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Abstract. Devaney gave a mathematical definition of the term chaos, which
had earlier been introduced by Yorke. We discuss issues involved in choosing
the properties that characterize chaos. We also discuss how this term can be
combined with the definition of an attractor.

1. Introduction

J. Yorke coined the word ‘chaos’ as applied to deterministic systems. R. Devaney
gave the first mathematical definition for a map to be chaotic on the whole space
where a map is defined. Since that time, there have been several different definitions
of chaos which emphasize different aspects of the map. Some of these are more
computable and others are more mathematical. See [9] a comparison of many of
these definitions.

There is probably no one best or correct definition of chaos. In this paper, we
discuss what we feel is one of better mathematical definition. (It may not be as
computable as some of the other definitions, e.g., the one by Alligood, Sauer, and
Yorke.) Our definition is very similar to the one given by Martelli in [8] and [9]. We
also combine the concepts of chaos and attractors and discuss chaotic attractors.

2. Basic definitions

We start by giving the basic definitions needed to define a chaotic attractor.
We give the definitions for a diffeomorphism (or map), but those for a system of
differential equations are similar.

The orbit of a point x∗ by F is the set O(x∗,F) = { Fi(x∗) : i ∈ Z }.
An invariant set for a diffeomorphism F is an set A in the domain such that

F(A) = A. Therefore, for every x in A, the orbit O(x,F) is entirely contained in
A.

An invariant set A is topologically transitive provided that there is a point x∗ in
A such that the orbit or x∗ is dense in A, i.e., cl (O(x∗,F)) = A.

A diffeomorphism F has sensitive dependence on initial conditions at all points

of A provided that for each point x ∈ A there is an r > 0 such that for all δ > 0,
there are y and n ≥ 1 with ‖y − x‖ ≤ δ and ‖Fn(y) − Fn(x)‖ > r.

A diffeomorphism F has sensitive dependence on initial conditions when re-

stricted to A provided that for each point x ∈ A there is an r > 0 such that for all
δ > 0, there are y ∈ A and n ≥ 1 with ‖y−x‖ ≤ δ and ‖Fn(y)−Fn(x)‖ > r. This
condition means that the nearby point y whose orbit move away from the orbit of
x can be chosen in the set A and not just in the ambient space.
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Martelli [9] defines a concept which means that an orbit is not Lyapunov stable.
An orbit O(x∗,F) in an invariant set A is called unstable with respect to A for F

provided that there is an r > 0 such that for every δ > 0, there is an y ∈ A and
n ≥ 1 such that ‖y − x∗‖ ≤ δ and ‖Fn(y) − Fn(x∗)‖ > r.

Let A be a compact topologically transitive invariant set for a diffeomorphism
F. In [9], they remark that F has sensitive dependence on initial conditions when
restricted to A if and only if there is a dense orbit O(x∗) in A that is unstable with
respect to A.

A point x0 is chain recurrent provided that for each ε > 0 there are a set of
points {xi : 1 ≤ i ≤ n + 1 } such that xn+1 = x0 and

‖F(xi) − xi+1‖ < ε for 0 ≤ i ≤ n.

The chain recurrent set R(F) is the set of all points which are chain recurrent for
F. Chain recurrence is a weak type of recurrence.

3. Attractor, chaos, and chaotic attractor

Our definition of an attractor (as in [10] and [11]) is similar to asymptotic stabil-
ity of a fixed point, which requires that the point is Lyapunov stable in addition to
assuming that nearby point converge to the fixed point under iteration. Therefore,
we give the definition in terms of a trapping region.

Definition 3.1. A set U is called a trapping region U for map F provided its
closure is compact and

cl(F(U)) ⊂ int(U).

Since the closure in mapped into the interior, the set is mapped well inside itself.
A set A is called an attracting set if there exists trapping region U such that

A =
⋂

j≥0

Fj(U).

Because a trapping region has compact closure, an attracting set is necessarily
compact.

A set A is called an attractor for F if it is an attracting set such that there are no
nontrivial subattracting sets, i.e., no attracting set A′ ⊂ A such that ∅ 6= A′ 6= A.

The following theorem, which is a consequence of Conley’s Fundamental Theo-
rem of Dynamical Systems (see [10]), relates the “minimality” of the attracting set
to the chain recurrent set.

Theorem 3.2.

(a) An attractor is contained in the chain recurrent set, A ⊂ R(F).
(b) An attracting set A that is contained in the chain recurrent set, A ⊂ R(F),

is an attractor.

