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0. Introduction

In this paper 1, we show how the differentiable linearization of a diffeomorphism
near a hyperbolic fixed point (a la Sternberg [11]) can be adapted to a neighbor-
hood of a compact invariant submanifold. There are two parts of the standard
proof. The first part says that if two diffeomorphisms have all their derivatives
equal at a hyperbolic fixed point, then they are C∞ conjugate to one another in
a neighborhood. This result is true in a neighborhood of a compact invariant sub-
manifold with little change in the statement or proof. See Theorem 1. The second
part says that if a diffeomorphism f satisfies eigenvalue conditions at a hyperbolic
fixed point, then there is a C∞ diffeomorphism h such that all the derivatives
of g = h-1f h at the fixed pint are equal to the derivatives of the linear part of
f . Near an invariant submanifold, there is no general condition that replaces the
eigenvalue condition, so we got only a very much weakened result in this direction.
See Theorem 2. However, Theorem 2 does imply that under some conditions the
strong stable manifolds of points vary differentiably. See Corollaries 3 and 4.

We were aware that Theorem 1 was true before reading the recent paper of
Takens [12]. However, his proof is the easiest to adapt to our setting and also save
one more derivative than some other proofs. We could just say that Theorem 1
follows from the proof in [12], however for clarity, we repeat the proof with the
necessary modifications. The only essential changes are in the definitions of η(δ)
and O. All other changes are a matter of style.

To prove Theorem 2, we adapt the type of proof used for Theorem 1. At a hyper-
bolic fixed point, this can be solved much more directly by solving for coefficients
of polynomials using eigenvalue conditions. See [9], [11], or [12].

1. Statement of the theorems

For h : M →M , let

jrh(x) = (x, h(x), Dh(x), . . . , Drh(x)).

This is called the r-jet of h at x in local coordinates on the domain. (It is possible
to define these without local coordinates, but it really changes none of the ideas in
our proofs. See [4].)

Key words and phrases. dynamical systems, differentiable conjugacy, normally hyperbolic
manifold.

1This paper originally appeared in the Bolletim da Sociedade Brasileira de Matemática, 2
(1971). We have made slight changes in wording in a few places. Also, we have added footnotes
to explain certain points.

1
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Let V be a compact submanifold of M . Give M a Riemannian metric. Let ρ
be the distance between point of M induced by the metric. Let p : TM →M be
the usual projection. Let TxM = p−1(x) and TV M = p−1(V ). A diffeomorphism
f : M → M is called hyperbolic along V if f(V ) = V , there is a splitting
TV M = TV ⊕ Eu ⊕ Es as Whitney sum of subbundles, and there is an integer n
such that

µx = ‖Dfn(x)|Es
x‖ < 1 and

λx = ‖Df−n(x)|Eu
x‖ < 1

for all x ∈ V , where Es
x = Es ∩ TxM and Eu

x = Eu ∩ TxM .
For h : M →M and x ∈ V , let

D1h(x) = Dh(x)|TxV,

D2h(x) = Dh(x)|Eu
x , and

D3h(x) = Dh(x)|Es
x.

A diffeomorphism f is called r-normally hyperbolic along V if

λx ‖D1f
n(x)‖k < 1 and

µx ‖D1f
−n(x)‖k < 1

for all x ∈ V and all 0 ≤ k ≤ r. This says that f more contracting (resp.
expanding) normally to V than any contraction (resp. expansion) along V .

Let

W s(V, f) = {x ∈M : ρ(f j(x), V ) → 0 as j →∞} and

Wu(V, f) = {x ∈M : ρ(f−j(x), V ) → 0 as j →∞}.

These are called the stable and unstable manifolds of V for f . For x ∈ V , let

W ss(x, f) = { y ∈M : there exits a constant cy such that

ρ(f jn(x), f jn(y)) ≤ cyµx · · ·µf(j−1)n(x) for j ≥ 0 } and

Wuu(x, f) = { y ∈M : there exits a constant cy such that

ρ(f−jn(x), f−jn(y)) ≤ cyλx · · ·λf(−j+1)n(x) for j ≥ 0 }.

These are called the strong stable and strong unstable manifolds of x for f .
If the diffeomorphism f is Cr and r-normally hyperbolic, then the papers [6]

and [7] show that W s(V, f), Wu(V, f), V , W ss(x, f), and are Cr, and

W s(V, f) =
⋃
{W ss(x, f) : x ∈ V } and

Wu(V, f) =
⋃
{Wuu(x, f) : x ∈ V }.

