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ABSTRACT. We consider a bifurcation of a flow in three dimensions from a double homoclinic connection to
a fixed point satisfying a resonance condition between the eigenvalues. For correctly chosen parameters in the
unfolding, we prove that there is a transitive attractor of Lorenz type. In particular we show the existence of a
bifurcation to an attractor of Lorenz type which is semiorientable, i.e., orientable on one half and nonorientable on
the other half. We do not assume any symmetry condition, so we need to discuss nonsymmetric one dimensional
Poincaré maps with one discontinuity and absolute value of the derivative always greater than one. We also apply
these results to a specific set of degree four polynomial differential equations. The results do not apply to the actual
Lorenz equations because they do not have enough parameters to adjust to make them satisfy the hypothesis.

1. INTRODUCTION

In previous papers, [10] and [11], we proved that there is a bifurcation for differential equations in three
dimensions with a symmetry from a double homoclinic connection for a fixed point to an attractor of Lorenz
type. This attractor could either be untwisted or twisted on both sides. In this paper we consider the situation
without a symmetry: in particular, we show that there can be a bifurcation from a double homoclinic connec-
tion to an attractor which is twisted on one side but untwisted on the other side. We given basic assumptions
which are sufficient for this to take place. We also verify that specific polynomial differential equations in
three dimensions can realize this bifurcation.

A transversality assumption and the dominance of the strong stable eigenvalue are used with standard
stable manifold theory to reduce the problem to a one dimensional map just in the previous papers. The
problem of the unfolding of the bifurcation is thus reduced to a question of understanding the unfolding of a
certain type of one dimensional maps. In all the cases of the homoclinic bifurcation of the three dimensional
flow satisfying a set of assumptions, the resulting one dimensional map can be shown to have a transitive
invariant set for correctly chosen parameter values.

The standard symmetric untwisted situation leads to a symmetric one dimension problem with is mono-
tonically increasing on both sides. In this paper, we consider one dimensional maps which are not symmetric;
in one case the map is increasing on one side and decreasing on the other side. We present the results of the
thesis of M. Byers [2] which show how to carry through the result of Williams to show that the one dimen-
sional map is transitive in these nonsymmetric cases when the absolute value of the derivative is greater than
square root of two. We also refer to the recent result of Morales and Pujals [7], a previous work of Li and
Yorke [6], and the thesis of Choi [3] which show that if the absolute value of the derivative is greater than
one then the map has a transitive invariant set which is not always the whole original interval. One of these
transitive invariant sets has a stable set which forms a dense open subset of a neighborhood, but it does not
always have a trapping region. We are interesting in verifying that the corresponding flow onR

3 does have a
trapping region so we give some conditions in Section 2 which implies its existence.

A trapping regionfor a mapf is a nonempty open setU such thatcl(f(U)) ⊂ int(U). A setΛ is called
an attracting setprovided there is a trapping regionU such thatΛ =

⋂
k≥0 fk(U). A setΛ is called an
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attractor provided it is an attracting set andf |Λ is chain transitive. These definitions follow those given in
[9]. There are other definitions of attractors including Milnor’s which only requires that there a setB of
positive measure such that theω-limit sets of points inB are contained inΛ, i.e.,B is contained in the stable
set ofΛ. In this paper we consider a definition between the two above: a setΛ is called aweak attractor
provided (i) there is a neighborhoodU of Λ and a dense open subsetU ′ of U such that for allx ∈ U ′ the
ω-limit set ofx is contained inΛ and (ii)f |Λ is chain transitive.

A weak attractor can have a 1-cycle in the terminology of Palis, i.e., there can be pointsx0 ∈ U \Λ which
are on both the stable and unstable set ofΛ, i.e.,ω(x0) ⊂ Λ and there is some choice of preimages{xi}i≤0

with f(xi−1) = xi for i ≤ 0 and the distance fromxi to Λ goes to zero asi goes to−∞. (If f is one to one,
then it has a 1-cycle provided there is a pointx0 ∈ U \Λ for whichω(x0) ⊂ Λ andα(x0) ⊂ Λ.) An example
of such a weak attractor with a 1-cycle isx = 0 for

f(x) = 1 +
1
2
x2(1− x)2 for x mod1.

For any pointx0 ∈ (0, 1), α(x0) = 0 andω(x0) = 1 = 0 mod1. In Section 2, we given another type of
example of a map with a weak attractor but not an attractor.

In this paper as in [10] and [11], we consider a homoclinic bifurcation from the situation where there is
a resonance between the eigenvalues together with transversality conditions. There are two other results by
Rychlik [14] and Dumortier, Kokubu, and Oka [4] which give different homoclinic bifurcations to Lorenz
attractors than the one we analyze. These other authors assume there is no resonance of the eigenvalues, but
each also assumes that there is a type of nontransversality along the homoclinic orbit (which is different in
the two papers) while we assume there is transversality.

In Section 2, we present the results on the one dimensional maps. The main theorem about the homoclinic
bifurcation of flows is given in Section 3 together with the assumptions that are needed for this result. Section
4 contains the proof of the homoclinic bifurcation theorem. Section 5 contains some further comments about
the unfolding of the bifurcation. Finally, Section 6 proves that the assumptions for the bifurcation can be
satisfied for specific polynomial differential equations inR

3.

2. ONE DIMENSIONAL RESULTS

We are interested in conditions which imply that a one dimensional map with a single discontinuity is
topologically transitive.