(c) An attractor is an isolated chain transitive component of the chain recurrent

set.

There are other definitions of an attractor. The most common other definition
was given by Milnor. The basin of attraction of an invariant set A is the set

W s(A) ≡ {x : ω(x) ⊂ A },

where ω(x) is the ω-limit set of the point. An invariant set A is a Milnor attractor

provided that the Lebesgue measure of W s(A) is positive. The ideas is that there
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is a set of positive measure whose points tend to the invariant set under future
iteration. This means that there is a positive probability of observing the invariant
set by choosing an initial condition. A Milnor attractor neither has to attract all
the point in a neighborhood nor does it have to be “Lyapunov stable”, i.e., there
can be points near A whose orbit must go a long distance from A before finally
converging to A.

J. Yorke coined the word of chaos for a deterministic system in [7]. Several
different properties of a map that he called chaotic were discussed, but no formal
mathematical definition was given.

R. Devaney was the first to give a precise mathematical definition in [4]. He
defined a map F : X → X to be chaotic on X provided that the following conditions
are satisfied:

1. F has sensitive dependence on X.
2. F is topologically transitive, i.e., there exists an x∗ such that cl (O(x∗,F)) =

X.
3. The periodic points are dense in X.

Notice that his definition only applies to a map on its whole domain. Banks et
al showed in [2] that conditions (2) and (3) imply condition (1). There has been
a continuing discussion about the “correct” or ”best” definition of chaos. Some
definitions are more mathematical while other definitions are more computable.
See [9] for a discussion of various definitions given by different people.

Besides the question of the “correct” definition of chaos, there is also the issue
of how to combine the definition of chaos with that of an attractor. The rest
of this paper addresses this latter question together with our perspective on a
mathematical definition of chaos.

The third condition on the density of the periodic points does not seem as central
to the idea of chaos. It is also true C1 generically on attractors. See Section 6. In
Section 4, we also give examples that show that we need to assume that F restricted
to the attractor A has sensitive dependence on initial conditions, not just sensitive
dependence on initial conditions in M at all points of A. Because of the existence
of examples of the type given in Section 4, we keep Devaney’s second condition of
topological transitivity on the attractor, even though an attractor is automatically
chain transitive. (This condition is not required in [11], but we now feel should be
added to the definition.)

Definition 3.3. A diffeomorphism F is said to be chaotic on an invariant set A

provided that the following conditions are satisfied:

(a) The diffeomorphism F has sensitive dependence on initial conditions when
restricted to the attractor A.

(b) The diffeomorphism F is is topological transitivity on A, i.e., there exists
an x∗ such that cl (O(x∗,F)) = A.

As set A is called a chaotic attractor for a diffeomorphism F provided that the
set A is an attractor for F and F is chaotic on A.

We have added condition (b) that the map is topologically transitive to the
definition given in [11] in order to avoid some the the pathology of the examples
given in Section 4. Also, a saddle periodic orbit is not chaotic because it has
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sensitive dependence in the ambient space but not when restricted to the periodic
orbit.

This definition is very similar to the one of Martelli. He calls an invariant set
A for F : M → M chaotic provided that there exits an x∗ ∈ A that satisfied the
following properties.

(i) the orbit O(x∗) is unstable with respect to A, i.e., there is an r > 0 such
that for every δ > 0, there is an y ∈ A and n ≥ 1 such that ‖y − x∗‖ ≤ δ
and ‖Fn(y) − Fn(x∗)‖ > r. (Therefore, F has sensitive dependence on
initial conditions when restricted to A.)

(ii) cl (O(x∗,F)) = A. (So, F is topologically transitive on A.)

Alligood, Sauer, and Yorke give another definition in [1]. They define a set set
A to be a chaotic attractor provided that the following conditions are satisfied.

(a) The set A is a Milnor attractor, the Lebesgue measure of the basin of
attraction (W s(A)) is positive.

(b) There exists a point p0 ∈ A such that the following conditions are satisfied:
(i) There is at least one positive Lyapunov exponents h1(p0) > 0, and all

of the Lyapunov exponents are nonzero, hj(p0) 6= 0 for all j.
(ii) ω(p0,F) = A. (So, F is topologically transitive on A.)
(iii) ω(p0,F) is not a periodic orbit. In some contexts, they also require

that the attractor is not a collection of fixed points and saddle con-
nections. (See Example 4.1.)

