DIFFERENTIABLE CONJUGACY NEAR COMPACT
INVARIANT MANIFOLDS

CLARK ROBINSON

0. INTRODUCTION

In this paper !, we show how the differentiable linearization of a diffeomorphism
near a hyperbolic fixed point (a la Sternberg [11]) can be adapted to a neighbor-
hood of a compact invariant submanifold. There are two parts of the standard
proof. The first part says that if two diffeomorphisms have all their derivatives
equal at a hyperbolic fixed point, then they are C'* conjugate to one another in
a neighborhood. This result is true in a neighborhood of a compact invariant sub-
manifold with little change in the statement or proof. See Theorem 1. The second
part says that if a diffeomorphism f satisfies eigenvalue conditions at a hyperbolic
fixed point, then there is a C*° diffeomorphism h such that all the derivatives
of g = h™'fh at the fixed pint are equal to the derivatives of the linear part of
f. Near an invariant submanifold, there is no general condition that replaces the
eigenvalue condition, so we got only a very much weakened result in this direction.
See Theorem 2. However, Theorem 2 does imply that under some conditions the
strong stable manifolds of points vary differentiably. See Corollaries 3 and 4.

We were aware that Theorem 1 was true before reading the recent paper of
Takens [12]. However, his proof is the easiest to adapt to our setting and also save
one more derivative than some other proofs. We could just say that Theorem 1
follows from the proof in [12], however for clarity, we repeat the proof with the
necessary modifications. The only essential changes are in the definitions of 7(¢)
and €. All other changes are a matter of style.

To prove Theorem 2, we adapt the type of proof used for Theorem 1. At a hyper-
bolic fixed point, this can be solved much more directly by solving for coefficients
of polynomials using eigenvalue conditions. See [9], [11], or [12].

1. STATEMENT OF THE THEOREMS
For h: M — M, let
Jj"h(z) = (x, h(z), Dh(zx), ..., D"h(x)).

This is called the r-jet of h at z in local coordinates on the domain. (It is possible
to define these without local coordinates, but it really changes none of the ideas in
our proofs. See [4].)

Key words and phrases. dynamical systems, differentiable conjugacy, normally hyperbolic
manifold.

IThis paper originally appeared in the Bolletim da Sociedade Brasileira de Matemadtica, 2
(1971). We have made slight changes in wording in a few places. Also, we have added footnotes
to explain certain points.
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Let V' be a compact submanifold of M. Give M a Riemannian metric. Let p
be the distance between point of M induced by the metric. Let p: TM — M be
the usual projection. Let T, M = p~!(z) and Ty M = p~ (V). A diffeomorphism
f: M — M is called hyperbolic along V if f(V) = V| there is a splitting
TyM =TV @ E* & E° as Whitney sum of subbundles, and there is an integer n
such that

po = [|Df"(@)|EZ <1 and
Ao = [|DFT (@) Bl <1

for all x € V, where E = E°NT,M and E} = E“NT,M.
For h: M — M and z €V, let

Dyh(x) = Dh(x)|T,V,
Dyh(x) = Dh(z)|E}, and
Dsh(z) = Dh(z)|E}.
A diffeomorphism f is called r-normally hyperbolic along V if
Ao [ D1 f™(2)F < 1 and
pa [|DLf " (@)||F < 1

for all z € V and all 0 < k < r. This says that f more contracting (resp.
expanding) normally to V' than any contraction (resp. expansion) along V.
Let

WV, f)={xz e M:p(fi(x),V)—0as j—oo} and
WV, f)={z € M:p(f7(x),V) =0 as j— oo}
These are called the stable and unstable manifolds of V' for f. For x € V, let
W*(z, f) = {y € M : there exits a constant ¢, such that
p(f7™ (), 7" (y)) < ybta - fipG-vn(my for j >0} and
Wz, f) = {y € M : there exits a constant ¢, such that
P(f_jn(m)v f_jn(y)) SeyAg - /\f(—j+1)n(z) for j >0}.
These are called the strong stable and strong unstable manifolds of x for f.

If the diffeomorphism f is C” and r-normally hyperbolic, then the papers [6]
and [7] show that W*(V, f), W*(V, f), V, W*%(x, f), and are C”, and

WV, f) =W (@, f):eeV} and
WV, f) =W, f) :w e V).
Also,
Ty(W(V,f) =TV @ E*  and
Ty (W*(V, ) =TV & E".

