is the labor force, A KaL1-a is the production function with 0 < a < 1
and A > 0, 0 < s ≤ 1 is the rate of reinvestment of income, δ > 0 is the rate of depreciation of



13

capital, and n > 0 is the rate of growth of the labor force. A new variable x = K/L is introduced
that is the capital per capita (of labor). The differential equation that x satisfies is as follows:

ẋ =
1
L

K̇ − K

L2
L̇

=
1
L

sAKaL1-a − 1
L

δ K − K

L2
n L

= sAxa − (δ + n) x

= xa
[
sA− (δ + n) x1-a

]
.

Notice the similarity to the logistic equation. The equilibrium where ẋ = 0 and x > 0 occurs for

sA = (n + δ)x1-a, or

x∗ =
(

sA

n + δ

) 1
1-a

.

For 0 < x < x∗, ẋ > 0 and x increases toward x∗. For x > x∗, ẋ < 0 and x decreases toward
x∗. It can be shown that for any initial capital x0 > 0, the solution x(t;x0) limits to x∗ as t goes
to infinity. Therefore in this model, all solutions with x0 > 0 tend to the steady state x∗ of the
capital to labor ratio. �

Problem 10. Consider ẋ = x2 − 1 = (x + 1)(x− 1).
a. Solve the the nonlinear differential equation by separation of variables. Hint: Imitate the

solution method of Example 10.
b. Discussion the limit of x(t) as t goes to infinity for different ranges of x0 > 0.the nonlinear

differential equation

Problem 11. Consider the differential equations

ẋ = r x
(
1− x

K

) ( x

T
− 1

)
.

with 0 < T < K and r > 0. The factor x
T − 1 is negative for x < T , so adds a threshold to the

population growth model
a. Find the fixed points and the sign of ẋ between the fixed points.
b. Discussion the limit of x(t) as t goes to infinity for different ranges of x0 > 0.

3.2. The Modeling Process: Differential Systems. (This section is extracted from Section
1.4 of [1], with a few word changes to reflect the models we have considered.) The essential aspects
of a mathematical model using ordinary differential equations is as follows.
Natural Variables: A natural process is described by a collection of natural variables that de-
pend on a single independent variable. In all our examples, time t is the independent variable.
The natural variables we have considered are (i) amount of money (Example 4), (ii) temperature
(Example 5), (iii) height, velocity, and acceleration (Example 6), (iv) population (Example 10),
and (v) capital and labor (Example 12).
Natural Laws: A natural process evolves in time according to natural lows or principles involving
the natural variables. Sometimes the laws arise empirically (e.g., the acceleration of a following
body in Example 6), and sometimes they arise from some deep scientific theory of the laws of nature.
Sometimes, the evolution is a model that has some of the properties of observed phenomenon (e.g.,
the situation for Economic Growth in Example 12).
Forcing or Driving Terms: In some cases, there are factors in the external environment that af-
fect the rate of change. These can depend of time making the differential equation nonautonomous.
In Example 4, money was added at a constant rate g. In Example 11, the populations is harvested
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at a rate h. Example 3 has a periodic forcing terms but was not derived by modeling a physical
situation.
Natural Parameters: Natural laws often contain parameters that are constants which someone
must experimentally determine (e.g., the half-life of a radioactive substance or the gravitational
constant.)

4. Exact Equations

In this section, we consider differential equations in a little different form,

(2) M(t, x) + N(t, x) ẋ = 0,

where M(t, x) and N(t, x) are functions of both t and x. This differential equation is called exact
provided that there is a function G(t, x) such that Gt(t, x) = M(t, x) and Gx(t, x) = N(t, x).

Note that if an equation is exact and a curve r(t) = (t, x(t)) is on a level set of G, where we
consider x as a function of t, then

0 =
d

dt
G(r(t)) = Gt(t, x) + Gx(t, x) ẋ = M(t, x) + N(t, x) ẋ,

and x(t) is a solution of the differential equation.
Recall from vector calculus that a vector field F is a gradient (conservative), ∇G = F, if and only

if ∇×F = 0. See Theorem 3.5 of Chapter 6 in [4]. In R2 with F(t, x) = M(t, x) i + N(t, x) j, this
condition is Nt(t, x)−Mx(t, x) ≡ 0. (In this section we write subscripts for the partial derivatives
with respect to the variable indicated.) This criterion for a gradient vector field calculus gives us
the following theorem.