Also,

TV (W s(V, f)) = TV ⊕ Es and

TV (Wu(V, f)) = TV ⊕ Eu.

A more general theorem of this kind is contained in [8].
Now we define the loss of derivatives that occurs in the conjugation of Theorem

1. Given α, let β = β(f, α) ≤ α be the largest integer such that

‖Df−n(fn(x))‖ · ‖Dfn(x)‖β · ‖D3f
n(x)‖α−β < 1 for all x ∈ V.
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Next, let γ = γ(f, β) ≤ β be the largest integer such that

‖Dfn(f−n(x))‖ · ‖Df−n(x)‖γ · ‖D2f
−n(x)‖β−γ < 1 for all x ∈ V.

Theorem 1. Assume f, g : M → M are Cα diffeomorphisms, and V ⊂ M
is a compact C1 invariant submanifold such that both f and g are 1-normally
hyperbolic along V with jαf(x) = jαg(x) for all x ∈ V . Let β and γ be defined
as above with α ≥ β ≥ γ ≥ 1. Assume W s(V, f) is a Cβ submanifold near V .

Then there exist a neighborhood U of V and a Cβ diffeomorphism h : U →M
such that k = h−1gh has jβk(x) = jβf(x) for x ∈ W s(V, f) ∩ U . Also there
exists a Cγ diffeomorphism h′ : U →M such that (h′)−1gh′(x) = f(x) for x ∈ U .
Further, h|V = id and h′|V = id.

The proof is contained in §3.

Theorem 2. Let f : M → M be a Cα diffeomorphism, and V ⊂ M a compact
invariant Cα submanifold. Assume f contracts along V , i.e., Eu is the zero
section in the definition of f being hyperbolic along V . Assume that for 1 ≤ β ≤ α

‖D1f
−1(f(x))‖ · ‖Df(x)‖β−1 · ‖D3f(x)‖ < 1 for all x ∈ V.

Then there exists a neighborhood U of V and a Cβ diffeomorphism h : U →M
such that h|V = id and g = h−1fh has Dj

3(pr ◦g)(x) = 0 for 1 ≤ j ≤ β where
pr : U → V is a differentiable normal bundle projection. Thus infinitesimally g
preserves the fibers of pr : U → V .

The proof is contained in §4.

Corollary 3. Let f be a Cα diffeomorphism contracting along V . Assume

‖D1f
−1(f(x))‖ · ‖Df(x)‖α−1 · ‖D3f(x)‖ < 1

for all x ∈ V . Let p and r be integers such that

‖D3f
−1(f(x))‖ · ‖D3f(x)‖p ≤ 1

‖D1f(x)‖α−p

(
‖D3f(x)‖
‖D1f(x)‖

)r+1

< 1.

Let β = α− 1− p− r.
Then there exists a neighborhood U of V and a Cβ diffeomorphism h : U →M

such that g = h−1fh preserves the fibers of pr : U → V . Actually, h has all
derivatives DjDk

2h(x) for x ∈ U , 0 ≤ j ≤ β, and 0 ≤ j + k ≤ α. In particular,
the set of W ss(x, f) for x ∈ V form a foliation of W s(V, f) ∩ U such that each
leaf is Cα and they vary Cβ.

Proof. By applying Theorem 2, we can assume Dj
2(pr ◦f)(x) = 0 for 1 ≤ j ≤ α

and x ∈ V . Define g1 : U → V by g1(x) = f1(prx). In vector bundle charts of
pr : U → V define g2(x) = f2(x) Use bump functions to define g = (g1, g2) : U →
U . Then g1(x) = g1(prx) = f1(prx) for x ∈M and jαf(x) = jαg(x) for x ∈ V .
Theorem 1 gives the Cβ conjugacy of f and g where β = α− 1− p− r since

‖D3f
−1‖ · ‖D1f‖α−1−p−r · ‖D3f‖1+p+r ≤ ‖D1f‖α−1−p−r · ‖D3f‖1+r

≤ ‖D1f‖α−p

(
‖D3f‖
‖D1f‖

)1+r

< 1.