A more general theorem of this kind is contained in [8].
Now we define the loss of derivatives that occurs in the conjugation of Theorem
1. Given a, let 8 = B(f,a) < a be the largest integer such that

1D (@) 1D @) - 1D f™(@)|*77 < 1 for all z € V.
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Next, let v =~(f,8) < be the largest integer such that
D (f @) - IDF @)1 - [|D2f (@)~ <1 forall z € V.

Theorem 1. Assume f,g : M — M are C diffeomorphisms, and V. C M
is a compact C' invariant submanifold such that both f and ¢ are 1-normally
hyperbolic along V with j*f(x) = j%g(x) for all x € V. Let § and ~ be defined
as above with o> 3>~y > 1. Assume W*(V, f) is a Cch submanifold near V.

Then there exist a neighborhood U of V and a CP diffeomorphism h:U — M
such that k = h™'gh has jPk(z) = j8f(x) for x € W*(V,f)NU. Also there
exists a C7 diffeomorphism h' : U — M such that (k') "'gh/(z) = f(z) for z € U.
Further, h|V =id and W'V =id.

The proof is contained in §3.

Theorem 2. Let f: M — M be a C% diffeomorphism, and V C M a compact
mwvariant C submanifold. Assume f contracts along V', i.e., E™ is the zero
section in the definition of f being hyperbolic along V. Assume that for 1 < < «

1D (F @) - D)7 IDsf(z)l <1 for all z € V.

Then there exists a neighborhood U of V' and a C? diffeomorphism h:U — M
such that h|V =id and g = h='fh has Dj(prog)(z) =0 for 1 < j < 3 where
pr: U — V is a differentiable normal bundle projection. Thus infinitesimally g
preserves the fibers of pr:U — V.

The proof is contained in §4.

Corollary 3. Let f be a C* diffeomorphism contracting along V. Assume

DL @) - IDf ()7 - [[Ds f(a)] < 1
forall x € V. Let p and r be integers such that

1D =1 (f @) - [ Dsf ()| < 1

ap IID?)f(fJC)H)T+1
@i (o) <t
Let =a—1—p—r.

Then there exists a neighborhood U of V and a CP diffeomorphism h: U — M
such that g = h™'fh preserves the fibers of pr : U — V. Actually, h has all
derivatives DjDé“h(m) for x eU, 0<j <3, and 0 < j+k < a. In particular,
the set of W**(x, f) for @ € V' form a foliation of W*(V, f)NU such that each
leaf is C® and they vary CP.

Proof. By applying Theorem 2, we can assume Dg(pr of)(z) =0 for 1 < j <«
and © € V. Define g1 : U = V by gi1(z) = fi(prz). In vector bundle charts of
pr:U — V define g2(x) = fo(x) Use bump functions to define g = (g1,92) : U —
U. Then ¢1(z) = g1(prz) = fi(prz) for x € M and j*f(x) = j%g(x) for z € V.
Theorem 1 gives the C? conjugacy of f and g where f=a —1—p—r since

1Dsf =l 1Dy I 27T I Ds fI 75 < Dy f| 7727 | D fI

D' 14+r
<o () <>

The extra derivatives of h exist as remarked in the proof of Theorem 1. ([
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Using the methods of the proof of Theorem 1 differently, we can get a stronger
statement about the differentiability of the foliation {W3(x,f) : = € V} of
W=V, f).

Corollary 4. 2 Let f be a C“ diffeomorphism that is 1-normally hyperbolic along
V and W*(V, f) is C*. Assume that 1 < 3 < a — 1 satisfies

IDLf=H(F @) - DL f (@) - 1Dsf ()| <1 for all w € V.

Then there is a neighborhood U of V' such that the set of W**(x, f) for x € V
form a CP foliation of W*(V, f)NU.

The proof is contained in §5.

Using the estimates in [9], the proofs of the above theorems should go over to
flows. However, beware of the proof of linearization given in [9]. “By induction”
does not works since the variation equation does not satisfy a global Lipschitz
constant.

