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p. 33: (Section 2.4.3) Explanation: S. Zeller and M. Thaler (“Almost sure excape from the
unit interval under the logistic map”, Amer. Math. Monthly 108 (2001), pages 155 – 158.)
have a simpler proof based on the earlier thesis of S. Zeller (“Chaosbegriffe der topologishen
Dynamik”, Dipolmarbeit, Salzburg, 1991). The map

y = φ(x) =
2
π

arcsin
√
x

is a conjugacy between F4(x) and g4(y) = 1 − |1 − 2y|, g4(y) = φ ◦ F4 ◦ φ−1(y). For
µ > 4, Fµ([0, 1]) = [0, µ4 ], so it is natural to scale φ by the factor µ

4 to investigate Fµ. Let
φµ(x) = µ

4 φ( 4
µx). Define the map gµ by

gµ(y) = φµ ◦ Fµ ◦ φ−1
µ (y).

Then a simple calculation shows that |g′µ(y)| ≥ √µ for all y ∈ [0, φµ(a)], so Fµ has can
invariant Cantor set. The proof is a follows. Let y = φµ(x) for x ∈ [0, 1). Because φ is a
conjugacy of F4 and g4,

φ′(F4(x))F ′4(x) = (2 sign(1− 2x))φ′(x).

Also, F ′µ(x) = a
4F
′
4(x). Thus

g′4(y) =
φ′µ(F4(x))F ′µ(x)

φ′µ(x)
=
aφ′(F4(x))F ′4(x)

4φ′µ(x)

= sign(1− 2x))
µφ′(x)
2φ′µ(x)

= sign(1− 2x))
√
µ
(1− 4

µ

1− x
) 1

2 .

Since 4
µ < 1, the last term is greater than

√
µ.

p. 38: (Section 2.5) In this section, we show that the dynamics of Fµ on Λ can be understood
in terms of a map on a symbol space made up by points which are sequences of 1’s and
2’s. The map on the symbol space is said to give the symbolic dynamics for the map. At
least in a theoretical way, we can determine the periodic points. We also want to show that
there are points whose orbit is dense in the cantor set Λ and points with other complicated
dynamics. By introducing symbols to describe the location of a point, the dynamics of a
point in the Cantor set can be determined by means of a sequence of these symbols. Because
many different patterns of symbols can be written down, points with many different types
of dynamics can be shown to exist.

p. 50: (L. -23) Explanation: The covering space R of S1 can be thought of as measuring the
angle without reducing modulo 2π, or modulo 1, in the coordinates on R. Thus, the points t,
t+1, and t+2 in R all represent the same point in §1. In the same way, the lift of f : S1 → S1

to F : R→ R gives the new location without reducing modulo 1. The difference F (t)− t is
the amount the point is move around the circle without reducing modulo 1.
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p. 50: (L. -9) Explanation: Let Fλ(t) = t+λ be the rigid rotation. Then the change of angle,
Fλ(t)(t) − t = λ is the same for any point. For an arbitrary homeomorphism of S1, the
change F (t)− t can vary with the point t. The quantity

Fn(t)− t = [Fn(t)− Fn−1(t)] + [Fn−1(t)− Fn−2(t)] + · · ·+ [F (t)− t]
is the total change of angle by the nth-iterate without reducing modulo 1. The average
change of angle for one iterate by the first n-iterates is

1
n
{Fn(t)− t} =

1
n
{[Fn(t)− Fn−1(t)] + [Fn−1(t)− Fn−2(t)] + · · ·+ [F (t)− t]}.

Taking the limit as n goes to infinity, limn→∞
1
n{F

n(t)−t} gives the average change of angle
for one iterate along the whole orbit. This last limit is used to define the rotation number
of the map on the circle.

p. 79: (L. -8) there is an allowable word w such that
p. 96: (L 5) Explanation: The norm of a matrix can be calculated in terms of an eigenvalue

of a related matrix. Notice that

|Ax|2 = (Ax)tAx = xtAtAx.

The maximum of this quantity as x varies over unit vectors is the square of the norm of A.
The matrix AtA is symmetric and so has real eigenvalues. If λ1 is the largest eigenvalue
with unit eigenvector v1 then

vt1A
tAv1 = vt1λ1v1 = λ1.

Therefore the norm of A is the square root of the largest eigenvalue of AtA, ‖A‖ =
√
λ1.

p. 114: (L. 6) v ∈ V u should be v ∈ V c: “as t→ ±∞, so v ∈ V c.”
p. 134: (Line -7 to -4) Replace with: “If U is a region where f(x) is defined and C1 and
V ⊂ U is a compact subset, then we can let K = sup{‖Dfx‖ : x ∈ V }. By the Mean Value
Theorem,

|f(x− f(y)| ≤ K|x− y|
if the line segment from x to y is contained in V .”

p. 143: (Line 7–9) For x0 ∈ U take b > 0 such that the closed ball B̄(x0, b) ≡ {x : |x− x0| ≤
b} ⊂ U . The function f is Lipschitz . . . for all x,y ∈ B̄(x0, b).

p. 389: (Line 6) The way to calculate the limits of the wedge product is to start with an
orthonormal basis {v0,1, . . . , v0,m} of tangent vectors at x0 = x. Let xk = fk(x). Assume
by induction that we have defined an orthonormal basis {vk−1,1, . . . , vk−1,m} at xk−1.
Applying the derivative at xk−1, let wk,j = Dfxk−1vk−1,j be the image vectors. Apply the
Gram-Schmidt process to construct a basis of perpendicular vectors:

zk,m = wk,m

zk,m−1 = wk,m−1 − wk,m−1 · zk,m

|zk,m|2
zk,m

zk,j = wk,j −
m∑

i=j+1

wk,j · zk,i

|zk,i|2
zk,i for 1 ≤ j ≤ m− 1.

We get an orthonormal basis of vectors at xk by letting

vk,j =
zk,j

|zk,j |
.

This completes the induction process. The multiplicative factor of the jth-vector is

r
(k)
j = |w1,j | · · · |wk,j |.
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The volume of the parallelograms spanned by {zk,m−j+1, . . . , zk,m} is the same as that
spanned by the {wk,m−j+1, . . . , wk,m}, which is r(k)m−j+1 · · · r

(k)
m . Thus the growth rate of

this volume as k goes to infinity is

λm−j+1 + · · ·λm = lim
k→∞

1
k

log(r(k)m−j+1 · · · r
(k)
m )

= lim
k→∞

1
k

log(r(k)m−j+1) + · · · lim
k→∞

1
k

log(r(k)m ),

and

λm−j+1 = lim
k→∞

1
k

log(r(k)m−j+1)

= lim
k→∞

1
k

k∑
i=1

log(|wi,m−j+1|).

p. 421: In the proof of Theorem 5.4, if we assume that R(f) is hyperbolic, then it is possible
to take the chain componenets rather than the sets cl(Hp) in the decomposition.
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