The extra derivatives of h exist as remarked in the proof of Theorem 1. �
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Using the methods of the proof of Theorem 1 differently, we can get a stronger
statement about the differentiability of the foliation {W ss(x, f) : x ∈ V } of
W s(V, f).

Corollary 4. 2 Let f be a Cα diffeomorphism that is 1-normally hyperbolic along
V and W s(V, f) is Cα. Assume that 1 ≤ β ≤ α− 1 satisfies

‖D1f
−1(f(x))‖ · ‖D1f(x)‖β · ‖D3f(x)‖ < 1 for all x ∈ V.

Then there is a neighborhood U of V such that the set of W ss(x, f) for x ∈ V
form a Cβ foliation of W s(V, f) ∩ U .

The proof is contained in §5.

Using the estimates in [9], the proofs of the above theorems should go over to
flows. However, beware of the proof of linearization given in [9]. “By induction”
does not works since the variation equation does not satisfy a global Lipschitz
constant.

We would like to discuss how the above theorems relate to some of the results
in [5], [6], and [10]. The condition of [6] and [7] that f is r-normally hyperbolic
is similar but different than the condition we require in Theorem 2 and Corollaries
3 and 4. If f is r-normally hyperbolic, then W s(V, f), Wu(V, f), and V are Cr

manifolds. See [6]. Also, for each x ∈ V , W ss(x, f) and Wu(x, f) are Cr and
they vary continuously in the Cr topology. Corollaries 3 and 4 give that they vary
differentiably.

[10] show that if f is 1-normally hyperbolic, then f is C0 conjugate to a map
g that preserves the fibers of pr : U ⊂M → V and such that g is linear on fibers
of pr : U ⊂M → V . Corollary 3 gives a differentiable conjugacy in the contracting
case to a fiber preserving map g, but g is not necessarily linear on fibers.

If V is replaced by an expanding attractor, then 6.4 in [5] gives conditions
under which the stable manifolds of points form a C1 foliation of a neighborhood.
Corollary 4 possibly could be adapted to this setting to give the same answer. The
result in [5] only applies to stable manifolds of points,

W s(x, f) = { y ∈M : ρ(f j(x), f j(y)) → 0 as j →∞},

and not the strong stable manifolds of points. 3 Thus, when a submanifold V is
an attractor, the results are different. Also, we give a condition that insure higher
differentiability.

Added in proof: M. Shub points out to me that 6.4 in [5] and the Cr section
theorem prove Corollary 4.

2. Notation and definitions

Since we are only interested in a conjugacy of diffeomorphisms in a neighborhood
of V , we can take a tubular neighborhood of V . Thus, we can consider M as a
vector bundle over V , pr : M → V . Let p : TM → M be the projection of the
tangent bundle of M to M . Denote a norm induced by a Riemannian metric on
TM by | · |. Let ρ be the distance between points of M induced by | · |.

2The original paper only stated this theorem for the case when f is contracting along V .
3W s(x, f) could include some directions within V .
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Let Lr
s(TxM,TyM) be the (linear) space of all symmetric r-linear maps from

TxM to TyM .4 Let

J0(M,M) = M ×M and

Jr(M,M) =
⋃
{ (x, y)× L1

s(TxM,TxM)× · · · × Lr
s(TxM,TxM) : x, y ∈M }.

If h : M →M is Cr, let

jr h(x) = (x, h(x), Dh(x), . . . , Drh(x)) ∈ Jr(M,M).

This is called the r-jet of h at x. Let π0 : J0(M,M) → M be the projection on
the first factor, and

πr : Jr(M,M) → Jr−1(M,M)

be the natural projection for r ≥ 1. Let

ψr = π0 ◦ · · ·πr : Jr(M,M) →M.

All of these projections are fiber bundles, and ψr : Jr(M,M) → M is called the
r-jet bundle. Define a distance on J0(M,M) by

ρ0((x1, x2), (y1, y2)) = max{ ρ(xi, yi) : i = 1, 2 }.

Let the distance on each fiber of πr : Jr(M,M) → Jr−1(M,M) be the usual one
induced by | · | pm TM ,

ρr ( (x, y,A0, . . . , Ar), (x, y,A0, . . . , Ar−1, Br) ) = ‖Ar −Br‖
= sup{ |(Ar −Br)(v1, . . . , vr)| : vi ∈ TxM and |vi| = 1 for all i }.