We would like to discuss how the above theorems relate to some of the results
in [5], [6], and [10]. The condition of [6] and [7] that f is r-normally hyperbolic
is similar but different than the condition we require in Theorem 2 and Corollaries
3 and 4. If f is r-normally hyperbolic, then W*(V, f), W*(V, f), and V are C"
manifolds. See [6]. Also, for each z € V, W*5(x, f) and W"(z, f) are C" and
they vary continuously in the C" topology. Corollaries 3 and 4 give that they vary
differentiably.

[10] show that if f is 1-normally hyperbolic, then f is C° conjugate to a map
g that preserves the fibers of pr: U C M — V and such that ¢ is linear on fibers
of pr: U C M — V. Corollary 3 gives a differentiable conjugacy in the contracting
case to a fiber preserving map g, but ¢ is not necessarily linear on fibers.

If V is replaced by an expanding attractor, then 6.4 in [5] gives conditions
under which the stable manifolds of points form a C foliation of a neighborhood.
Corollary 4 possibly could be adapted to this setting to give the same answer. The
result in [5] only applies to stable manifolds of points,

Wz, f) ={y € M:p(f (), f'(y) =0 as j— oo},

and not the strong stable manifolds of points. > Thus, when a submanifold V is
an attractor, the results are different. Also, we give a condition that insure higher
differentiability.

Added in proof: M. Shub points out to me that 6.4 in [5] and the C” section
theorem prove Corollary 4.

2. NOTATION AND DEFINITIONS

Since we are only interested in a conjugacy of diffeomorphisms in a neighborhood
of V, we can take a tubular neighborhood of V. Thus, we can consider M as a
vector bundle over V, pr: M — V. Let p: TM — M be the projection of the
tangent bundle of M to M. Denote a norm induced by a Riemannian metric on
TM by |-]|. Let p be the distance between points of M induced by |- |.

2The original paper only stated this theorem for the case when f is contracting along V.
3W$(z, f) could include some directions within V.
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Let L% (T,M,T,M) be the (linear) space of all symmetric r-linear maps from
T.M to T,M.* Let
JOM,M)=Mx M  and
T (M, M) = J{ (2,y) x LA T M, TuM) x -+ x LT, M, T,M) : 2,y € M }.
If h: M — M is C7, let
i"h(z) = (z,h(x), Dh(z),...,D"h(x)) € J" (M, M).

This is called the r-jet of h at x. Let m : J°(M, M) — M be the projection on
the first factor, and

s JT(M, M) — J"~H(M, M)
be the natural projection for r > 1. Let
V=m0 mp.: J (M,M)— M.
All of these projections are fiber bundles, and ¢" : J"(M, M) — M is called the
r-jet bundle. Define a distance on J°(M, M) by
po((x1,2), (y1,92)) = max{ p(zs,y;) : i =1,2}.
Let the distance on each fiber of 7, : J"(M, M) — J"~Y(M, M) be the usual one
induced by |-| pm TM,
Pr ( (xa y,A()v s ,Ar)a (xvya A07 B Arfla Br) ) = HAT - BT‘H
= sup{ |(4; — B,)(v1,...,v)| 1 v; € T, M and |v;| =1 for all 7 }.
By using the distance on the base space, there is an induced (noncanonical) distance
on J"(M,M). Given a subset U C M, let
J'((M,U), M) =1 (U).

Let T"((M,U), M) be the space of continuous section of 4, : J"((M,U), M) —
U.

3. PROOF OF THEOREM 1

I. First we prove that the conjugacy exists along W#(V, f). We use the notation
given in §1 and §2. By the assumptions of Theorem 1, there exists an integer n
and a 0 < g <1 such that

IDF=(f @) - IDF" (@) | D™ (@) EZ[|*7F < p for all z € V.

Below we construct a conjugacy h between f™ and g". Because of its special
form, f ~ limj_. g~ ™ f™, h is also a conjugacy between f and g. Thus for
convenience, we take n = 1. The reader can check the details for n > 1. The
constant p is fixed during the proof.

4Note: Higher derivatives are only defined in terms of local coordinates. Therefore, cover a
neighborhood of V' with a finite number of coordinate charts and define the jets and norms in
terms of these coordinate charts.



6 CLARK ROBINSON

We define the following numbers

a, = ||Dg(z)|| for v e M

A — p(f(x),V)p(z, V)~! for x e WS(V, )NV
C lim{ A,y e WH(V,o)\V and y —x} for z €V

by = ||Df(z)| for x € WH(V, f).

