GENERALIZED ABRAHAM TRANSVERSALITY

CLARK ROBINSON

We use some of the notation from Section 11.2 on transversality. Assume that \mathscr{A} is a topological space and manifolds M and N. The map $\rho : \mathscr{A} \to C^r(M, N)$ is called a C^r pseudo-representation provided that both ρ and $\rho^{\text{ev}} : \mathscr{A} \times M \to N$ that is defined by $\rho^{\text{ev}}(f, \mathbf{x}) = \rho(f)(\mathbf{x})$ are continuous.

Theorem 1. Let M and N be finite dimensional second countable manifolds, K a compact subset of M a compact subset, and $V \subset N$ a closed C^1 submanifold of N. Assume that $\rho : \mathscr{A} \to C^r(M, N)$ is a C^1 pseudo-representation with $r \geq 1$, and let

 $\mathscr{R} = \{ f \in \mathscr{A} : \rho(f) \text{ is transverse to } V \}.$

- **a.** Then the subset \mathscr{R} is an open subset of \mathscr{A} .
- **b.** If $\rho : \mathscr{A} \to C^r(M, N)$ is a C^r pseudo-representation with $r \ge \max\{1, 1 + \dim(M) \operatorname{codim}(V)\}$ and ρ^{ev} is transverse to V, then \mathscr{R} is residual in \mathscr{A} and hence dense.

The proof of part (\mathbf{a}) is basically the same as the openness in [1].

The most important assumption for part (b) is that ρ^{ev} is transverse to V. This assumption means that if $\rho(f)(\mathbf{x}) \in V$, then the space \mathscr{A} of functions is large enough to be able to perturb f to be transverse to V at \mathbf{x} . The theorem then globalizes this result to give a perturbation that is transverse to V at all points of K. M. Hirsch communicated this version of the Abraham transversality theorem in a course in 1967. Unfortunately, his book [2] does not contain this general version. The proof uses the form of the Parametric transversality Theorem XI.2.3, and the compactness of K. The details are given in [3].

References

- [1] R. Abraham and J. Robbin (1967), Transversal Mappings and Flows, Benjamin, New York.
- [2] M. Hirsch (1976), Differential Topology, Springer-Verlag, New York.

^[3] C. Robinson (1970), A global approximation theorem for Hamiltonian systems, in Proc. Symposia in Pure Math. of the Amer. Math. Soc., (eds. S. S. Chern and S. Smale), Amer. Math. Soc., 14, pp. 233–243.