By using the distance on the base space, there is an induced (noncanonical) distance
on Jr(M,M). Given a subset U ⊂M , let

Jr( (M,U), M ) = ψ−1
r (U).

Let Γr( (M,U), M ) be the space of continuous section of ψr : Jr( (M,U), M) →
U .

3. Proof of Theorem 1

I. First we prove that the conjugacy exists along W s(V, f). We use the notation
given in §1 and §2. By the assumptions of Theorem 1, there exists an integer n
and a 0 < µ < 1 such that

‖Df−n(fn(x))‖ · ‖Dfn(x)‖β · ‖Dfn(x)|Es
x‖α−β < µ for all x ∈ V.

Below we construct a conjugacy h between fn and gn. Because of its special
form, f ∼ limj→∞ g−njfnj , h is also a conjugacy between f and g. Thus for
convenience, we take n = 1. The reader can check the details for n > 1. The
constant µ is fixed during the proof.

4Note: Higher derivatives are only defined in terms of local coordinates. Therefore, cover a
neighborhood of V with a finite number of coordinate charts and define the jets and norms in
terms of these coordinate charts.
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We define the following numbers

ax = ‖Dg−1(x)‖ for x ∈M

Ax =

{
ρ(f(x), V ) ρ(x, V )−1 for x ∈W s(V, f) r V

lim{Ay : y ∈W s(V, v) r V and y → x } for x ∈ V
bx = ‖Df(x)‖ for x ∈W s(V, f).

Note for x ∈ V ,

Ax ≤ ‖Df(x)|Es
x‖ < 1,

a−1
f(x) ≤ Ax < 1 ≤ Bx, and

af(x)B
β
x A

α−β
x < µ < 1.

There exist neighborhoods

η(δ) = {x ∈W s(V, f) : ρ(x, V ) < δ } and

O of { (m,m) : m ∈ V } in M ×M

such that (i) f(η(δ)) ⊂ η(δ) and (ii) if x ∈ η(δ) and (f(x), y) ∈ O, then
ay B

β
x A

α−β
x < µ.

For simplicity of notation, let

Jr = Jr((M,η(δ)),M) = ψ−1
r (η(δ)) and

ΓJr be the continuous sections of the bundle ψr : Jr → η(δ).

We define a second norm on the fibers of πr : Jr → Jr−1 (possibly infinite) as
follows: 5 for πrc

1 = πrc
2,

σr(c1, c2) = sup{ ρr(c1(x), c2(x)) ρ(x, V )−(α−r) : x ∈ η(δ) r V }.

If c ∈ ΓJ0, then we can identify it with the map c0 : η(δ) → M such that
c(x) = (x, c0(x)). Let

Φ0 : ΓJ0 → ΓJ0 be defined by

Φ0(c)(x) = (x, g−1(c0(f(x)))) = j0(g−1c0f)(x).

Let

Φr : ΓJr → ΓJr be defined by

Φr(c)(x) = jr(g−1(c0(f(x)))) = jr(g−1hf)(x) where jrh(f(x)) = c(f(x)).

First we prove Φr contracts along fibers of πr.

Lemma 1. Let 0 ≤ r ≤ β, c1, c2 ∈ ΓJr with πrc
1 = πrc

2, σr(c1, c2) <∞, and

π1 ◦ · · · ◦ πrc
i(f(x)) ∈ O for all x ∈ η(δ), i = 1, 2.

Then,
σr(Φr(c1),Φr(c2)) ≤ µσr(c1, c2).

5The map on sections is not a contraction in the usual metric. It needs a factor related to
moving closer to the invariant manifold.
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Proof. Assume r ≥ 1.

σr(Φrc
1, Φrc

2) = sup{ ρr(Φrc
1(x), Φrc

2(x)) ρ(x, V )−(α−r) :

x ∈ η(δ) r V }

≤ sup{ ρr(c1(f(x)), c2(f(x))) ayB
r
x ρ(x, V )−(α−r) :

x ∈ η(δ) r V and π1 ◦ · · · ◦ πrc
i(f(x)) = (f(x), y) }.

This last inequality is true using the formula for higher derivatives of a composition
of functions and the fact that πrc

1 = πrc
2. Then, this is

≤ sup{ ρr(c1(f(x)), c2(f(x)))µρ(f(x), V )−(α−r) :

x ∈ η(δ) r V }
≤ µσr(c2, c2).