Theorem 5. Let the function M(t, x), N(t, x), Mx(t, x), and Mt(t, x) be continuous, where the
subscripts denote partial derivatives. Then equation (2) is exact if and only if

(3) Mx(t, x) = Nt(t, x)

at all points (t, x).

Besides referring to the theorem on gradient vector fields, we sketch a proof after giving an
example that introduces the way of finding the conserved function G, and so implicit solutions for
exact equations.

Example 13. Consider the scalar differential equation

2t + x2 + 2tx ẋ = 0.

This differential equation is neither linear nor separable, so we check whether it is exact:
∂

∂x
(2t + x2) = 2x =

∂

∂t
(2tx).

The function G needs to satisfy
∂G

∂t
= 2t + x2, so

G(t, x) =
∫

2t + x2 dt + h(x) = t2 + t x2 + h(x),

where h(x) is a function of only x. (The constant of integration is independent of t and only
depends on x.) The partial derivative of G with respect to x needs to satisfy

∂G

∂x
= 0 + 2tx + h′(x) = 2tx, so

h′(x) = 0,
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and h(x) is a constant. Taking the constant equal to zero, the solutions lie on the level curves of
G(t, x) = t2 + t x2. A solution satisfies t x2(t) = C − t2, or

x(t) = ±
√

C

t
− t.

�

Proof of theorem. If the equation is exact and G(t, x) exists with Gt = M and Gx = N , then

Mx = Gtx = Gxt = Nt,

and the terms satisfy equation (3).
If the terms satisfy equation (3), then we imitate the solution method of the example. Let

Gt = M(t, x), so

G(t, x) =
∫

M(t, x) dt + h(x).

To be exact, we need

N(t, x) = Gx =
∫

Mx(t, x) dt + h′(x), so

h′(x) = N(t, x)−
∫

Mx(t, x) dt.

Since the partial derivative of the right hand side with respect to t is zero, 0 = Nt(t, x)−Mx(t, x),
this equation can be solved for h(x) as a function of x alone. �

Problem 12. Using the theorem, determine whether the following equations are exact. If they are
exact, solve for the function G(t, x) that is constant along solutions.

a. (3t2 − 2tx + 2) + (6x2 − t2 + 3) ẋ = 0
b. (2t + 4x) + (2t− 2x) ẋ = 0
c. (at− bx) + (bt + cx) ẋ = 0
d. (at + bx) + (bt + cx) ẋ = 0
e. 2t sin(x) + t2 cos(x) ẋ = 0
f. tx2 + (2t2x + 2x) ẋ = 0

4.1. Integrating Factors. For linear equations, we often had to multiply the equation by of
function of t in order the change the problem into one we could solve by integrals. In the same
way, we can sometimes find a function µ of x and t, called an integrating factor, such that
µM + µN ẋ = 0 becomes exact.

Example 14. Consider x2 − t2ẋ = 0. This equation is not exact since

∂

∂x
(x2) = 2x 6= 2t =

∂

∂t
( t2).

We want an expression µ such that
∂

∂x
(µx2) =

∂

∂t
( µ t2). If we divide by t2x2, as we would do

using the method of separation of variables, then

∂

∂x
(t-2) = 0 =

∂

∂t
( x-2).

Therefore µ = t-2x-2 is an integrating factor, and t-2 − x-2ẋ = 0 is exact. Applying the method
as before, we find that G(t, x) = t-3 − x-3 is constant along solutions. �
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Even when an integrating factor exists, it is not easy to find. It needs to satisfy
∂

∂t
(µN) =

∂

∂x
(µM)

µt N + µNt = µx M + µMx

µ (Nt −Mx) = M µx −N µt.

We often try for a µ that is a function of only t or only x.
If µ is a function of only t, then µx = 0 and

µt

µ
=

Mx −Nt

N

ln(µ) =
∫

Mx −Nt

N
dt.