We consider a mapf : J → R whereJ ⊂ R is an open interval and which we assume satisfies the
following conditions:

(a) The mapf has a discontinuity at a single pointc ∈ J .
(b) The mapf is continuously differentiable onJ \ {c}, with

λ = inf
x∈J\{c}

|f ′(x)| > 1.

(c) The right and left limits off exist atc: let

a+ = lim
x→c+

f(x) and a− = lim
x→c− f(x).

Often we act as iff is not defined atc, but we could always takef(c) = a+, f(c) = a−, or f(c) = c.

We state the last two assumptions separately for the cases whenf has the same monotonicity forx less than
c andx greater thanc. First, we consider the case whenf is either monotonically increasing on both sides of
c or monotonically deceasing on both sides.

(d1) Leta = max{a−, a+} andb = min{a−, a+}. We assume thatb < c < a, so thatc is in the interior of
the interval[b, a].

(e1) Finally, we assume thatb < f(a), f(b) < a, so that the interval[b, a] is invariant,f([b, a]) ⊂ [b, a].
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Next, we consider the case whenf is monotonically increasing on one side ofc and monotonically decreasing
on the other side.

(d2) Leta = max{a−, a+} andb = f(a). We assume thatb = f(a) < c < a, so thatc is in the interior of
the interval[b, a]. (If a = min{a−, a+} < c andb = f(a) > c, then a reversal of orientation changes
this case into the one considered here.)

(e2) Finally, we assume thatb < f(b) < a, so that the interval[b, a] is invariant.

It is not very hard to check that iff satisfies assumptions (a-e), then there is a smallε > 0 such that the
slightly larger interval[b− ε, a + ε] is a trapping region.

According to a theorem of Williams, [15], if a mapf satisfies conditions (a-e), has the same monotonicities
on both the subintervals[b, c) and(c, a], andλ >

√
2, thenf is topologically transitive on[a, b]. Theorem

2.2 below gives a generalization of this result to other cases whenf is increasing on one of the subintervals
and is decreasing on the other.

There are other results which extend the results to the case of a map which satisfies conditions (a-e) for
anyλ > 1. Li and Yorke, [6], proved that such maps have an ergodic measure whose support can be a subset
of the original interval. More recently, Morales and Pujals [7] proved a different generalization of the result
of Williams: they proved that that if the mapf satisfies conditions (a-e) for anyλ > 1 then there is a closed
subsetLf ⊂ [b, a] which containsc in its interior such thatf is topologically transitive onLf and a dense
open subset of points of[b, a] have forward orbits which eventually are contained inLf (the stable manifold
of Lf is dense and open in[b, a].) In fact,Lf contains an intervalI with c in its interior andLf is the forward
orbit of I. In general, the setLf is the support of the measure found earlier by Li and Yorke.

In [3], Y. Choi has made more explicit the properties ofLf . In particular, (i)Lf is the finite union of closed
intervals; (ii) the maximal invariant set incl(J \ Lf) is a hyperbolic repellerRf ; (iii) Lf is always a weak
attractor as defined in the introduction, but [3] gives an example where there is no trapping region forLf so
Lf is not an attractor in our strong sense of the term. The repellerRf can be a set of periodic orbits and their
preimages. (There are cases whenRf contains wandering points which haveα-limit set in one periodic orbit
in Rf andω-limit set in another periodic orbit inRf .) It is also possible forRf to be a subshift of finite type
as an example below shows. Choi has also shown that there are examples for which the setLf does not have
a trapping region (soLf is not an attractor); such examples have a repelling periodic point on the boundary
of Lf , i.e., a periodic orbit inRf ∩Lf . For this example, the setLf has a 1-cycle of the type discussed in the
introduction. We give a different example below for whichLf does not have a trapping region, but without
a 1-cycle. She also shows that the map can always be perturbed to a new mapg without periodic points on
the boundary ofLg, soLg has a trapping region and so is an attractor for the new mapg. We give a different
example whereLh is not an attractor below.

We summarize these results in the following theorem.

Theorem 2.1. Assume thatf : J → Rf satisfies the assumptions (a-e) above withλ > 1.
(a) (Morales and Pujals) There is aδf > 0 such thatf is topologically transitive on

Lf ≡ cl{O+((c− δf , c + δf ), f)},

and

W s(Lf , f) ≡ {x ∈ J : f i(x) ∈ Lf for somei ≥ 0}

is dense and open inJ .
(b) (Choi) (i) The setLf is the finite union of closed intervals,

⋃n
i=1[xi, yi] and the endpoints

{xi, yi}n
i=1 ⊂ O+(a+, f) ∪ O+(a−, f).
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(ii) The maximal invariant set incl(J \ Lf) is a closed hyperbolic repelling setRf . (Some of the points in
Rf can be wandering.) (iii) The setLf has a trapping region forf if and only if

Rf ∩ Lf = ∅, i.e.,

Per(f) ∩ ∂(Lf) = ∅.
(iv) AssumePer(f) ∩ ∂(Lf) 6= ∅. If it is possible to perturbf to g such thatPer(g) ∩ ∂(Lg) = ∅, thenLg

will have a trapping region forg. More specifically, ifz0 ∈ Per(f) ∩ ∂(Lf ) with fk(aσ) = z0 whereσ is
either+ or −, then we need to be able to perturbf to g such thatgk(aσ

g ) is not in the perturbed periodic
orbit for g (corresponding toz0 for f ).

Example 1. A simple example of a functionf for whichLf is not the whole interval[a, b] is given by

f(x) =




4
3

x + 10 for − 6 ≤ x ≤ 0,

−1.3x + 10 for 0 ≤ x ≤ 11.