Since Lyapunov exponents are calculate by computer simulation and for exper-
imental data, this definition seems like a good test for an attractor, but we do
not think it makes the best mathematical definition. Since they require that the
point p0 is in the attractor, pathology of examples like 4.1 is avoided. However,
this condition is not easily verified in examples, and so it makes the conditions less
computable.

As mentioned in the introduction, several other definitions of chaos are given in
the paper [9].

As a final remark, many people discuss chaos for systems without show that they
have a transitive attractor. For example, some papers on the Lorenz system show
that it contains a horseshoe system, but not that it has a transitive attractor. The
only proof that we know that shows the the Lorenz system for the usual parameter
values has a chaotic attractor is the one by Warwick Tucker, which is computer
assisted. See [12].

4. Examples motivating the definition of chaos

We give several examples which illustrate the need for the conditions in our
definition of a chaotic attractor.

Example 4.1 (Saddle connection). The following example is given in [11]. Con-
sider the system of differential equations

ẋ = y

ẏ = x − 2 x3 + y (x2 − x4 − y2).

The test function

L(x, y) =
−x2 + x4 + y2

2
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satisfies the following time derivative:

L̇ = −2 y2 L











≥ 0 when L < 0

= 0 when L = 0

≤ 0 when L > 0.

Therefore, solutions with initial conditions in a neighborhood tend to the level set
A∗ = L−1(0), which is the fixed point together with the two homoclinic orbits.
Therefore, this set is an attracting set. See Figure 1. All the points on A∗ are
chain recurrent, so it is also an attractor.

The flow on this set does not appear to be chaotic. It also does not satisfy two
of our conditions to be called a chaotic attractor.

The flow in not topologically transitive on the attractor, although there are
points outside the attractor whose ω-limit set is the entire attractor.

It does have sensitive dependence on initial conditions (in ambient space) at all
points of A∗. However, it does not have sensitive dependence on initial conditions
when restricted to A∗. Therefore, it fails to satisfy our definition of a chaotic
attractor on two accounts.

For a point p0 in A∗, ω(p0,F) = {0}, so h1(p0,F) > 0 and h2(p0,F) < 0. Since
ω(p0,F) cannot equal A∗ for p0 in A∗, A∗ does not satisfy the Alligood, Sauer, and
Yorke definition for a chaotic attractor. For points p0 outside A∗, ω(p0,F) = A∗,
but numerical simulation indicates that the Lyapunov exponents are probably zero.

Figure 1. Phase portrait

By taking the time one map of the flow, we can make an example for a diffeo-
morphism.

Example 4.2. By adding the angle variables

θ̇1 = 2 + sin(θ2) (mod 2π)

θ̇2 = 0 (mod 2π),

to Example 4.1, we obtain an example which has sensitive dependence on initial
conditions when restricted to the attractor. The sensitive dependence comes from
the shear in the θ-variables. However, this example is not topologically transitive
on the attractor, so it still does not satisfy our definition of a chaotic attractor.

Example 4.3. Let F1 be the time one map of Example 4.1 and let F2 have an
attractor A2 that has sensitive dependence when restricted to A2. Then, F1 × F2

has sensitive dependence on A∗×A2, but is not topologically transitive on A∗×A2.
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Examples 4.1–4.3 do not seem to have dynamics that should be called chaotic.
Examples 4.2–4.3 do satisfy condition (a) of our definition but not (b), i.e., they
are not topologically transitive. The possibility of such examples is the reason we
decided to add topological transitivity to our definition of a chaotic attractor given
in [11].

Example 4.4. The above examples are not generic. If we add a time dependent
perturbation to Example 4.1, then the homoclinic connection is broken. The time
one map of

ẋ = y

ẏ = x − 2 x3 + y (x2 − x4 − y2) + 0.01 cos(2πτ)

τ̇ = 1 (mod 1).

has the phase portrait given in Figure 2. This map probably has a chaotic attractor
by our definition, but we do not attempt to verify this fact.
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Figure 2. Phase portrait

Example 4.5. Martelli, Dang, and Seph in [9] give an example like the following
which they say should not be called chaotic. Consider the system of differential
equations (in polar coordinated)

ṙ =











e−(1−r)−2

if 1/2 ≤ r < 1

0 if 1 ≤ r ≤ 2

−e−(r−2)−2

if 2 < r.

θ̇ = r.

The set {(r, θ) : 1 ≤ r ≤ 2 } is an attractor (chain recurrent). It has sensitive
dependence on initial conditions when restricted to the attractor. It should not be
called chaotic.