For this expression to yield of a function of only t, the integrand must be independent of x.
If µ is a function of only x, then µt = 0 and

µx

µ
=

Nt −Mx

M

ln(µ) =
∫

Mx −Nt

N
dx.

For this expression to yield of a function of only x, the integrand must be independent of t.

Example 15. Consider (3t2x+2tx+x3)+(t2+x2) ẋ = 0. Then Mx−Nt = (3t2+2t+3x2)−(2t) =
3t2 + 3x2 6= 0, so the equation is not exact. If we tried for an integrating factor that is a function
of x alone,

µx

µ
=

Nt −Mx

M
=

(3t2 + 3x2)
3t2x + 2tx + x3

is not a function of x along, so this is not possible. To see if we can find an integrating factor that
is a function of t alone,

µt

µ
=

Mx −Nt

N
= 3, so

ln(µ) = 3t,

µ = e3t.

Thus, we have found an integrating factor and need

Gx = e3t (t2 + x2),

G = t2x e3t + 1
3x3e3t + h(t),

Gt = 2tx e3t + 3t2x e3t + x3e3t + h′(t) = e3t
(
3t2x + 2tx + x3

)
,

h′(t) = 0.

Therefore, G(t, x) = t2x e3t + 1
3x3e3t is constant along solutions. �

Problem 13. For the following differential equations, find an integrating factor that is a function
of a single variable.

a. x + (2t− xex) ẋ = 0.
b. (3t2x + 2tx + x3) + (t2 + x2) ẋ = 0.
c.

[
4t3

x2 + 3
x

]
+

[
3t
x2 + 4x

]
ẋ = 0.

d. 1 +
(

t
x − sin(x)

)
ẋ = 0.
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5. Second Order Scalar Equations

This section depends on the solutions of linear systems with constant coefficients and Sections
2.1 – 2.2 from [5] should be covered first. We start by showing how a second order scalar linear
differential equations can be changed into a system of linear differential equations.

Consider

(4) a ÿ + b ẏ + c y = 0,

where a, b, and c are constants with a 6= 0. “Solve” means we are looking for a C2 function y(t)
which satisfies the above equation. This equation is called second order since it involves derivatives
up to order two. Assume that y(t) is a solution (4), set x1(t) = y(t), x2(t) = ẏ(t), and consider the
vector x(t) = (x1(t), x2(t))T = (y(t), ẏ(t))T . Then

ẋ(t) =
[
ẏ(t)
ÿ(t)

]
=

[
x2(t)

− b
ax2(t)− c

ax1(t)

]
=

[
0 1
c
a

b
a

] [
x1(t)
x2(t)

]
,

since ÿ(t) = −
(
b/a

)
ẏ(t) − (c/a) y(t) = −

(
b/a

)
x2(t) − (c/a) x1(t). We have shown that if y(t) is a

solution of the equation (4) then x(t) = (x1(t), x2(t))T = (y(t), ẏ(t))T is a solution of the equation

(5) ẋ = Ax,

where

(6) A =
[

0 1
c
a

b
a

]
.

Notice that the characteristic equation of (6) is λ2 + b
aλ + c

a = 0 or aλ2 + bλ + c = 0, which has
a simple relationship with the original second order equation (4). Since we have to specify initial
conditions of both x1(t0) and x2(t0) for the linear system ẋ = Ax with A given by (6), we have
to specify initial conditions of both y(t0) = x1(t0) and ẏ(t0) = x2(t0) for the second order equation
ÿ + aẏ + by = 0, i.e., both position and velocity.

The following theorem relates the solutions of the linear system to the solutions of the second
order scalar equation.

Theorem 6. For a 6= 0, consider the second order differential equation

a ÿ + b ẏ + c y = 0.

a. If r1 and r2 are (real) distinct roots of the characteristic equation aλ2 + b λ + c = 0, then
er1t and er2t are two independent solutions of the second order scalar differential equation.

b. If r is a repeated real root of aλ2 + b λ + c = 0, then ert and tert are two independent
solutions of the second order scalar differential equation.

c. If r = β + i ω is a complex root (with ω 6= 0 ), then eβt cos(ωt) and eβt sin(ωt) are two
real independent solutions.