Note thatf(−3) = 6, f(0) = 10, f(2.2) = 7.14 > 6, f(6) = 2.2, andf(10) = −3. Therefore[a, b] =
[−3, 10], and the transitive setLf = [−3, 2.2] ∪ [6, 10].

Example 2. An example of a functiong for whichRg is a subshift of finite type is given by

g(x) =




4
3

x + 18 for − 21 ≤ x ≤ 0,

−7
6

x + 18 for 0 ≤ x ≤ 6,

−5 (x− 6) + 11 for 6 ≤ x ≤ 10,

−9
8

(x − 10)− 9 for 10 ≤ x ≤ 20.

The transitive setLg = [−18,−9]∪ [−6, 6]∪ [10, 18], sinceg(−18) = −6, g(−9) = 6, g(−6) = 10, g(0) =
18, g(6) = 11 > 10, g(10) = −9, andg(18) = −18. The repellerRg is determined by the images of of the
gaps and is a subshift of finite type:g([−9,−6]) = [6, 10], andg([6, 10]) = [−9, 11] ⊃ [−9,−6]∪ [6, 10].

Example 3. If we change the functiong above so thath(6) = 10 but keeph piecewise linear with images of
−18, −9, −6, 0, 10, and18 unchanged, thenh3(−9) = h2(6) = h(10) = −9 is a period three orbit which
lies on the intersection ofLh andRh. The setLh does not have a trapping region forh since it is accumulated
on by points inRh outside ofLh. The stable set ofLh will include [−19, 20] \Rh, which is dense and open
in [−19, 20] but is not a neighborhood ofLh.

In the rest of this section, we give conditions from [2] for various cases which imply thatLf is the whole
interval[b, a] as is the case which Williams considered.

Rather than prove directly that the mapf is topologically transitive, we verify another condition called
weakly locally eventually onto; Williams called a mapf : [b, a] → [b, a] locally eventually onto provided for
any nonempty open subintervalK there is ann > 0 such thatfn(K) = [b, a]. A mapf : [b, a] → [b, a]
is said to beweakly locally eventually onto(hereafter abbreviatedwleo) provided for any nonempty open
intervalK ⊂ [b, a] there are ann > 0 and a finite set of pointsA such that

⋃n
i=0 f i(K) = [b, a] \A, i.e., the

forward orbit ofK misses at most a finite set of points. It is easier to verify that a map is wleo than locally
eventually onto and it still implies that the map is topologically transitive on[b, a] by the Birkhoff Transitivity
Theorem.

In proving that these mapsf are wleo, there are several cases depending on whetherf is increasing or
decreasing on the two subintervals[b, c) and(c, a].

Case (i): (The original Lorenz map) The mapf is increasing on both subintervals[b, c) and(c, a], a =
a− > c, b = a+ < c, b ≤ f(b), andf(a) ≤ a.
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Case (ii): (The twisted Lorenz map) The mapf is decreasing on both subintervals[b, c) and(c, a], a =
a+ > c, b = a− < c, f(b) ≤ a, andb ≤ f(a).

Case (iii): (Variation of case (ii): the left end point is nota− but is the image ofa+.) The functionf is
decreasing on both subintervals[b, c) and(c, a], a = a+ > c, b = f(a) < c, b < a−, andf(b) < a.

Case (iv): The functionf is increasing on[b, c) and decreasing on(c, a], a = a+ ≥ a− > c, b = f(a) <
c, andb ≤ f(b).

Case (v): The functionf is increasing for[b, c) and decreasing on(c, a], a = a− > a+ > c, b = f(a) <
c, andb ≤ f(b).

There are other cases witha+, a− < c which are equivalent to cases (iv) and (v) by a change of orientation
which we do not list.

The proof of Williams shows that in cases (i - ii), ifλ >
√

2 thenf is leo and transitive on all of[b, a]. As
was shown in [2], for cases (iv) and (v) this is not true:f is not always transitive on all of[b, a] even when
λ >

√
2. We state this in the following theorem.

Theorem 2.2. (Byers) Assume thatf : J → R satisfies the assumptions (a-e) above.
In case (iv) above, there is a fixed pointp ∈ (c, a). Assume thatf(x) < p for all x ∈ [b, c). Thenf is not

transitive on[b, a].
In case (v) above, there is a orbit of period two,{q−, q+} with q− ∈ (b, c) andq+ ∈ (c, a). Assume that

c < a+ < q+ andq− = f(q+) < f(b) = f2(a−). Thenf is not topologically transitive on[b, a].

Idea of the proof.Case iv: Sincef ′(x) > 1 andf [c, a] = [f(a), a], it follows thatf(a) < c andf [c, a] ⊃
[c, a]. Because the interval covers itself, there is a fixed pointp ∈ (c, a). (Notice that the fixed point can not
be either of the end points.)

This fixed pointp must be repelling becausef ′(x) > 1 everywhere. There is an intervalK aboutp which
covers itself but is not in the image of any other points in[b, a] \ K. ThereforeK is not contained in the
transitive attractorL andf is not topologically transitive on all of[b, a]. See [2] for details.

An example of such a function given in [2] is

f(x) =

{
1.6x + 0.35 for − 0.5 ≤ x < 0,

−1.5x + 1 for 0 ≤ x ≤ 1.