When r = 0, ρ(x, V )−α ≤ µρ(f(x), V )−α. The details are left to the reader. �

Let Ir ∈ ΓJr be defined by Ir(x) = jr(id)(x) = (x, x, idx, 0, . . . , 0) where
id : M → M is the identity map and idx : TxM → TxM is the identity map. Let
C0 = σ0(Φ0I0, I0). C0 is finite because jαf(x) = jαg(x) for all x ∈ V and V is
compact. Let D0 = C0(1 − µ)−1. Let 0r be the zero section of πr : Jr → Jr−1.
Let

F0 = { c ∈ ΓJ0 : σ0(c, I0) ≤ D0} and

Fr = { c ∈ ΓJr : πrc ∈ Fr−1 and σr(c, 0rπrc) ≤ D0} for r ≥ 1.

Since σ0(c, I0) ≤ D0 for c ∈ F0, there exists a δ > 0 smaller than above if
necessary, such that for c ∈ F0 and x ∈ η(δ), then c(f(x)) ∈ O.

Lemma 2. Let 0 ≤ r ≤ β. Then Φr : ΓJr → ΓJr maps Fr into itself.

Proof. We prove the lemma by induction. F−1 = ∅ is invariant by Φ−1. Assume
Fr−1 is invariant by Φr−1. Let c ∈ Fr. Then

σr(Φrc, 0rπrΦrc) ≤ σr(Φrc, Φr0rπrc) + σr(Φr0rπrc, 0rπrΦrc)

≤ µσr(c, 0rπrc) + σr(Φr0rπrc, 0rπrΦrc).

For r = 0, this last term is ≤ µD0 + C0 ≤ D0. For r > 0, it is <∞. �

Lemma 3. Let 0 ≤ r ≤ β. Then Φr : Fr → Fr is continuous in terms of σr.

Proof. We use the chain rule for higher derivatives of a composition.

σr(Φrc
1, Φrc

2) = sup{ρr(Φrc
1,Φrc

2) ρ(x, V )−(α−r) : x ∈ η(δ) r V }
≤ (constant) sup{ ‖Dig−1(y2)‖ ρj1(c

1(f(x)), c2(f(x))) · · ·

ρjr (c
1(f(x)), c2(f(x))) ‖Dk1f(x)‖ · · · ‖Dkjf(x)‖ ρ(x, V )−(α−r) :

x ∈ η(δ) r V, π1 ◦ · · ·πrc
2(f(x)) = (f(x), y2), 1 ≤ i ≤ r,

j = j1 + · · ·+ jr, k1 + · · ·+ kj = r }
+ (constant) sup{ ρj(g−1(y1), g−1(y2)) ‖Dj1c1(f(x))‖ · · · ‖Djic1(f(x))‖·

‖Dk1f(x)‖ · · · ‖Dkjf(x)‖ ρ(x, V )−α−r) :

π1 ◦ · · ·πrc
1(f(x)) = (f(x), y1) }.
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Here the constants depend only on the binomial coefficients. We look at the first
supremum and leave the second to the reader. It is

≤ (constant) sup{σj1(c
1, c2) · · ·σji(c

1, c2) · ρ(f(x), V )(iα−j) ρ(x, V )−(α−r) :

1 ≤ i ≤ r, 1 ≤ j ≤ r }
≤ (constant)σr(c1, c2)r.

These last two constants include the supremum of derivatives of f and g−1. From
this it follows that Φr is continuous. �

By Lemma 1, Φ0 : F0 → F0 is a contraction in terms of σ0. Thus, there
is a unique attractive fixed point, c0. Attractive means that for each c ∈ F0,
σ0(c0,Φ

j
0(c)) → 0 as j →∞. Assume that Fr−1 has an attractive fixed point for

1 ≤ r ≤ β. By Lemma 3, Φr is continuous. By Lemma 2, Φr : Fr → Fr contracts
along fibers of πr : Fr → Fr−1 by a factor of µ. By the fiber contraction theorem
(Theorem 1.2 in [5]), Φr has a unique fixed point in Fr and it is attractive.

