
ERRATA AND ADDITIONS FOR THE SECOND EDITION OF

DYNAMICAL SYSTEMS: STABILITY, SYMBOLIC DYNAMICS, AND CHAOS

by Clark Robinson

(Preface page 4 L. -13) Yorke (1990) should be Nusse and Yorke (1990).

p. 4 (L. -2) Subsections 8.3.1 – 4

p. 10 (L. -3) “could be combined with the section in Chapter VIII).”

p. 17 (L. 2) {(x, f(x)} should read {(x, f(x))}.
p. 24 (L. -12) should be “compact nested nonempty sets.”

p. 24 (L. -4) should be “ . . . is closed and positively invariant . . . ”

p. 27 (L. 3) “A non-empty set S . . . ”

p. 30 (L. -17) should be “π(
∑

n≥1 jn 3−n) =
∑

n≥1(jn/2)2−n.”

p. 33 (Section 2.4.3) Explanation: S. Zeller and M. Thaler (“Almost sure excape from the unit
interval under the logistic map”, Amer. Math. Monthly 108 (2001), pages 155 – 158.) have
a simpler proof based on the earlier thesis of S. Zeller (“Chaosbegriffe der topologishen
Dynamik”, Dipolmarbeit, Salzburg, 1991). The map

y = φ(x) =
2

π
arcsin

√
x

is a conjugacy between F4(x) and g4(y) = 1 − |1 − 2y|, g4(y) = φ ◦ F4 ◦ φ−1(y). For
µ > 4, Fµ([0, 1]) = [0, µ

4 ], so it is natural to scale φ by the factor µ
4 to investigate Fµ. Let

φµ(x) = µ
4 φ( 4

µx). Define the map gµ by

gµ(y) = φµ ◦ Fµ ◦ φ−1
µ (y).

Then a simple calculation shows that |g′µ(y)| ≥ √
µ for all y ∈ [0, φµ(a)], so Fµ has can

invariant Cantor set. The proof is a follows. Let y = φµ(x) for x ∈ [0, 1). Because φ is a
conjugacy of F4 and g4,

φ′(F4(x))F ′
4(x) = (2 sign(1 − 2x))φ′(x).

Also, F ′
µ(x) = a

4F ′
4(x). Thus

g′4(y) =
φ′

µ(F4(x))F ′
µ(x)

φ′
µ(x)

=
aφ′(F4(x))F ′

4(x)

4φ′
µ(x)

= sign(1 − 2x))
µφ′(x)

2φ′
µ(x)

= sign(1 − 2x))
√

µ
(
1 − 4

µ

1 − x

)
1
2 .
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2 ERRATA FOR DYNAMICAL SYSTEMS

Since 4
µ < 1, the last term is greater than

√
µ.

p. 36 (L. -12) should be “1 > |(T2 ◦ f ◦ T1)
′(0)| = |T ′

2(w0)| · |f ′(z0)| · |T ′
1(0)|”

p. 38: (Section 2.5) Explanation: We are attempting to understand the orbits of all points in the
invariant set Λ. At least in a theoretical way, we can determine the periodic points. We also
want to show that there are points whose orbit is dense in the cantor set Λ and points with
other complicated dynamics. By introducing symbols to describe the location of a point,
the dynamics of a point in the Cantor set can be determined by means of a sequence of
these symbols. Because many different patterns of symbols can be written down, points
with many different types of dynamics can be shown to exist.

p. 43 (Caption on Figure 6.1) S1 should be S and [0, 1] should be [0, 2].

p. 45: (L. -5)
= lim

x→1
x>1

h′
0(x).

p. 50: (L. -23) Explanation: The covering space R of S1 can be thought of as measuring the angle
without reducing modulo 2π, or modulo 1, in the coordinates on R. Thus, the points t, t+1,
and t + 2 in R all represent the same point in §1. In the same way, the lift of f : S1 → S1

to F : R → R gives the new location without reducing modulo 1. The difference F (t) − t is
the amount the point is move around the circle without reducing modulo 1.