5. A chaotic attractor with zero entropy

The example given in this section is different than the ones of the last section: it
does satisfy our definition of a chaotic attractor, but it has zero topological entropy.
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We have decided to give a definition that does call this map chaotic, but other might
argue that it should not be so designated.

Since the definition of topological entropy is rather technical, we leave it to the
references. See for example [10] or [6]. The idea is it measures the complexity of the
system. If a system has positive topological entropy, then the number of “different
orbits” grows exponentially as the length of the orbits considered grows. In the
example below, the number only grows linearly. Any system with a transverse
homoclinic orbit has positive topological entropy.

Example 5.1. We give an example which is transitive on the whole two torus. It
could be made into an attractor in a large dimensional system by adding contracting
directions. Let α be an irrational number. Define the map

F

(

x
y

)

=

(

x + α
x + y

)

(mod 1).

(Both variables are taken modulo one.) The map is a skew product on the two
torus. It is an irrational rotation in the x-variable. The rotation in the y-variable
depends on the point x.

To see that the map has zero entropy, consider several points (x0, y1), . . . (x0, yk)
in the same fiber above a single x0. The amount these points are rotated depends
on the iterate, but all are rotated by the same amount on each iterate. Therefore,
this map has zero entropy for points starting in all the same fiber. Also, the map
of the x-variable is just an irrational rotation and has zero entropy. By a theorem
of Bowen (see Remark 9.1.11 in [10]), the total map has zero entropy. The basic
idea is that orbits for this map diverge at a linear rate and not an exponential rate,
so the map has zero entropy.

The map has sensitive dependence on initial conditions because of the shear
factor. If two points start at (x0, y0) and (x0 + δ, y0), then they will move apart in
the y-variable under iteration.

We do not show directly that the map is topologically transitive. By the Birkhoff
Transitivity Theorem (Theorem 8.2.1 in [10]), it is enough to show that for any two
open sets U and V, there is an n > 0 such that Fn(U) ∩ V 6= ∅. Inside a pair of
such open sets, we can find squares; we can take an integer k large enough so that
we can find (x0, y0) and (x′

0, y
′
0) such that

[x0, x0 + 1/k] × [y0, y0 + 1/k] ⊂ U and

[x′
0, x

′
0 + 2/k] × [y′

0, y
′
0 + 2/k] ⊂ V.

Therefore, it is enough to use such squares for the two sets. Let (xj , yj) =
Fj(x0, y0), so xj = x0 + jα. Then, the jth-iterate of the interval [x0, x0 + 1/k]×{y0}
is a line in the covering space (before taking modulo one) from (xj , yj) to
(xj +1/k, yj + j/k). Therefore, if j ≥ k, then this line goes at least one complete time
around the y-direction while the x-variable increases by 1/k. Next, take a j0 ≥ k,
such that x′

0 ≤ xj0 ≤ x′
0 + 1/k. Then, xj0 + 1/k ≤ x′

0 + 2/k, and all the x values on
the line segment (xj0 , yj0) to (xj0 + 1/k, yj0 + j0/k) lie between x′

0 and x′
0 + 2/k, and

some y-value modulo one must equal y′
0; thus, the image of the line segment must

intersect V. This proves that the j0-iterate of U must intersect V.
Since this this intersection property is true for any pair of open sets, F is topo-

logically transitive by the Birkhoff Transitivity Theorem.
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The Lyapunov exponents of this system are both zero. It is clear that the
length of a vector purely in the y-direction is preserved under iteration, so such a
vector give rise to a zero Lyapunov exponent. The system preserves area, so the
other Lyapunov exponent must also be zero. Therefore, this map does not satisfy
the Alligood, Sauer, and Yorke conditions to be called chaotic. Their definition
requires the orbits to separate at an exponential rate, which is closer to requiring
that the system has positive topological entropy.

6. Generic Properties

The Closing Lemma of Pugh implies that for a generic C1 diffeomorphism, the
periodic points are dense in the nonwandering set. Recently, Hayashi proved a very
strong generalization of the Closing Lemma called the Connecting Lemma, which
has been used to prove other generic properties. In particular, Bonatti and Crovisier
[3] used Hayashi’s Connecting Lemma to show that for a C1 generic diffeomorphism
F, it is topologically transitive on any of its attractors. If the attractor is topolog-
ically transitive, then all the points in the attractor are nonwandering. Therefore,
for a C1 generic diffeomorphism F, it automatically satisfies our condition (b) for a
chaotic attractor and also Devaney’s condition (3) about the density of the periodic
points.
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