Let id : M → M be the identity diffeomorphism and Iβ(x) = jβ(id)(x).
Then Φβ(Iβ) converges ( in the uniform topology of sections of ψβ : Jβ →
η(δ) ) to a section c ∈ ΓJβ . Let c(x) = (x, c0(x), . . . , cβ(x)) with ci(x) ∈
Li

s(TxM,Tc0(x)M) for 1 ≤ j ≤ β. By the uniform convergence, it follows that
ci : η(δ) →

⋃
Li

s(TxM,TyM) : x ∈ η(δ), y ∈ M } is Cβ−i. Thus, the condi-
tions of the Whitney Extension Theorem are satisfied. See [1] for a statement of
the theorem. There exists a Cβ function h : M → M such that for x ∈ η(δ),
jβh(x) = c(x), Dh(x) = idx for x ∈ V so h is a local diffeomorphism in a
neighborhood of V . Thus, h−1gh is defined in a neighborhood of V in M and
jβ(h−1gh)(x) = jβf(x) for x ∈ η(δ) ⊂W s(V, f). This completes the conjugacy of
f and g along W s(V, f).

Remark. In Corollary 3, we noted that more derivatives of the conjugacy ex-
isted along the fibers. In that setting, we have Cα diffeomorphisms such that
Dj

2(pr ◦g)(x) = 0 for 1 ≤ j ≤ α and x ∈ V and f(prx) = pr ◦f(x). Here
pr : M → V is a normal bundle. For α ≥ r ≥ β, let Jβ,r be the bundle of maps
with all derivatives DjDk

2h(x) for 0 ≤ j ≤ β and 0 ≤ j + k ≤ r. Let ρβ,r be the
associated norm. Let πr : Jβ,r → Jβ,r−1 be as before. For πrc

1 = πrc
2, let

σβ,r(c1, c2) = sup{ ρβ,r(c1(x), c2(c)) ρ(x, V )−(α−r) : x ∈ η(δ) r V }.

If c1, c2 ∈ Jβ,r and πrc
1 = πrc

2, then

ρβ,r(Φβ,rc
1(x),Φβ,rc

2(x)) ρ(x, V )−(α−r)

≤ ρβ,r(c1(f(x)), c2(f(x))) ay B
α
x A

r−β
x ρ(x, V )−(α−r).

A little checking is necessary to show this depends only on ρβ,r and not ρr. (f
preserves fibers.) Then this is ≤ µρβ,r(c1(f(x)), c2(f(x))). Lemma 1 follows. The
other details are left to the reader.
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II. Now we can assume f and g are Cβ and jβ f(x) = jβ g(x) for all all
x ∈W s(V, f) = W s and x near V . For x ∈M , define the following numbers:

ax = ‖Df−1(x)‖

bx =

{
ρ(f−1(x), W s) ρ(x,W s)−1 for x /∈W s

lim{ by : y /∈W s and y → x } for x ∈W s,

Bx = ‖Dg(x)‖.

For x ∈ V ,

a−1
x < 1 < b−1

x ≤ Bf−1(x) and

Bf−1(x) a
γ
x b

β−γ
x < µ < 1.

By using a bump function, we can make g(x) = f(x) at points x such that
ρ(x, V ) ≥ δ. ( g is then defined on all of M . ) Also, g can be left unchanged at
points x with ρ(x, V ) ≤ δ/2. Let

η(δ) = {x ∈M : ρ(x,W s) < δ } and

η′(δ) = {x ∈M : ρ(x, V ) < δ }.

By taking δ smaller if necessary and O to be a small neighborhood of { (x, x) :
m ∈ W s } in M ×M , we can insure that for x ∈ η′(δ) and (f−1(x), y) ∈ O, it
follows that By a

γ
x b

β−γ
x < µ.

Let Φr be induces by h 7→ g◦h◦f−1. That is, in the earlier definition replace f
by f−1 and g−1 by g. Continue as before taking sections c of ψr : Jr(η(δ),M) →
η(δ) such that c(x) = jr id(x) for x ∈ η(δ) r η′(δ). Lemmas 1, 2, and 3 apply to
these sections. The limj→∞ Φj

γ(Iγ) gives the γ-jet of the conjugacy h on η(δ).

4. Proof of Theorem 2

In this section, we assume TV M = TV ⊕ Es. The bundle F 1 = TV is differ-
entiable. Since we do not assume the bundles are invariant, we can approximate
Es by F 3 that is differentiable. Write Dih(z) = Dh(z)|F i. We assume in the
theorem that

‖D1f
−1(f(z))‖ · ‖Df(z)‖β−1 · ‖D3f(x)‖ < µ < 1 for all z ∈ V.