p. 50: (L. -9) Explanation: Let Fλ(t) = t + λ be the rigid rotation. Then the change of angle,
Fλ(t)(t) − t = λ is the same for any point. For an arbitrary homeomorphism of S1, the
change F (t) − t can vary with the point t. The quantity

Fn(t) − t = [Fn(t) − Fn−1(t)] + [Fn−1(t) − Fn−2(t)] + · · · + [F (t) − t]

is the total change of angle by the nth-iterate without reducing modulo 1. The average
change of angle for one iterate by the first n-iterates is

1

n
{Fn(t) − t} =

1

n
{[Fn(t) − Fn−1(t)] + [Fn−1(t) − Fn−2(t)] + · · · + [F (t) − t]}.

Taking the limit as n goes to infinity, limn→∞
1
n{Fn(t)−t} gives the average change of angle

for one iterate along the whole orbit. This last limit is used to define the rotation number
of the map on the circle.

p. 51 (L. -5) F kp(t) − t < k[. . .

p. 67 (L. -14) f(I2) ⊃ I2

p. 69: (L. 13) prove the existence of all the periodic points implied by . . .

p. 72 (L. 1-3) First assume there is such a K0. There is a minimal cycle as in Claim 4 with
2 ≤ k ≤ n − 1. Thus, I1 → I2 → · · · → Ik → I1 is a cycle of length k, and so there is a
periodic point of period k which is less than n. This contradiction implies that the minimal
n is 2 in this case.

p. 75 (L. -19, -18) “ . . . on a sequence in Σ+
A gives another sequence in Σ+

A.”

p. 77 (L. -3) “but not eventually positive.”

p. 78 (Proof of Lemma 2.5) ‘It is clear that {σk+j
A (s∗)}j≥0 . . . ”

p. 79 (L. -8) there is an allowable word w such that

p. 81 (L. -10, -9) Corollary 2.3 and Lemma 3.1

p. 84 (L. 5) dense in Fµ[0, 1]
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p. 88 (L. 18) d(fk(x), fk(p)) ≥ δ

p. 89 (L. -17) |T ′(xj)| = 2

p. 90 (L. 19, 20, 25, 26) add another )

p. 91 (L. 2)
∫ 1

0
λ(x) dµ(x) =

p. 92: (Problem 3.7) Hint: Take the double of the map in the previous problem (3.6).

p. 92: (L. -7) sn = 1

p. 96: (L 5) Explanation: The norm of a matrix can be calculated in terms of an eigenvalue of a
related matrix. Notice that

|Ax|2 = (Ax)tAx = xtAtAx.

The maximum of this quantity as x varies over unit vectors is the square of the norm of A.
The matrix AtA is symmetric and so has real eigenvalues. If λ1 is the largest eigenvalue
with unit eigenvector v1 then

vt
1A

tAv1 = vt
1λ1v

1 = λ1.

Therefore the norm of A is the square root of the largest eigenvalue of AtA, ‖A‖ =
√

λ1.

p. 100 (L. 8) Proposition 3.1

p. 102 (Remark) Remark 3.2

p. 103 (Remark) Remark 3.3

p. 104 (L 15) Evaluate derviative at t = t0.

p. 111 (L. 17) Then, any x can be written as

p. 113 (L. 14) Define the stable subspace (or stable eigenspace), unstable subspace (or unstable

eigenspace), and center subspace (or center eigenspace) to be

p. 114 (L. 6) v ∈ V u should be v ∈ V c: “as t → ±∞, so v ∈ V c.”

p. 116 (L -6) “many different linear contractions” should be “many different linear differential
equations”

p. 122 (L. -5, -3) “surround all the eigenvalues of A whose absolute value is less than 1 and is
oriented counterclockwise. . . . surround all the eigenvalues of A whose absolute value is
greater than 1 but”

p. 124 (Lemma 9.7) Let Dk be a block with complex eigenvalues in the Jordan Canonical Form
of A given as follows: . . . (i) A0 = Dk, (ii) A1 is a diagonal matrix with real eigenvalues,
. . . Thus, we have given a curve of matrices from a block in the Jordan Canoical Form
corresponding to a complex eigenvalue to a diagonal block with real eigenvalues.