Note for z € V,
Ae <[ Df (@) EZ| < 1,
a}?(lx) <A, <1<B,, and
af(z) B AP << 1.
There exist neighborhoods
0(6) = {e e W (V.f): pla,V) <5}  and
O of {(m,m):meV} in MxM

such that (i) f(n(6)) C n(d) and (ii) if * € n(d) and (f(x),y) € O, then
a, BY A2=P < pu.
For simplicity of notation, let

J" = J"((M,n(8)), M) =4 (n(8))  and
T'J" be the continuous sections of the bundle ¥, : J= — n(J).

We define a second norm on the fibers of m, : J” — J"~! (possibly infinite) as

follows: ® for m.c' = m,c?,

ar(c', *) = sup{ pr(c!(2), ¢*(2)) p(a, V)" sz € () NV .

If ¢ € TJO then we can identify it with the map co : 7(§) — M such that
c(x) = (x,co(x)). Let

Py : TJ° - TJ° be defined by
Do(c)(z) = (z, 97 (co(f(2)))) = (9" cof) (@)
Let
®,:T'J" —TJ" be defined by
B.(0)(x) = (g7 (o(F @) = 57 (g7 hf)w) where J7h(f(x)) = e(f(x)).
First we prove @, contracts along fibers of .
Lemma 1. Let 0<r <3, ¢!, ® € 'J" with w.ct = m,.c2, 0,(ct, c?) < o0, and
mo-omc(f(x)) €O forall x€n(d), i=1,2

Then,
UT’((I)T(Cl)v ¢T(C2)) S H UT(017 02)'

5The map on sections is not a contraction in the usual metric. It needs a factor related to
moving closer to the invariant manifold.
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Proof. Assume r > 1.
o (®,ct, ®,.c?) = sup{ p,(®,c' (), .c*(x)) p(x,V)_(“_T) :
zen(@) NV}
< sup{ p,(c'(f(2)), & (f(2))) ay By pla, V)~
zen(d) NV and mo---omc(f(z)) = (f(x),y) }.

This last inequality is true using the formula for higher derivatives of a composition
of functions and the fact that 7,c' = 7,.c?. Then, this is

< sup{ pr(c! (f(2)), & (f(2))) pp(f (x), V)~
zend)\V}
< po,(?,P).
When r =0, p(z, V)™ < up(f(z),V)~*. The details are left to the reader. [
Let I, € T'J" be defined by I.(z) = j"(id)(x) = (z,z,id,,0,...,0) where
id : M — M is the identity map and id, : T, M — T, M is the identity map. Let
Co = 00(®olo, Ip). Cp is finite because jf(x) = j%g(z) for all x € V and V is

compact. Let Dy = Co(1 — )~ 1. Let 0, be the zero section of m, : J© — J'~L.
Let

Fo={celJ’:00(c,Ip) < Dy} and
Fp={celJ" imce F._yand o.(c,0,mc) < Do} for r=>1.

Since oo(c,Iy) < Dy for ¢ € Fy, there exists a § > 0 smaller than above if
necessary, such that for ¢ € %, and x € n(d), then c(f(z)) € 0.

Lemma 2. Let 0 <r < 8. Then ®,:T'J" —T'J" maps %, into itself.

Proof. We prove the lemma by induction. .#_; = ) is invariant by ®_;. Assume
F,._1 is invariant by ®,_;. Let ¢ € %#,.. Then

o (®rc, 0,1 @r0) < 0 (Prc, ,.0,7,) + 0 (D,.0,7rC, 0,7, @)
< wor(c, Opmrc) + 0 (9,0,m¢, 0.7, DC).
For r =0, this last term is < puDg+ Cy < Dgy. For r > 0, it is < oo. O
Lemma 3. Let 0 <r < 3. Then ®,:.%. — F, is continuous in terms of o,.
Proof. We use the chain rule for higher derivatives of a composition.
o (Dct, ®,.¢?) = sup{p,(Prc', &) p(z, V)@ sz en(d) NV}
< (constant) sup{ || D*g ™" (y2)|| pj, (¢! (f(2)), * (f(2))) -+~
P (' ([ (@), (F@)) [DH @) -+ 1D% f @)l pla, V) =077
z€n@) NV, o mc(f(2) = (f(2),52), 1<i<m,
J=dv e Bk k=)
+ (constant) sup{ p; (97" (y1), ™" (y2)) | D" (f (@) - - [ DT (f (2))]-
ID* f(@)| --- 1D f ()] pla, V)~
mo--me (f(2) = (f(2),y1) }-
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Here the constants depend only on the binomial coefficients. We look at the first
supremum and leave the second to the reader. It is

< (constant) sup{ o, (c',c?) -0, (c', ) - p(f(z), V)" p(z, V)~ (@7
1<i<r, 1<j<r}

< (constant) o,.(ct, ¢?)".