Denote a normal bundle projection by pr : M → V . For c ∈ Jr( (M,V ), V ), we
write c(z) = (z, c0(z), . . . , cr(z)) with ck(z) ∈ Lk

s(TzM,F 1
c0(z)).

Let Fr be the set of sections c of Jr( (M,V ), V ) such that, for each z ∈ V
there is a Cr function h : M → V such that h|V = id and c(z) = jr h(z). This is
equivalent to assuming that for each z ∈ V , (i) π1 ◦ · · · ◦ πr c(z) = (z, z) and (ii)
ck(z)|(F 1 × · · · × F 1) = Dk(id)(z) where id : V → V is the identity function.

Let fV = f |V : V → V and f -1
V = (f |V )-1 : V → V . Define Φr : Fr → Fr by

Φr c(z) = jr (f -1
V hf)(z) where jr h(f(z)) = c(f(z)).

By abuse of notation, Φr c(z) = jr (f -1
V cf)(z).

Lemma 4. Let 0 ≤ r ≤ β and c1, c2 ∈ Fr be such that πr c
1 = πr c

2.
Then ρr(Φr c

1, Φr c
2) ≤ µρr(x1, c2).
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Proof.

ρr(Φr c
1, Φr c

2)

≤ sup{ ‖D1f
-1
V (f(z))‖ · ‖(c1(f(z))− c2(f(z))(Df(z))r‖ : z ∈ V }

≤ sup{ ‖D1f
−1
1 (f(z))‖ ρr(c1, c2) ‖D3f(z)‖ · ‖Df(z)‖r−1 : z ∈ V }

since c1r|(F 1 × · · · × F 1) = c2r|(F 1 × · · · × F 1). Then

ρr(Φr c
1, Φr c

2) ≤ µρr(c1, c2).
�

As in the proof of Theorem 1, we can apply the fiber contraction principle to
find c ∈ Fβ such that Φr (c) = c. Let s ∈ ΓJβ( (M,V ),M) be given by s(z) =
(c(z), jβ(pr3 z)), i.e., the components of s in F 3 in the range is like the jet of
the identity function on fibers zero derivatives in the directions along V . (This
has meaning at the jet level but not as maps.) By the uniform convergence of
Φk

β(jβ pr) to c, it follows that s satisfies the conditions of the Whitney Extension
Theorem. There exists a Cβ h such that jβ h(z) = s(z) for z ∈ V . The map h
is a diffeomorphism on a neighborhood of V because of the form of the derivatives
at points of V .

Let g = hfh−1 and g1 = pr g. At the level of jets for z ∈ V , jβ(f -1
V h1f)(z) =

jβ(h1)(z) and jβ(pr g ◦ h)(z) = jβ(h1 ◦ f)(z), so jβ(g1)(z) = jβ(pr g)(z) =
jβ(fV pr)(z) has the derivatives zero in the direction of F 3 as claimed. 6 This
completes the proof of Theorem 2.

5. Proof of Corollary 4

Proof. Since W s(V, f) is Cα, we can restrict the map to this space and assume f

is contracting along V . By applying Theorem 2, we can assume Dj
3(pr ◦f)(x) = 0

for 1 ≤ j ≤ β and x ∈ V . Define g1 : U → V by g1(x) = f1 ◦ pr(x). In
the proof of Theorem 1, replace ax = ‖Dg−1(x)‖ by ax = ‖Dg−1

1 (x)‖ where
g -1
1 = (f |V )-1 : V → V . Next consider jets in Jr = Jr(η(δ), V ) instead of
Jr(η(δ),M). Define Φr : ΓJr → ΓJr by

Φr(c)(x) = jr(g−1hf)(x) where jrh(f(x)) = c(f(x)).

As in the earlier proof, we can find a c such that Φβc = c and c satisfies
the conditions of the Whitney Extension Theorem. There exists a Cβ−1 function
h : M → V such that g−1hf = h. The map h is a projection onto V and defines
a Cβ foliation. Since hf = g1h, it follows that f preserves the foliation. Since the
foliation is tangent to Es, it follows it is W ss(x, f). �
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