Proof. (a) By the discussion above, r1 and r2 are roots of the characteristic equation for the linear
system. The corresponding eigenvectors are solutions of the homogeneous equation for[

rj 1
c
a

b
a − rj

]
,

and so must be (1, rj)T . Thus [
y(t)
ẏ(t)

]
= x(t) =

[
1
rj

]
erjt
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is a solution of the linear system. So,[
ẏ
ÿ

]
=

d

dt

[
y
ẏ

]
= ẋ = Ax =

[
0 1
c
a

b
a

] [
y
ẏ

]
, so

ÿ =
c

a
y − b

a
ẏ,

and y(t) = erjt is a solution of the second order scalar equation.
We calculate the Wronskian to see whether the solutions are independent:

W (t) = det
[

er1t er2t

r1e
r1t r2e

r2t

]
= (r2 − r1)e(r1+r2)t 6= 0,

so the solutions are linearly independent by the result for linear systems.
(b) By part (a), ert is one solution. In a manner similar to the derivation of variable of param-

eters, we look for a second solution in the form y(t) = u(t) ert. Note that

ẏ = u′ ert + r u ert

ÿ = u′′ ert + 2 r u′ ert + r2 u ert.

Then y(t) is a solution if and only if

0 = a
[
u′′ ert + 2 r u′ ert + r2 u ert

]
+ b

[
u′ ert + r u ert

]
+ c u ert

= ert
[
a u′′ + u′(2a r + b) + u (a r2 + b r + c)

]
= ert

[
a u′′ + u′(2a r + b)

]
.

Because r is a repeated root, r = b/2a and 2ar + b = 0. Thus, u′′ = 0, u′ = k1 (a constant), and
u = k1 t + k0. Thus, all the solutions are of the form k0e

t + k1t et. The second solution is t et.
The Wronskian is

W (t) = det
[

ert t ert

rert (1 + rt)ert

]
= (1 + rt− rt)e2rt = e2rt 6= 0,

so the solutions are independent.
(c) If r = β + i ω is a complex root, then e(β+i ω)t = eβt cos(ωt) + i eβt sin(ωt) is a complex

solution and the real and imaginary parts are real solutions, i.e., eβt cos(ωt) and eβt sin(ωt).
The two complex solutions z1(t) = e(β+i ω)t and z2(t) = e(β−i ω)t = eβt cos(ωt)− i eβt sin(ωt) are

independent complex solutions by part (a), and

y1(t) = eβt cos(ωt) = 1
2 [ z1(t) + z2(t) ] and

y2(t) = eβt sin(ωt) = 1
2i [ z1(t)− z2(t) ] .

It follows that y1(t) and y2(t) are independent solutions. �

Remark. Since an equation of the form (4) can be converted to a system of the type (5) and vice
versa, we do not need to consider equations of type (4) separately: We can use the solutions of
(5) to give solutions (4). However, Theorem 6 shows that it is easier to find roots r1 and r2 of
aλ2 + b λ + c = 0 and then two solutions of (4) are erjt for j = 1, 2.

Example 16. Consider ÿ + 3ẏ + 2y = 0. The characteristic equation λ2 + 3λ + 2 = 0 has roots
λ = 1 and 2, so two independent solutions are e-t and e-2t.

Example 17. Consider ÿ+4ẏ+4y = 0. The characteristic equation λ2+4λ+4 = 0 has a repeated
roots λ = 2, 2. By the theorem, two independent solutions are e-2t and t e-2t.