Case v: Let̀ (K) be the length of an intervalK. If f(b) ≥ c, thenf [b, c] = [f(b), a] ⊂ [c, a] and
`(f [b, c]) ≥ λ`([b, c]). Thenf2[b, c] = [b, f2(b)] and`(f2[b, c]) ≥ λ`(f [b, c]) ≥ λ2`([b, c]), so this interval
covers itself,f2[b, c] ⊃ [b, c]. Thus there is a point of period two withq− ∈ [b, c], q+ = f(q−) ∈ f [b, c] ⊂
[c, a]. This proves the existence of a point of period two under the assumption thatf(b) ≥ c.

Otherwise,f(b) < c. We also have thata− > a+ > c. Thenf [b, c] ⊃ [c, a] andf2[b, c] ⊃ f [c, a] =
[b, a+] ⊃ [b, c]. Again, there is a point of period two as desired.

With the assumptions of the theorem forf in case (v),q+ > a+ andq− < f(b). Therefore there is a
neighborhoodK of {q−, q+} made up of two intervals, which covers itself but is not in the image of any
other points in[b, a] \K. ThereforeK is not contained in the transitive attractorL andf is not topologically
transitive on all of[b, a]. See [2] for details.

An example of such a function given in [2] is

f(x) =

{
1.415 x + 1 for − 0.815 ≤ x ≤ 0,

−1.415 x + 0.6 for 0 ≤ x ≤ 1.

Notice that the examples given of the above theorem satisfyλ >
√

2 and are still not wleo or topolog-
ically transitive. Therefore it is necessary to add further assumptions in order to insure that the mapf is
topologically transitive.

We now combine the various results in [2] into a single theorem.
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Theorem 2.3. (Byers) Assumef satisfies assumptions (a-e) above andλ >
√

2. With the following added
assumptions in each of the cases,f |[a, b] is wleo and so topologically transitive.

In cases (i) or (ii) no added assumption is needed.
In case (iii), further assume thatf(a−) ≥ p, wherep ∈ (c, a) is the fixed point.
In case (iv) wherea+ ≥ a−, further assume thata− ≥ p, wherep ∈ (c, a) is the fixed point.
In case (v) wherea− > a+, further assume thata+ ≥ q+, whereq+ ∈ (c, a] is the point of period two.

Remark2.4. The M. Byers proved in [2] that in case (iv) it is sufficient to assume that(1 +
√

2)a− ≥ a+:
this condition implies thata+ ≥ a−. Similarly in case (v) it is sufficient to assume that(3 −√2)a+ ≥ a−:
this condition implies thata+ ≥ q+.

The proofs for all of the cases use the same basic construction due to Williams. Given an open interval
K ⊂ [b, a], we define inductively a sequence of intervalsKi ⊂ [b, a] for i ≥ 0. DefineK0 to be the longer
component ofK \ {c}. (Note that ifc /∈ K thenK0 = K.) If Kj is defined for0 ≤ j < i, then letKi be
longer component off(Ki−1) \ {c}. Sincef(Ki−1) is an open interval at each stage, it follows that all the
Ki are open intervals.

Let `(K) be the length of an open intervalK.

Lemma 2.5. If λ >
√

2, then there exists ann > 0 such thatc ∈ f(Kn−1) and c ∈ f(Kn), so c ∈
∂(Kn) ∩ f(Kn).

Proof. If c /∈ f(Ki) then`(Ki+1) ≥ λ`(Ki). On the other hand, ifc ∈ f(Ki) thenc ∈ ∂(Ki+1) and

`(Ki+1) ≥ λ

2
`(Ki). So if c /∈ f(Ki−1) ∩ f(Ki) we get that

`(Ki+1) ≥ λ2

2
`(Ki−1).

Since
λ2

2
> 1, this can not go on indefinitely, and there must be ann > 0 such thatc ∈ f(Kn−1) ∩

f(Kn).

In the proofs below, we taken as given in the above lemma for whichc ∈ ∂(Kn) ∩ f(Kn).

Proof of Theorem for case (i).This is the case considered by Williams in [15]. We do not assume thatf(b) <
c or f(a) > c. However, by modifying the argument in [15] or [9] in ways similar to the cases below, it still
follows thatf is wleo.

Proof of Theorem for case (ii).Becausef expands lengths by a factor ofλ > 1, it follows thatf(b) > c and
f(a) < c. Therefore the proof is exactly as given before.

Proof of Theorem for case (iii).If Kn ⊂ (c, a], thenc ∈ ∂(Kn) ∩ f(Kn) implies that

f(Kn) ⊃ [c, a) and

f2(Kn) ⊃ (b, a).

On the other hand, ifKn ⊂ [b, c), then

f(Kn) ⊃ (a−, c],

f2(Kn) ⊃ (a−, p] ⊃ [c, p],

f3(Kn) ⊃ [p, a+) = [p, a), and

f4(Kn) ⊃ (b, p].

Thereforef3(Kn) ∪ f4(Kn) ⊃ (b, p] ∪ [p, a) = (b, a). This completes the proof of this case.
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Proof of Theorem for case (iv).This case is very similar to case (iii). We leave the details to the reader. Also
see [2]

Proof of Theorem for case (v).If Kn ⊂ [b, c), then

f(Kn) ⊃ [c, a−) = [c, a), and

f2(Kn) ⊃ (b, a+) ⊃ (b, c].

Thereforef(Kn) ∪ f2(Kn) ⊃ (b, a).
On the other hand, supposeKn ⊂ (c, a]. Then

f(Kn) ⊃ [c, a+) ⊃ (c, q+),

f2(Kn) ⊃ (f(a+), a+) ⊃ (q−, c),

f3(Kn) ⊃ (q+, a), and

f4(Kn) ⊃ (b, q−).