These last two constants include the supremum of derivatives of f and ¢g~'. From
this it follows that @, is continuous. O

By Lemma 1, &y : %y — F; is a contraction in terms of og. Thus, there
is a unique attractive fixed point, . Attractive means that for each ¢ € %,
oo(c, ®)(c)) — 0 as j — oo. Assume that .#,_; has an attractive fixed point for
1 <r <. By Lemma 3, ®, is continuous. By Lemma 2, ®, : .%, — .%, contracts
along fibers of m,. : %, — %,._1 by a factor of u. By the fiber contraction theorem
(Theorem 1.2 in [5]), ®, has a unique fixed point in %, and it is attractive.

Let id : M — M be the identity diffeomorphism and Ig(x) = j°(id)(z).
Then ®4(I5) converges ( in the uniform topology of sections of g : J# —
n(0)) to a section ¢ € TJ?. Let c(z) = (z,c0(),...,c5(x)) with c;(x) €
LT, M, T, M) for 1 < j < 3. By the uniform convergence, it follows that
ci :n(6) = U LUT M, T,M) : x € n(6), y € M} is CP~". Thus, the condi-
tions of the Whitney Extension Theorem are satisfied. See [1] for a statement of
the theorem. There exists a C? function h : M — M such that for = € n(é),
jPh(x) = c(x), Dh(z) = id, for 2 € V so h is a local diffeomorphism in a
neighborhood of V. Thus, h~'gh is defined in a neighborhood of V in M and
P (h=tgh)(z) = jP f(z) for x € n(§) C W*(V, f). This completes the conjugacy of
f and g along W*(V, f).

Remark. In Corollary 3, we noted that more derivatives of the conjugacy ex-
isted along the fibers. In that setting, we have C* diffeomorphisms such that
Di(prog)(z) = 0 for 1 < j < a and z € V and f(prz) = prof(x). Here
pr: M — V is a normal bundle. For a > r > 3, let JB7 be the bundle of maps
with all derivatives Dlegh(x) for 0<j<p and 0<j+k <r. Let pg, be the
associated norm. Let 7, : J&" — J#7=1 be as before. For m,.c' = m,¢2, let

o.r(c', *) = sup{ pg.r(c! (2), ¢*(0)) pl, V)~ sz € n(d) NV .

If ¢',¢? € J?7 and m,.c' = 7,2, then

pﬂ:r(q)ﬁ,rcl (z), @B,TCQ(JC)) p(z, V)—(a—r)
< ppr(c'(f(2)), A(f(x))) ay BY AL p(a, V)= (@77,
A little checking is necessary to show this depends only on pg, and not p,. (f

preserves fibers.) Then this is < ppg,(c'(f(z)), ¢*(f(z))). Lemma 1 follows. The
other details are left to the reader.
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IT. Now we can assume f and g are C” and j° f(z) = j%g(x) for all all
x e WS(V,f) =W?* and z near V. For x € M, define the following numbers:

az = ||DfH ()

_ e @), W) pla,We)mt for x g WO
| lim{b,:y ¢ W* and y — x} for x € W*,

By = || Dg(@)]-
For z €V,
a;1<1<b;1§Bf71(m) and

x

Bf71($) al bg_ﬂy <p<l

By using a bump function, we can make g(x) = f(x) at points x such that
p(x,V) > 4. (g is then defined on all of M.) Also, g can be left unchanged at
points z with p(z,V) < %%, Let

no)={zxeM:plz,W°)<d} and
n'()={xeM:px,V)<d}

By taking ¢ smaller if necessary and & to be a small neighborhood of { (z,x) :
m € W} in M x M, we can insure that for x € 7/(6) and (f~'(z),y) € O, it
follows that B, a) b2~ < pu.