Example 18. Consider ÿ + 9y = 0. The characteristic equation λ2 + 9 = 0 has complex roots
λ = ±3 i, and complex solutions are e±3it = cos(3t) ± i sin(3t). Taking the real and imaginary
parts, cos(3t) and sin(3t) are two real solutions.
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Problem 14. Consider the second order scalar differential equation ÿ− 5ẏ + 4y = 0, with initial
conditions y(0) = 3, ẏ(0) = 6.

a. Write down the corresponding 2×2 linear system and solve it for the general vector solution
and the solution with the given initial conditions. Use this vector solution to get the general
scalar solution for second order scalar differential equation and the solution with the given
initial conditions.

b. Solve the second order scalar differential equation by a second direct way as follows: One
solutions is y1(t) = et. Find a second independent solution by looking for a solution of
the form y2(t) = u(t) y1(t). Find a second order differential equation that u(t) satisfies
by taking the derivatives of u(t) y1(t) and substitute them into the original second order
differential equation. Find the general form of u(t) by solving this diffential equation.
What is the second independent solution?

Problem 15. Consider the second order scalar differential equation ÿ − 2ẏ + y = 0.
a. Write down the corresponding 2×2 linear system and solve it for the general vector solution.

Use this general vector solution to get the general scalar solution for the second order scalar
differential equation. Note that two solutions of the scalar equation are of the form ert and
tert for the correct choice of r.

b. Solve the second order scalar differential equation by a second direct way as follows: One
solutions is y1(t) = et. Find a second independent solution by looking for a solution of
the form y2(t) = u(t) y1(t). Find a second order differential equation that u(t) satisfies
by taking the derivatives of u(t) y1(t) and substitute them into the original second order
differential equation. Find the general form of u(t) by solving this diffential equation.
What is the second independent solution?

c. Find a solution of the scalar equation which satisfies the initial conditions y(0) = 2, ẏ(0) =
5.

Problem 16. Consider the differential equation ÿ − 4ẏ + 25y = 0. Find two real solutions by
looking for solutions of the form ert. Hint: For r = a+ib complex, what are the real and imaginary
parts of eat+ibt? Do not write down the corresponding linear system.

Problem 17. Consider the 2× 2 linear systems ẋ = Jx where

J =
[

0 1
1 0

]
,

a. Write down the corresponding second order equation.
b. Find the solutions of the second order equation directly as in problem 16.
c. Compare the solutions of part (b) with the first coordinates of the solutions found using

the exponential given in Example 2.3 in [5].
d. Find the solution of the second order scalar equation that satisfies the initial conditions

y(0) = 2, and ẏ(0) = 1.

Problem 18. Consider a mass m that is connected to a spring that has a restoring force propor-
tional to the displacement from equilibrium m ẍ = k x, with k, m > 0. Let ω2

0 = k/m. If friction
is added that is proportional to the velocity but with a force in the opposite direction, then the
equations become m ẍ = c ẋ− k x with c > 0, or

m ẍ + c ẋ + k x = 0.

a. For c = 0 and k, m > 0 find the general solution. What is the period before the motion
come back to the original position and velocity?

b. What is the form of the solution for (i) 0 < c < 2
√

km, (ii) c = 2
√

km, and c > 2
√

km?
Descibe the manner in which solutions converge toward the equilibrium with x = 0 = ẋ.
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5.1. Nonhomogeneous Second Order Scalar Equations. The material depends on Section
2.3 in [5]. Consider the following nonhomogeneous second order scalar differential equation

(7) ÿ + b ẏ + c y = f(t).

and the corresponding nonhomogeneous linear system

(8) ẋ =
[
ẏ
ÿ

]
=

[
0 1
c b

] [
x1

x2

]
+

[
0

f(t)

]
.

For two independent solutions y1(t) and y2(t), a fundamental matrix solutions is

M(t) =
[
y1 y2

ẏ1 ẏ2

]
,

with Wronskian
W (t) = det(M(t)) = y1(t) ẏ2(t)− y2(t) ẏ1(t)

and inverse

M(t)-1 =
1

W (t)

[
ẏ2 y2

ẏ1 y1

]
.

By variation of parameters for linear systems (Theorem 2.7 in [5]),

x(t) = M(t)M(0)-1x0 + M(t)
∫ t

0
M(s)-1

[
0

f(s)

]
dt

= M(t)M(0)-1x0 + M(t)
∫ t

0

1
W (s)

[
y2(s) f(s)
y1(s) f(s)

]
ds.