Therefore

f(Kn) ∪ f2(Kn) ∪ f3(Kn) ∪ f4(Kn) ⊃ (b, a) \ {q−, q+}.
This completes the proof of this case and the theorem.

3. STATEMENT OF RESULTS FOR A HOMOCLINIC BIFURCATION

In this section we give the assumptions on flows in three dimensions which insure that a homoclinic
bifurcation to a Lorenz attractor can take place. The first six assumptions, (A1)-(A6), on the parameterized
differential equations concern the properties at the bifurcation value,η0. The last assumption (A7) is on the
unfolding of the parameterη which insures that there are parameter values which posses an attractor. The
parameter space needs to be big enough to verify the assumptions of the one dimensional map given in the
last section.

(A1) We consider aC2 vector fieldXη on R
3 which depend on the parameterη and which has a fixed

point Qη for all parameter values nearη0. We assume that the eigenvalues ofDXη(Qη) are all real with
λss(η) < λs(η) < 0 < λu(η), and with respective eigenvectorsvss, vs, andvu,

With this assumption, there are several invariant manifolds for the fixed point at the origin. We denote the
one-dimensional unstable manifold tangent tovu by Wu(Qη, η), and the two-dimensional stable manifold
tangent to thevs andvss by W s(Qη, η). Next, there is a one-dimensional strong stable manifold tangent
to vss which we denote byW ss(Qη, η). This latter manifold is made up of points which converge toQη

at an asymptotic rate determined by the eigenvalueλss. All of these manifolds areCr if the vector field is
Cr, and are even real analytic if the vector field is real analytic. Finally, there is a two-dimensional manifold
tangent to the two most expanding directions,vu andvs, which we denote byW eu(Qη, η). This manifold
is local in the stable direction but can be extended along the unstable manifold by flowing forward in time.
We call this theextended unstable manifoldeven though it is not expanding in all directions. (Some people
call this the center unstable manifold.) This manifold is at leastC1 (andC2 with assumption (A2) on the
dominance of the contraction towardW eu(Qη, η) given byeλss in comparison with the greatest contraction
within W eu(Qη, η) given byeλs .) With this notation we can make the second assumption about the existence
of a homoclinic orbit. Without a symmetry assumption on the differential equations it is a codimension two
condition to have a double homoclinic connection.

(A2) For the bifurcation valueη0, there is adouble homoclinic connectionwith the unstable manifold of
Qη0 contained in the stable manifold but outside the strong stable manifold,

Γ ≡ Wu(Qη0 , η0) ⊂ W s(Qη0 , η0) \W ss(Qη0 , η0).
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(The fact thatΓ misses the strong stable manifold can be expressed as a transversality condition by stating
thatWu(Qη0 , η0) is transverse toW ss(Qη0 , η0).) In fact, we assume that the two branchesΓ± of Γ \ {Qη0}
are contained in the same component ofW s(Qη0 , η0) \W ss(Qη0 , η0): Γ = {Qη0} ∪ Γ+ ∪ Γ−.

(A3) For η0, the two-dimensional extended unstable manifoldW eu(Qη0 , η0) is transverse to the two-
dimensional stable manifoldW s(Qη0 , η0) alongΓ.

The transversality condition in (A3) is generically satisfied and so does not add a codimension to the
bifurcation. Let

P (q) ≡ TqW eu(Qη0 , η0) for q ∈ Γ.

The transversality condition in (A3) together with the condition thatWu(Qη0 , η0) ∩W ss(Qη0 , η0) = ∅ in
Assumption (A2) implies thatP (q) converges toP (Qη0) asq converges toQη0 alongΓ by the Inclination
Lemma (Lambda Lemma). Therefore{P (q) : q ∈ Γ} is a continuous bundle overΓ. Considering one half
of the homoclinic connectionΓ+ ∪ Qη0 , let ν+ = 1 if the bundle{P (q) : q ∈ Γ+ ∪ Qη0} is orientable
(not twisted) andν+ = −1 if this bundle is nonorientable (twisted). In the same way considering the other
half of the homoclinic connectionΓ− ∪Qη0 , let ν− = ±1 whenever the bundle{P (q) : q ∈ Γ− ∪ Qη0}
is orientable or nonorientable respectively. If the bundle is orientable, then the resulting one-dimensional
map (which is discussed in the next section) is increasing on the corresponding subinterval; if the bundle is
nonorientable then the resulting one-dimensional map is decreasing on the corresponding subinterval.

(A4) We assume that forη0 the strong stable eigenvalue dominates the other two eigenvalues in the sense
that

λss(η0)+[λu(η0)− λs(η0)] < 0 and

λss(η0) < 2 λs(η0).

This is an open condition and so does not add a codimension to the bifurcation. The second inequality in
(A4) is what assures that the manifoldW eu(Qη0 , η0) is C2. It is also redundant with the following resonance
assumption (but sometimes we want to assume (A4) but not necessarily assume (A6).) These conditions are
used to prove that the one dimensional Poincar´e map is differentiable.

The next assumption on the equations is a restriction on the total change in area within theP (q) directions
(“within the attractor directions”) when a solution travels the whole length of one of the loopsΓ+ or Γ−.

(A5) Let q±(t) be a parameterization of the solution alongΓ±. Let div2(q±(t)) be the infinitesimal
change of area within the two dimensional planesP (q±(t)) as the solutionq±(t) moves alongΓ, i.e., the
“two dimensional divergence inP (q)” alongΓ. DefineC±

η0
by

C±
η0

= exp
( ∫ ∞

−∞
div2(q±(t)) dt

)
.