p. 124 (add a Lemma 9.7b) Let A be a matrix with all real eigenvlues. Then, there is a curve of
matrices At for 0 ≤ t ≤ 1, such that (i) A0 = A, (ii) A1 is diagonalizable (has a basis of
eigenvectors), and (iii) the eigenvalues with multiplicities for all the At are the same as A.

p. 124 (L 21) Exercises 4.11 and 4.12 ask the reader to prove the following result using Lemmas
9.7, 9.7b, and 9.8.

p. 127 (L. 3) λ2
j = λ2

1

p. 130 (Exercise 4.11a) Hint: Use Lemmas 9.7, 9.7b, and 9.8. Allow for 1’s in the off diagonal
terms of the Jordan Canonical Form.
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p. 134 (L. -7 to -4) Replace with: “If U is a region where f(x) is defined and C1 and V ⊂ U is a
compact subset, then we can let K = sup{‖Dfx‖ : x ∈ V }. By the Mean Value Theorem,

|f(x − f(y)| ≤ K|x − y|

if the line segment from x to y is contained in V .

p. 135 (L. 22) Note L2(Rk, Rn) are those maps from R
k ×R

k to R
n which are linear in each factor

p. 139 (L. -10)

DF(x0,y0) =
(

( ∂fi

∂xj
(x0,y0)

)

,
( ∂fi

∂yj′

(x0,y0)
)

)

.

p. 143 (Line 7–9) For x0 ∈ U take b > 0 such that the closed ball B̄(x0, b) ≡ {x : |x−x0| ≤ b} ⊂ U .
The function f is Lipschitz . . . for all x,y ∈ B̄(x0, b).

p. 153: (L -2) |eAty0|∗ ≤ e−tb|y0|∗
p. 156 (Theorem 5.6) It is not necessary to assume the fixed points are hyperbolic.

p. 172 (Example 8.2) In the case when r0 6= r∗, r(t) should be r∗ plus the quantity given.

p. 181: (Theorem 9.1) The region does not have to be simply connected. It should read: “either an
open subset of R

2 or D = S2.”

p. 183: (Theorem 9.6(c)) The collection of orbits is countable (finite or infinite). Conti has an
example where there is an infinite countable collection of orbits.

p. 186 (L. 10) BN =
⋂N

j=0 f j(Eu(r) × E
s(r)).

p. 189: (Three lines above Remark 10.1) derivate should be derivative.

p. 191: (L -3) Then, Dhy = Auu(qs,y), which

p. 195: (L 13, 16) Wu
r should be W s

r .

p. 196: (L 10-12) E
u(r) should read E

s(r) and all the σu should be σs

p. 202: (L 9) Need an extra ) at the end of the right hand side.

p. 207: (Exercise 5.16) 8/3 should read -8/3 in the differential equations.

p. 209: (5.27 last line) For k ≥ 1, prove that f and gk are not topologically conjugate.

p. 211: (5.40) It should read: “Assume that X̃1(x, a) < 0, X̃1(x, b) > 0, and X̃2(x, a) = 0 = X̃2(x, b)
for all x, ”

p. 216: (L -18) “from” should be “form”

p. 234 (Exercise 6.5) A symplectic basis is a basis of vectors {vj}2n
j=1 such that ω(vj ,vj+n) = 1

and ω(vj+n,vj) = −1 for j = 1, . . . n, and ω(vj ,vk) = 0 for k 6= j ± n.

p. 261 Exercise 7.10) 8/3 should read -8/3.

p. 264 (L 17) In the definition of immersion, isomorphism should be injective.

p. 265 (L 18) In this chapter and Chapter 10 . . .

p. 269 (Definition) Hyperbolic invariant sets are usually compact; they always can be taken to
be closed since the splitting and estimates go over to the closure. Rather than add the
assumption of compactness to the definition of a hyperbolic invariant set, we state this
hypothesis in the theorems.

p. 271 (Theorem 1.2) . . . Let Λ be a compact hyperbolic invariant set. . . .