The first coordinate of the integral terms gives a particular scalar equation for the nonhomogeneous
equation,

yp(t) = y1(t)
∫ t

0

y2(s) f(s)
W (s)

ds + y2(t)
∫ t

0

y1(s) f(s)
W (s)

ds.

Example 19. If two solutions are y1(t) = eλ t and y2(t) = eµ t, then

W (s) = det
[

eλ s eµ s

λ eλ s µ eµ s

]
= (µ− λ) e(λ+µ) t, and

yp(t) = eλ t

∫ t

0

eµ s f(s)
(µ− λ) e(λ+µ) s

ds + eµ t

∫ t

0

eλ s f(s)
(µ− λ) e(λ+µ) s

ds

=
[

1
µ− λ

] ∫ t

0

[
eµ te-µ s − eλ te-λ s

]
f(s) ds.

�

Example 20. Consider
t2ÿ + t ẏ +

(
t2 − 1

4

)
y = t-1/2 sin(t),

which has y1(t) = t-1/2 cos(t) and y2(t) = t-1/2 sin(t) as solutions of the homogeneous equation.
The Wronskian is

W (t) = det
[

t-1/2 cos(t) t-1/2 sin(t)
t-1/2 sin(t)− 1

2 t-3/2 cos(t) t-1/2 cos(t)− 1
2 t-3/2 sin(t)

]
= t-t cos2(t)− 1

2 t-2 cos(t) sin(t) + t-1 sin2(t) + 1
2 t-2 cos(t) sin(t)

= t-1.
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If we write yp(t) = y1(t) u1(t) + y2(t) u2(t), then

u1(t) =
∫ t

0

y2(s) f(s)
W (s)

ds =
∫ t

0
s
[
s-1/2 sin(s)

] [
s-1/2 sin(s)

]
ds

=
∫ t

0
sin2(s) ds

= 1
2 t + 1

2 sin(t) cos(t).

Also,

u2(t) =
∫ t

0

y1(s) f(s)
W (s)

ds =
∫ t

0
s
[
s-1/2 cos(s)

] [
s-1/2 sin(s)

]
ds

=
∫ t

0
sin(s) cos(s) ds

= 1
2 sin2(t).

Therefore the general solution is

c1t
-1/2 cos(t) + c2t

-1/2 sin(t)− 1
2 t1/2 cos(t) + 1

2 t-1/2 sin(t) cos2(t) + 1
2 t-1/2 sin3(t).

�

5.2. Undetermined Coefficients or Judicious Guessing. Because the variation of parameters
equation is so involved, it is often easier to guess a solution related to the time dependent forcing
term.

Example 21. Consider
ÿ − ẏ − 2y = 2et.

The characteristic equation is 0 = λ2−λ−2 = (λ−2)(λ+1). Thus two solutions of the homogeneous
equation are e2t and e-t. Therefore, the forcing term 2et is not a solution of the homogeneous
equations. Therefore, we guess a solution of the form yp(t) = A et with an unspecified coefficient
A. Taking the derivatives yp = y′p = y′′p = A et and substituting into the differential equation, we
need

A et −A et − 2 A et = 2et, so
2A = 2, or

A = 1.

Thus a particular solution is et and the general solution is et + c1e
2t + c2e

-t. �

Example 22. Consider
ÿ − ẏ − 2y = 2e t.

In this case, 2e t is a solution of the homogeneous equation so A e t cannot be used to find a
solution of the nonhomogeneous equation. So we try yp(t) = A t e t. Then ẏp(t) = A e t − At e t

and ÿp(t) = 2Ae t + At e t. Thus we need

2e t = A
[

2e t + t e t
]
−A

[
e t − t e t

]
− 2A t e t,

= 3 A e t,

A =
2

3
.