We assume that0 < C±
η0

< 1. The quantityC±
η0

is the change in area within the planesP (q) along the whole
length ofΓ±.

Assumption (A5) is an open condition. IfC+
η0
≈ C−

η0
then we can take the interval in a symmetric fashion

and we only needC±
η0

< 2.
Lemma 4.1 in the next section shows thatC±

η0
has meaning in terms of a one-dimensional Poincar´e map,

fη0 , as the coefficient of the lowest order nonconstant term. Therefore, in a limiting sense thatf ′η0
(cη0±) =

ν± C±
η0

. The fact thatC±
η0

< 2 means thatfη0 stretches lengths by a factor less than two and there is a hope
thatη nearη0 for fη to map the appropriate interval[bη, aη] inside itself (since there is one discontinuity). We
restrict toC±

η0
< 1 because the in the proof this givesEη < 1. The fact thatC±

η > 0 means that it is possible
to make the derivative of the one dimensional map to have derivative with absolute value greater than one.
Lemma 4.2 gives conditions on unfolding parametersa+

η , a−η , andeη = 1−Eη = 1− |λs(η)|/λu(η) which
insures that this interval is invariant and absolute value of the derivative is always bigger than one.
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If λu(η0) + λs(η0) 6= 0, thendiv2(q±(t)) 6= 0 for |t| large, the integral in Assumption (A5) would be
±∞, C±

η0
would be∞ or 0, and the total change of area alongΓ± would be∞ or 0. Therefore, the final

resonance assumption forη0 is one which makes Assumption (A5) possible. This resonance condition is a
codimension one condition; in total, the conditions ofη0 are codimension three. (Two codimensions are from
the double homoclinic connection and resonance condition gives the third and final codimension.)

(A6) There is a one-to-one resonance between the unstable and weak stable eigenvalue forη0:

λu(η0) + λs(η0) = 0.

Letting Eη = |λs(η)|/λu(η) andeη = 1 − Eη, this condition can be expressed by saying thatEη0 = 1 or
eη0 = 0.

The final assumption relates to the unfolding of the bifurcation.

(A7) We need to assume that the parameter space is big enough so thata+
η , a−η , andEη = |λs(η)|/λu(η)

can be varied independently forη nearη0. (If the equation have a symmetry as was the case in [10] and [11],
then we need only assume thata+

η andEη can be varied independently forη nearη0.)

It is now possible to state the main theorem.

Theorem 3.1. Assume that vector field inR3, depending on a parameterη is C2 and satisfies assumptions
(A1)–(A7). LetN be a small neighborhood ofη0 in parameter space. Then, there exists a subsetN ′ ⊂ N
with nonempty interior such thatη0 ∈ cl(N ′), and such that forη ∈ N ′ the flow forη has a topologically
transitive weak attractor which contains the fixed pointQη. In fact the weak attractor is determined by a
one-dimensional Poincaré mapfη which is wleo on a finite union of closed intervalsLη containing a single
point of discontinuity in its interior. The values ofν± determine whether the attractor is orientable or not on
the two branches. If the vector field isC3 then the resulting one-dimensional Poincaré mapfη for η ∈ N ′

has an ergodic invariant measure with support equal to the whole invariant setLη and which is equivalent to
Lebesgue onLη.

The proof of the theorem is contained in the next section.

Remark3.2. The fact that the flows satisfies Assumptions (A1)-(A4) means that standard stable manifold
theory applies to show that that the problem can be reduced to a one dimensional Poincar´e maps. Thus with
the given assumptions, the proof of the theorem reduces to analyzing the unfolding of the one dimensional
map and showing that we can get the situation discussed in Theorem 2.1. The three unfolding parameters
of the one dimensional map areeη and the two constant termsa±η which are defined in Lemma 4.1. The
proof indicates more fully what part of the parameter space yields an attractor. This is discussed more fully
in Section 5.

Remark3.3. Although we call these Lorenz attractors for the differential equations, if the equations are
very nonsymmetric (C+

η andC−
η have very different values) then the one dimensional Poincar´e map will be

transitive on a set made up of a finite number of intervals and not just one. In other words, the results of
Morales/Pujals and Choi apply rather than Byers’ extension of the result of Williams. Therefore all we verify
is that the invariant set is a weak attractor. We believe that for a dense and open set of valuesη ∈ N ′, the
invariant set is an attractor and not just a weak attractor. To prove this would require showing that changing
the parameterseη anda±η it is possible to realize the type of perturbations of the one dimensional mapfη

indicated in Theorem 2.1b(iv).

Remark3.4. If the equations are nearly symmetric in the sense that

√
2− 1 <

C+
η0

C−
η0

<
1√

2− 1
,

then it is possible to insure that the derivative is greater than
√

2 in absolute value. For these parameters the
equations have an attractor and the one dimensional map is topologically transitive on a single intervalIη.
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Remark3.5. The existence of an ergodic invariant measure follows as in [11] using the result of Keller [5].

4. PROOF OF THETHEOREM FROM THEASSUMPTIONS

We begin the proof by discussing the construction of the Poincar´e map from the homoclinic connection
and its form as given in [11].

Let Σ be a transversal to bothΓ± out a short distance along the local stable manifold ofQη0 . There is a
neighborhoodV ⊂ Σ of Γ ∩ Σ such that points inV \W s(Qη) return toΣ, defining a Poincar´e map

Fη : V \W s(Qη, η) ⊂ Σ → Σ.