p. 272 (Proposition 1.3) Let Let Λ be a compact hyperbolic invariant set . . .

p. 275 (L 27) asj ,j+1
= 1 should be asj ,sj+1

= 1
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p. 276 (Line 8-10) In both the definitions of adjaceny matrix and transition matrix add the condi-
tions that (ii)

∑

j aij ≥ 1 for all i, and (iii)
∑

i aij ≥ 1 for all j.

p. 277 (L 5) γ(i) = si ∈ S.

p. 277 (L -6) S ∩ F−1 should be S ∩ f−1

p. 279 (Figure 4.2) F (G) should be f(G).

p. 280 (L 14) “three properties” should be “two properties”.

p. 289 (L 16) “the full two-sided subshift” should be “the two-sided full shift”.

p. 290 (L 6) Λ should be Λq.

p. 293 (L -5) “open set” should read “open neighborhood”.

p. 295 (L 4) “In the next subsection” should read “In Subsection 8.4.5”

p. 295 (L -9) “the next subsection” should read Section 6.1”

p. 295 Example 4.1 should be renumbered Example 4.2.

p. 295 Figure 4.9 should refer to the renamed Example 4.2.

p. 298 (L -10) Hn2−1(U \ N1) should be Hn2−1(U \ N1).

p. 299 (L 10) Section 5.5.7 should read Section 5.8.

p. 300 (L10) Subsection 8.4.3 should read Subsection 8.4.5.

p. 302: (L -17) “it” should be “if”

p. 302: (L -10) remove ( from (W s(p).

p. 304: Theorem 4.6 should be 4.7

p. 304: Theorem 4.7 should be 4.8

p. 305 Example 4.2 should be renumbered Example 4.3.

p. 306 (Line 15) It should be
∫ ∞

−∞
sech(s) cos(ωs) ds

p. 307 Example 4.3 should be renumbered Example 4.4.

p. 309 (L 1) remove ◦ from “fA ◦ (x)”, i.e., fA(x).

p. 309 (L -1) Add an extra “)” to the subscript of TfA(p)T
n

p. 310 (L -1) f should read fA. (Also page 311, Lines -3, -9. -11)

p. 315 (L 14-15) We take the images of the interiors because Rs1
∩ f−1

A (Rs2
) does not always equal

cl(int(Rs1
)∩ f−1

A (int(Rs2
)))but can have extra points whose images are on the boundary of

Rs2
.

p. 316 (L -2) W σ(z′, int(Rk)) = W σ(z′, Rk) ∩ int(Rk) for σ = u, s

p. 318 (L 9) Section 7.3.1 should read Section 8.3.1.

p. 319 (L 5) FA should be fA.

p. 320 (L -10) “ . . . the eigenvalues of the transition matrix are always plus or minus the eigenvalues
of the original matrix A together with possibly 0 and/or roots of unity.”

p. 321 (L 1) Theorem 5.8 should be Theorem 5.4.

p. 323 (L 1) Theorem 5.4 should be Theorem 5.5.

p. 323 (L -6) Dfp|Eu
p : E

u
p → E

u
p

p. 324 (L 1) Theorem 5.5 should be Theorem 5.6.

p. 324 Propsition 5.6 should be Propsition 5.7.

p. 324 (L -2, -3) Ki should be Kj .

p. 325 (L 4) −tj in the numerator should be (−t)j .
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p. 325 Propsition 5.7 should be Propsition 5.8.

p. 325 Lemma 5.8 should be Lemma 5.9.

p. 326 (L 7) Lemma 5.9.

p. 326 (L 9) Proposition 5.8 and Proposition 5.7.

p. 326 (L 13) Proposition 5.7 should be Proposition 5.8.

p. 330 (L -2) “interest” should be “intersect”

p. 341 (L 3) In Section 12.2, we show that the tangent lines, E
s
x = TxW s(p), depend in a C1

fashion on x.

p. 348 (L 4, 8) x should be |x|.
p. 354 (L -8) F ′(θ) = 1 + ǫ2πk cos(2πkθ).

p. 362 (8.13) Let A be an N × N transition matrix which is irreducible, and ΣA ⊂ ΣN . . .