The general solution is 2
3 t e t + c1e

2t + c2e
-t. �
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The following chart indicates what is a good guess for different forms of f(t) in the equation
ÿ + a ẏ + b y = f(t).

f(t) f(t) is not a solution of H f(t) is a solution of H

ert A ert A t ert or A t2ert

a0 + a1t + · · ·+ antn A0 + A1t + · · ·+ Antn

(a0 + a1t + · · ·+ antn)ert (A0 + A1t + · · ·+ Antn)ert

sin(ωt) or cos(ωt) A sin(ωt) + B cos(ωt) At sin(ωt) + Bt cos(ωt)
(a0 + a1t) sin(ωt) (A0 + A1t) sin(ωt) + (B0 + B1t) cos(ωt)
(b0 + b1t) cos(ωt) (A0 + A1t) sin(ωt) + (B0 + B1t) cos(ωt)

Example 23. Consider ÿ − ẏ − 2y = t + t2.

yp(t) = A0 + A1t + A2t
2

ẏp(t) = A1 + 2A2t

ÿp(t) = 2A2,

t + t2 = (2A2 −A1 − 2A0) + t( 2A2 − 2A1) + t2( 2A2).

We need

0 = 2A2 −A1 − 2A0

1 = 2A2 − 2A1

1 = 2A2.

The solution is A2 = 1/2, A1 = 0, and A0 = 1/2. A particular solution is yp(t) = 1
2 t2 − 1

2 . �

Example 24 (Periodically Forced Oscillator). Consider m ÿ + k y = F0 cos(ω t). Let ω0 =√
k/m be the frequency of the homogeneous equation. Assume that ω 6= ω0, so mω2 − k 6= 0.

yp(t) = A cos(ω t) + B sin(ω t)

ẏp(t) = Aω sin(ω t) + Bω cos(ω t)

ÿp(t) = Aω2 cos(ω t)−Bω2 sin(ω t),

F0 cos(ω t) = cos(ω t)
[

Amω2 + kA
]
+ sin(ω t)

[
Bmω2 + kB

]
.

So, B = 0 and F0 = A (k − mω2) = Am (ω2
0 − ω2) or A = F0/m (ω2

0 − ω2). Thus, a particular
solution is

yp(t) =
F0

m (ω2
0 − ω2)

cos(ω t).

with period of the forcing term 2π/ω. The general solution is obtained by adding the general solution
of the homogeneous equation, c1 cos(ω0t) + c2 sin(ω0t) + yp(t).

The general solution of the homogeneous equation can be rewritten as

R cos (ω0(t− δ)) ,

where R =
√

c2
1 + c2

2, c1 = R cos(ω0δ), and c2 = R sin(ω0δ). The parameter R is the amplitude of
the homogeneous solution; the quantity δ is the time at which the the solution of the homogeneous
equation reaches its maximum. If R 6= 0 (i.e., (c1, c2) 6= (0, 0) ), then the solution is a combination
of solutions with periods 2π/ω and 2π/ω0. If ω/ω0 is irrational, then the solution is not periodic.

However, if
ω

ω0
=

i

j
(where i and j have no common factors), then the solution is T -periodic

where T = j · 2π

ω0
= i · 2π

ω
.
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If y(0) = 0 = ẏ(0), then c2 = 0 and c1 = A, so

y(t) =
F0

m (ω2
0 − ω2)

[cos(ω t)− cos(ω0t)]

=
2 F0

m (ω2
0 − ω2)

sin
(

1
2(ω0 − ω)t

)
sin

(
1
2(ω0 + ω)t

)
.

If |ω0−ω| is small, then ω0 + ω >> |ω0−ω| and the term sin
(

1
2(ω0 + ω)t

)
oscillates much more

rapidly than sin
(

1
2(ω0 − ω)t

)
. Thus, the motion is a rapidly oscillation by sin

(
1
2(ω0 + ω)t

)
with

a variable amplitude
2 F0

m (ω2
0 − ω2)

sin
(

1
2(ω0 − ω)t

)
. See Figure 6.

If the initial condition is not (y(0), ẏ(0)) 6= (0, 0), then the envelop does not pinch to zero. See
Figure 7. �

t

Figure 6. Example 24: Plot of solution and envelop ± 2 F0

m (ω2
0 − ω2)

sin
(

1
2(ω0 − ω)t

)
.

0

Figure 7. Example 24: Plot of solution with y(0) = 0.25 and ẏ(0) = 0

Example 25. Consider the periodically force oscillator with damping

m ÿ + 2mγ ẏ + k y = F0 cos(ωt).