In [11], it was shown that assumption (A4) implies that the flow has an invariant continuous bundle of strong
stable directions overΓ, {Ess(q) : q ∈ Γ}, with Ess(Qη0 , η0) = 〈vss〉. These conditions are open so this
bundle exists not only overΓ for η0 but also over a neighborhood ofΓ for nearbyη. Then the Stable Manifold
Theory implies that there is aC1+µ (C1 plusµ-Hölder for someµ > 0) invariant strong stable foliation in a
neighborhood ofΓ for η nearη0. If we take the union of these locally along an orbit and then intersect these
with Σ, we get a one-dimensional foliation ofΣ which is invariant byFη. The projection along the leaves
of the strong stable manifolds of orbits defines a mapπη : Σ → Σ1. By changing the orientation ofΣ1 if
necessary, we can insure that we do not haveν− = −1 andν+ = 1. (This last case can be changed into
ν− = 1 andν+ = −1.) The projectionπη can be used to define a one-dimensional map

fη : V 1 \ {cη} ⊂ Σ1 → Σ1,

by fη(πηq) = πηFη(q) whereV 1 = πη(V ) andcη = πη(W s(Qη, η) ∩ V ) is the point of discontinuity.
We need to analyze the one dimensional map well enough to show that for correctly chosen parameter

values it has a transitive invariant set containing the point of discontinuity. The next lemma which was
proved in [10] and [11] gives an expansion of the map which is used to prove the existence of such a set. First
we label the constant terms of the expansion offη; let

a±η = lim sup
τ→cη±

fη(τ).

This quantity corresponds to the signed distance ofΓ±η ⊂ Wu(Qη, η) from W s(Qη, η) as measured inΣ1.

Lemma 4.1. Assume Assumptions (A1)–(A4) are satisfied. LetEη and C±
η0

be defined as in Assumptions
(A6) and (A5). Letcη = π(W s(Qη, η)∩V ). LetJ ⊂ Σ1 be a fixed small interval aboutcη0 . For η in a small
neighborhood ofη0, the induced one-dimensional Poincaré mapfη : J \ {cη} ⊂ Σ1 → Σ1 has continuous
derivative onJ \ {cη}, andfη andf ′η have the following form:

fη(τ) =

{
a+

η + ν+C+
η |τ − cη|Eη + o(|τ − cη|Eη ) for τ > cη,

a−η − ν−C−
η |τ − cη|Eη + o(|τ − cη|Eη ) for τ < cη,

f ′η(τ) =

{
ν+EηC+

η |τ − cη|Eη−1 + o(|τ − cη|Eη−1) for τ > cη,

ν−EηC−
η |τ − cη|Eη−1 + o(|τ − cη|Eη−1) for τ < cη

The constantsC±
η depends continuously onη.

See [11] for its proof. The proof uses either linearization near the fixed point or the analysis of the follow
in terms of some normal form.

Letaη = max{a−η , a+
η } andbη = min{a−η , a+

η , f(aη)}. We are interested in parameter valuesη for which
bη < cη < aη. In order to have an expanding attractor for these parameter values, we also needfη to preserve
the interval[bη, aη] and the absolute value of the derivative to be greater than one for points in the interval.

The three unfolding parameters which we use area±η andeη. The parametersa±η measure the extent
to which the homoclinic connections are broken (and to which sides). The quantityeη = 1 − Eη = 1 −
|λs(η)|/λu(η) measures the extent to which the two eigenvalues are no longer in resonance.
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For the three allowable cases ofν±, if we take parameter valuesη for which ν+(a+
η − cη) < 0 and

ν−(a−η − cη) > 0, thenaη > cη.
Lemma 4.2 proves thatη0 can be approximated by parameter valuesη for which fη([bη, cη)) ⊂ [bη, aη],

fη((cη, aη]) ⊂ [bη, aη], |f ′η(aη)| > 1, and|f ′η(bη)| > 1. Since|f ′η(aη)| > 1 and |f ′η(bη)| > 1. the form
of f ′η given in Lemma 4.1 implies that there is aλ > 1 such that|f ′η(τ)| ≥ λ for all τ ∈ [bη, aη]. By the
result of Morales and Pujals [7] summarized in Theorem 2.1(a) above, this implies that there is a transitive
invariant setLfη containingcη which is a weak attractor. Because the one dimensional map can be varied
by changing the flow, if there is a periodic point on the boundary ofLfη then it seems likely that it can be
perturbed away. If this is indeed the case, then by the results of [3] summarized in Theorem 2.1(b) above,
eitherLη is an attractor forfη, or η can be perturbed toη′ for which Lη′ is an attractor forfη′ . Because
of the relationship between the flow and the one dimensional Poincar´e map, this shows that the flow forη
has a transitive weak attractor as claimed in the theorem. Most likely it can be approximated by a parameter
η′ which has a transitive attractor as discussed in Remark 3.3. The claim about the ergodic measure for the
one dimensional map follows just as in [11] using the result of Keller [5]. Thus we only need to prove the
following lemma.

Lemma 4.2. Assume the system satisfies (A1)–(A7). LetN be a small neighborhood ofη0 in parameter
space. Let

N ′ = {η ∈ N : eη > 0, ν+(a+
η − cη) < 0, ν−(a−η − cη) > 0,

f([bη, cη)) ⊂ [bη, aη], f((cη, aη]) ⊂ [bη, aη],

|f ′η(aη)| > 1, |f ′η(bη)| > 1 }.
ThenN ′ 6= ∅ and η0 ∈ cl(N ′). The conditions oneη and a±η which insure thatη ∈ N ′ are given by
inequality (4.1) below whenν+ = ν− = 1 and by inequality (4.3) whenν+ = ν− = −1.