p. 362 (8.15a) It should be T -allowable words w of length k not k + 1.

p. 363 (8.20) This exercise should refer to the renumbered Example 4.2 (Section 8.4.2). This
example appears on page 295, and should be renumbered as noted above.

p. 367 (8.43) The assuption on x should be that it is ω-recurrent, x ∈ ω(x), and not that it is
chain recurrent.

p. 368 (8.48(b)) f should be g.

p. 371 The proof of Theorem 1.2 should read as follows: The points of the orbits considered for
r(n, δ, fk) constitute a subset of those considered for r(nk, δ, f),

{fki(y) : 0 ≤ i < n} ⊂ {f i(y) : 0 ≤ i < nk},

so df,nk(x,y) ≥ dfk,n(x,y), and any (n, δ)-separated set for fk is also an (nk, δ)-separated

set for f , and we have that r(n, δ, fk) ≤ r(nk, δ, f). By uniform continuity, given ǫ > 0,
there is δǫ > 0 such that if d(x,y) ≤ δǫ, then d(f j(x), f j(y)) ≤ ǫ for 0 ≤ j < k. So, if
dfk,n(x,y) ≤ δǫ then df,nk(x,y) ≤ ǫ, or df,nk(x,y) > ǫ then dfk,n(x,y) > δǫ. Therefore, any

(nk, ǫ)-separated set for f is also a (n, δǫ)-separated set for fk, or r(n, δǫ, f
k) ≥ r(nk, ǫ, f),

where δǫ is uniform in n. Combining these two inequalities,

1

n
log(r(nk, ǫ, f)) ≤ 1

n
log(r(n, δǫ, f

k)) ≤ 1

n
log(r(nk, δǫ, f)),

and taking the limits in n and then ǫ (so δǫ ≤ ǫ also goes to zero)

k h(ǫ, f) ≤ h(δǫ, f
k) ≤ k h(δǫ, f),

k h(f) ≤ h(fk) ≤ k h(f).

This proves the theorem.

p. 373 (L 4, Remark 1.5) Theorem 1.6 should be Proposition 1.6.

p. 373 (Remark 1.7) Remove the comment “(because if ... infinity)”.

p. 375 (L 11) yj should be Hi−j(yj)

p. 376 (Theorem 1.7) The assumption that X and Y are compact has to be added to part (b), or
the assumption moved to the general assumptions of the theorem.

p. 376 (L 6) d′(k(x1), k(x2))

p. 378 (L -3) “where Bj = Aj,j+1 · · ·Ak−1,kAk,1 · · ·Aj−1,j” i.e., Ak−1,kAk,1 and not An−1,nAn,1
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p. 379 (L -3) K ⊂ X

p. 379 (L -1) #(Espan(m, ǫ,K)) = rspan(m, ǫ,K, f).

p. 380 (L 3-4) Again, we let Esep(m, ǫ,K) be a maximal (m, ǫ)-separated set for K, so
#(Esep(m, ǫ,K)) = rsep(m, ǫ,K, f).

p. 380 (L -9) hsep(K, f) = hspan(K, f)

p. 380 (L -6 to -4) . . . is bounded by Nn
ǫ/2. (There cannot be two orbits with dn,f (x,y) ≥ ǫ and

f j(x) and f j(y) in the same ǫ/2-balls for 0 ≤ j < n.) Therefore, rsep(n, ǫ,K, f) ≤ Nn
ǫ/2,

and hsep(ǫ,K, f) ≤ log(Nǫ/2) < ∞.

p. 381 (L -16) Em(ǫ,Ω) should be Espan(m, ǫ,Ω).

p. 384 (L 7 - 12) The obvious attempts at proofs do not work. Using the uniform continuity of k,
it can be shown that given ǫ > 0 there is a δ > 0 such that if Esep(n, ǫ, f) ⊂ Y is (n, ǫ)-
separated for f , then k−1(Esep(n, ǫ, f)) is (n, δ)-separated for F . However, k−1(Esep(n, ǫ, f))
is not necessarily the maximal (n, δ)-separated set for F , so this fact does not give an upper
bound for rsep(n, δ, F ) in terms of rsep(n, ǫ, f).