Let @, beinduces by h +— goho f~!. That is, in the earlier definition replace f
by f~! and g=! by g. Continue as before taking sections ¢ of 1, : J"(n(d), M) —
7(d) such that ¢(z) = j"id(x) for = € n(d) ~n'(§). Lemmas 1, 2, and 3 apply to
these sections. The lim;_, o <I>Z{(I,Y) gives the ~-jet of the conjugacy h on 7(J).

4. PROOF OF THEOREM 2

In this section, we assume Ty M = TV @ E°. The bundle F! = TV is differ-
entiable. Since we do not assume the bundles are invariant, we can approximate
E* by F? that is differentiable. Write D;h(z) = Dh(z)|F?. We assume in the
theorem that

1D I IDF T IDsf(z) <p <1 forall z€V.

Denote a normal bundle projection by pr: M — V. For ¢ € J"((M,V), V), we
write c(z) = (2,¢0(2), ..., cr(2)) with cx(2) € LE(T. M, FCIO(Z)).

Let %, be the set of sections ¢ of J"((M,V), V) such that, for each z € V
there is a C” function h: M — V such that h|V =id and ¢(z) = j" h(z). This is
equivalent to assuming that for each z € V, (i) my o---om.¢(2) = (2,2) and (ii)
F)|(FY x -+ x F') = D¥(id)(z) where id: V — V is the identity function.

Let fy = fI[V:V =V and fy! = (f|[V)':V — V. Define @, : #. — .Z,. by

O, c(2) = 5" (f'hf)(z) where j"h(f(2)) = c(f(2)).
By abuse of notation, ®, c(z) = j" (fy'ef)(2).

Lemma 4. Let 0 <r < f and c', ¢ € &, be such that 7, c' =7, 2.
Then p,(®,c', @, %) < pp,(a',2).
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Proof.
pr(®,. ¢, @, %)
< sup{ | Dufi (F) - I (f(2)) = (f() (D) 2 € V')
<sup{ | DufiH (F) pr(cts ) IDsf ()] - IDF()T 2 € V)
since cl|(F! x -+« x F1)=c2|(F! x --- x F'). Then

T

pr(®y Cla P, 62) < Upv'(clacQ)-
O

As in the proof of Theorem 1, we can apply the fiber contraction principle to
find ¢ € #3 such that ®,(c) = c. Let s € TJP((M,V), M) be given by s(z) =
(c(2),7”(prsy 2)), i.e., the components of s in F® in the range is like the jet of
the identity function on fibers zero derivatives in the directions along V. (This
has meaning at the jet level but not as maps.) By the uniform convergence of
<I>,’(§( 3% pr) to ¢, it follows that s satisfies the conditions of the Whitney Extension
Theorem. There exists a C? h such that j° h(z) = s(z) for 2 € V. The map h
is a diffeomorphism on a neighborhood of V' because of the form of the derivatives
at points of V.

Let g =hfh™! and g1 = prg. At the level of jets for z € V, j°(fi hif)(2) =
8(h)(z) and j8(prg o h)(z) = B(hs o 1)(2), s0 B(gr)(z) = Fo(prg)(z) =
7(fv pr)(z) has the derivatives zero in the direction of F3 as claimed. ¢ This
completes the proof of Theorem 2.

5. PROOF OF COROLLARY 4

Proof. Since W*(V, f) is C®, we can restrict the map to this space and assume f
is contracting along V. By applying Theorem 2, we can assume Dg (prof)(z)=0
for 1< j < p and © € V. Define g4 : U — V by gi(z) = f1 opr(z). In
the proof of Theorem 1, replace a, = ||Dg~'(x)|| by a. = ||Dg;*(z)| where
git = (fl[Vv)™t : V. — V. Next consider jets in J" = J"(n(5),V) instead of
J"(n(d), M). Define &, : T'J" — T'J" by

®,(c)(z) = j" (g7 hf)(x)  where jTh(f(x)) = c(f(2)).

As in the earlier proof, we can find a ¢ such that ®gc = ¢ and c satisfies
the conditions of the Whitney Extension Theorem. There exists a C®~! function
h:M — V such that g~*hf = h. The map h is a projection onto V and defines
a CP foliation. Since hf = gih, it follows that f preserves the foliation. Since the
foliation is tangent to E*, it follows it is W**(x, f). O
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