The characteristic equation for the homogeneous equation is m λ2 + 2mγ λ + k, which has roots

γ ± i
√

ω2
0 − γ2 where ω0 be the frequency of the undamped homogeneous equation, ω2

0 =
k

m
.
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We assume that γ is small enough so that ω2
0 − γ2 > 0, and set β =

√
ω2

0 − γ2 so the general
solution of the homogeneous equation is

c1 e-γt cos(βt) + c2 e-γt sin(βt).

Since this solution of the homogeneous equation goes to zero as t goes to infinity, any solution of
the nonhomogeneous equation converges to the particular solution yp(t) of the nonhomogeneous
equation, which we call the steady-state solution.

A particular solution yp(t) of the nonhomogeneous equation is of the form A cos(ωt)+B sin(ωt).
Differentiating and substituting into the equation, we need

F0 cos(ωt) = cos(ωt)
[
−Amω2 + B2mγω + Ak

]
+ sin(ωt)

[
−Bmω2 −A2mγω + Bk

]
.

The undetermined coefficients need so solve
F0

m
=

(
ω2

0 − ω2
)
A + (2γω)B and

0 = ( 2γω) A +
(
ω2

0 − ω2
)
B.

Letting ∆ = (ω2
0 − ω2)2 + 4γ2ω2,[

A
B

]
=

1
m

[
ω2

0 − ω2 2γω
2γω ω2

0 − ω2

]-1 [
F0

0

]
=

1
m∆

[
ω2

0 − ω2 2γω
2γω ω2

0 − ω2

] [
F0

0

]
=

F0

m∆

[
ω2

0 − ω2

2γω

]
.

Thus, a particular solution is

yp(t) =
F0(ω2

0 − ω2)
m∆

cos(ωt) +
F02γω

m∆
sin(ωt).

This solution can also be written as

yp(t) = R cos(ω(t− δ)) where

R =

√
F 2

0

m2∆2

(
(ω2

0 − ω2)2 + 4γ2ω2
)

=
F0

m
√

∆
,

cos(ωδ) =
1
R

F0(ω2
0 − ω2)
m∆

=
ω2

0 − ω2

√
∆

and

sin(ωδ) =
1
R

F02γω

m∆
=

2γω√
∆

, or

tan(ωδ) =
2γω

ω2
0 − ω2

.

The ratio R/F0 is the factor by which the amplitude of the forcing term is scaled in the steady-state
solution. The quantity δ is the time shift that the maximum is shifted from the forcing term to

the steady-state solution. The period T of the forcing satisfies ω T = 2π, so
δ

T
=

ω δ

2π
is the

fraction of the period of the time shift, and ω δ = 2π

(
δ

T

)
is the fraction of 2π and is called the

phase shift.
If m = k = 1, 2γ = 0.125, F0 = 3, and ω = 0.3, then R ≈ 3.27 is greater than the forcing

amplitude 3. Figure 8 shows the plot of the solution with y(0) = 2 and ẏ(0) = 0 together with
the dashed plot of the forcing term. Notice that after the transient terms diminish, the solution
has the same period as the forcing term with slightly larger amplitude and small phase shift.
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Figure 8. Damped forced oscillator and forcing term

For all the parameters fixed except for the forcing frequency ω, the amplitude of the response
R is largest when ∆ is smallest, so when

ω2
max = ω2

0 − 2 γ2 if 2 γ2 < ω2
0.

The maximum response amplitude is

Rmax =
F0

2mγ
√

ω2
0 − γ2

.

�

Problem 19. Consider the resonance case where the forcing has the same frequency as the natural

oscillation, m ẍ + k x = F0 cos(ω0) where ω0 =
√

k/m.

a. Find the general solution.
b. What happens to the solution as t goes to infinity?

Problem 20. In each of the following nonhomogeneous second order scalar equations, find the
general solution.

a. ÿ − 2ẏ − 3y = 3e2t.
b. ÿ − 2ẏ − 3y = 3te2t.
c. 2ÿ + 3ẏ + y = t2 + 3 sin(t).
d. ÿ − 2ẏ + y = 5et.
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