p. 385 (L 5) rspan(n, β, F ) should be rspan(n, β, f).

p. 385 (L 16) 0 ≤ s ≤ ℓ should be 0 ≤ s < ℓ.

p. 387 (L 10) f |Λ′ should be h(f |Λ′).

p. 387 (L 13) #(Fix(fk)) should be #(Fix(fn))

p. 391 (Line 6) The way to calculate the limits of the wedge product is to start with an orthonormal
basis {v0,1, . . . , v0,m} of tangent vectors at x0 = x. Let xk = fk(x). Assume by induction
that we have defined an orthonormal basis {vk−1,1, . . . , vk−1,m} at xk−1. Applying the
derivative at xk−1, let wk,j = Dfxk−1vk−1,j be the image vectors. Apply the Gram-Schmidt
process to construct a basis of perpendicular vectors:

zk,m = wk,m

zk,m−1 = wk,m−1 − wk,m−1 · zk,m

|zk,m|2 zk,m

zk,j = wk,j −
m

∑

i=j+1

wk,j · zk,i

|zk,i|2 zk,i for 1 ≤ j ≤ m − 1.

We get an orthonormal basis of vectors at xk by letting

vk,j =
zk,j

|zk,j | .

This completes the induction process. The multiplicative factor of the jth-vector is

r
(k)
j = |w1,j | · · · |wk,j |.

The volume of the parallelograms spanned by {zk,m−j+1, . . . , zk,m} is the same as that

spanned by the {wk,m−j+1, . . . , wk,m}, which is r
(k)
m−j+1 · · · r

(k)
m . Thus the growth rate of

this volume as k goes to infinity is

λm−j+1 + · · ·λm = lim
k→∞

1

k
log(r

(k)
m−j+1 · · · r(k)

m )

= lim
k→∞

1

k
log(r

(k)
m−j+1) + · · · lim

k→∞

1

k
log(r(k)

m ),
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and

λm−j+1 = lim
k→∞

1

k
log(r

(k)
m−j+1)

= lim
k→∞

1

k

k
∑

i=1

log(|wi,m−j+1|).

p. 393 (L 13) “The only situation” should be “One situation”

p. 394 (L 18-20) Should be “Thus, for a compact submanifold A of dimension d and 0 ≤ p < d < q,
the limit, as the size of boxes tends to zero, of the p-dimensional volume of boxes which
cover A is infinite, the limit of the q-dimensional volume of boxes which cover A is zero, and
the limit of the d-dimensional volume of the boxes which cover A is a finite number.”

p. 399 (Ex. 9.15(a)) “of radius” is repeated.

p. 401 (Ex. 9.28) It should read f(t, z) = (g(t), β z +
1

2
e2πti).

(a) Prove for 0 < β < 1/(2
√

2), . . .
(b) “ Also prove for the correct choice . . . ”

p. 404 (L-9) The concept of a trapping region is related to an isolating set but is not the same
thing. Therefore the comment “(or isolating neighborhood by Conley)” should be removed.

p. 405 (L -5 & -4) This should read “By taking the intersection of these sets, P ⊂ ⋂

0≤j≤5 Aj∪A∗
j =

{pj : 0 ≤ j ≤ 3}. By Remark 1.4, . . . ”

p. 407 (L. -16) “for part (b)” should be “for part (a)”

p. 408 (L. -14) “absolutely convergent” should read “uniformly convergent”

p. 409 (L. 2 & 3) The + sign should be - on both lines.

p. 411: (L -18) “we do not explicity emphasize the fact that D(expp)vp
is different from the identity.”

p. 412: (L -17) D(expf(p))0p
= id should be D(expf(p))0f(p)

= id.

p. 413: (L 5) W̃ s
r (p) =

⋂∞

j=0(Ffj−1(p) ◦ Ffj−2(p) ◦ · · · ◦ Fp)−1(Bfj(p)(r))

p. 415: (Theorem 3.1) (The second half of this theorem should read as follows.) Moreover, there is
an ǫ0 > 0 such that if 0 < ǫ ≤ ǫ0, j1 = −∞, and j2 = ∞ for the δ-chain, then y is unique.
If 0 < ǫ ≤ ǫ0, j2 = −j1 = ∞, and Λ is an isolated invariant set (or has a local product
structure), then the unique point y ∈ Λ.

p. 417: (Example 3.3) Let Λ ⊂ Σ2 be the subshift of Example 3.1. Let t ∈ Σ2 be the sequence with
ti = 1 for i < 0, t0 = 2, t1 = 1, t2 = 2, t3 = t4 = t5 = 1, t6 = 2, etc. After each 2 in the
sequence, there are odd number of ones, with each time two more ones than the previous
time. The point t is in W s(Λ) because for any ǫ > 0, for any sufficiently large n, σn(t) is
within ǫ of the orbit of 1̄.21̄ ∈ Λ. On the other hand, t is not in the stable manifold of a
single point in Λ.

p. 422 (L 1) In fact, if Λ is a connected hyperbolic attracting set for a diffeomorphism f and the
periodic points are dense in Λ, then f is topologically transitive on Λ.

p. 423 (L 9) f |Lami should be f |Λi

p. 423: In the proof of Theorem 5.4, if we assume that R(f) is hyperbolic, then it is possible to
take the chain componenets rather than the sets cl(Hp) in the decomposition.

p. 424: (L -9) Wu(O(p)) should be W s(O(p)),

p. 428: (L -12) s∗i should be s∗j
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p. 435: (L9) “ . . . the set of homeomorphisms are not open, so a small perturbation does not have
to be a homeomorphism. Therefore, . . . ”

p. 444 (L4-6) “A fundamental domain for the stable manifold of Λ is a closed set Ds ⊂ W s(Λ) \Λ
such that there exists a set Ds′ with Ds = cl(Ds′) and f j(Ds′) ∩ Ds′ = ∅ for all integers
j 6= 0, and

⋃

j∈Z
f j(Ds) = W s(Λ) \ Λ.”

p. 446 (Ex. 10.22) Assume Ω(f) = M .

p. 449: (L -5) Per(k, f) should be Per(n, f).

p. 450: (L -22) H(X) should be H(M,X), and KS(X) should be KS(M,X)

p. 450: (L -20) γ should be γ2.

p. 456: (L -16) DLm(r) should be DIm(r)

p. 456: (L -6) Ki,1 should be Ki

p. 458: (L 5) n should be m

p. 458: (Lemma 3.3) ρ1 should be ρn.

p. 459: (L -14) R should be R.

p. 464: (L 3-4) If R(f) is also hyperbolic, then f also satisfies the transversality condition with
respect to R(f), by Theorem 4.3 (or Exercise 11.11(c)),

p. 464: (L 16-17) “the the” should be “the”

p. 464: (L 17 & 24) Section 8.7 should be Section 8.8.

p. 466: (L 3) f should be f ′ in definition of N2.

p. 466: (Exercise 11.4) “j periodic sinks” and “j periodic sources” should be “k periodic sinks” and
“k periodic sources”.

p. 467: (Exercise 11.9) “Given” should be “Give”.

p. 469: (L 4) “Chapters V and IX” should be “Chapters V and X”.

p. 473: (Remark 1.3) Hurder and Katok proved a result like Theorem 1.2 with the assumptions as
stated in the theorem. A. Wilkinson proved the result for Cα in her 1995 thesis from the
University of California at Berkeley. (Erg. Theory and Dyn. Sys. 18 (1998), 1545 – 1587.)

p. 475: (L -4) L(Tx, Y ) should be L(TxX,Y ).

index: All references to Chapters VII - XII in the Index are off by two pages. For example the
reference to “homoclinic point” is page 285, but the correct reference is 287.

For information about purchasing the book contact
CRC Press, Inc
2000 Corporate Blvd., N.W.
Boca Raton, Florida 33431-9868
800-272-7737

Send comments about the book or further errata to the author at clark (at) math.northwestern.edu