Remark4.3. Whenν+ = ν− = ±1, the interval found forη ∈ N ′ extends froma−η to a+
η and satisfies

log |a+
η − cη|

log |a−η − cη|
≈ log(C+

η )

log(C−
η )

.

Note that forC−
η 6= C+

η , the interval is not symmetric aboutcη.
Whenν− = −ν+ = 1, the parameters found forη ∈ N ′ satisfiesa+

η ≈ a−η . One end of the interval is
aη = max{a+

η , a−η }, and the other end isbη = fη(aη). In the proof below we show that

max{0,
C+

η

C−
η
− 1} <

cη − bη

aη − cη
<

C+
η

C−
η

.

Again, the interval is not symmetric aboutcη whenC−
η 6= C+

η .

Proof. First consider the case whenν+ = ν− = 1. These maps fall into case (i). To get a transitive attractor,
we take parameter values such thataη = a−η > cη andbη = a+

η < cη. If C+
η = C−

η (as in the symmetric
case), we can takea+

η − cη ≈ −(a−η − cη); this is the situation considered in Lemma 2 of [11]. We need to
allow C+

η to have a value very different fromC−
η even though both are in the interval(0, 2). We want the

derivative to be greater than one:

1 <|f ′η(aη)| ≈ EηC+
η |a−η − cη|Eη−1 and

1 <|f ′η(bη)| ≈ EηC−
η |a+

η − cη|Eη−1.

Also we need the interval[bη, aη] to be invariant, so

|a−η − cη|+ |cη − a+
η | ≥ |fη(a−η )− a+

η | ≈ C+
η |a−η − cη|Eη and

|a−η − cη|+ |cη − a+
η | ≥ |fη(a+

η )− a−η | ≈ C−
η |a+

η − cη|Eη
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Thus the conditions ona+
η , a−η , andeη are approximately the following:

− log(EηC−
η ) <eη log(|a+

η − cη|−1) < log(1 +
∣∣a−η − cη

a+
η − cη

∣∣)− log(C−
η ),(4.1)

− log(EηC+
η ) <eη log(|a−η − cη|−1) < log(1 +

∣∣a+
η − cη

a−η − cη

∣∣)− log(C+
η ).

SinceEη goes to one asη goes toη0, these conditions can be solved at the same time, with

log(|a+
η − cη|−1)

log(|a−η − cη|−1)
≈ log(C−

η )
log(C+

η )
.(4.2)

When bothC+
η0

, C−
η0

< 1, the resulting value ofeη can be made positive. IfC+
η0
≈ C−

η0
then the interval is

nearly symmetric,log
(
1 +

∣∣a−η −cη

a+
η −cη

∣∣) ≈ log(2), and we only needC±
η0

< 2.

Next consider the case whenν+ = ν− = −1. These maps could fall into cases (ii) or (iii) but we just use
case (ii) to show that parameter values exist. Again the symmetric case was considered in [11]. In the general
(possibly nonsymmetric) case, we choose parameter values so thataη = a+

η > cη andbη = a−η < cη. We
want

1 <|f ′η(aη)| ≈ EηC+
η |a+

η − cη|Eη−1 and

1 <|f ′η(bη)| ≈ EηC−
η |a−η − cη|Eη−1.

Also we need the interval[bη, aη] to be invariant, so

|a−η − cη|+ |cη − a+
η | ≥ |fη(a+

η )− a+
η | ≈ C+

η |a+
η − cη|Eη and

|a−η − cη|+ |cη − a+
η | ≥ |fη(a−η )− a−η | ≈ C−

η |a−η − cη|Eη

Thus the conditions ona+
η , a−η , andeη are approximately the following:

− log(EηC+
η ) <eη log(|a+

η − cη|−1) < log(1 +
∣∣a−η − cη

a+
η − cη

∣∣)− log(C+
η ),(4.3)

− log(EηC−
η ) <eη log(|a−η − cη|−1) < log(1 +

∣∣a+
η − cη

a−η − cη

∣∣)− log(C−
η ).

Again when bothC+
η , C−

η < 1, these conditions can be solved at the same time witheη > 0 and

log(|a+
η − cη|−1)

log(|a−η − cη|−1)
≈ log(C+

η )

log(C−
η )

.(4.4)

We could enlarge set of allowable parameter values to include those which give one dimensional maps
which fall into case (iii) as long asa−η − fη(a+

η ) is small enough.
Finally, we consider the case whenν+ = −1 andν− = 1. (The case withν+ = 1 andν− = −1 can be

reduced to this case by reversing orientation ofΣ1.) These maps fall into in cases (iv) or (v). We first take
parameter valuesη so thataη = a−η = a+

η > cη. After we obtain the result in this case, the interval remains
invariant with absolute value of the derivative greater than one for|a+

η − a−η | small andaη = max{a−η , a+
η }.

Setbη = fη(aη). Thusfη[cη, aη] = [bη, aη] maps inside the relevant interval. We need to check that
|f ′η(aη)| > 1, |f ′η(bη)| > 1, andfη(bη) > bη. The last condition insures thatfη[bη, aη] ⊂ [bη, aη].

The derivative ataη must satisfy

1 < |f ′η(aη)| ≈ EηC+
η |aη − cη|−eη ,

or

− log(C+
η Eη) < eη log(|aη − cη|−1).
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Next, we needfη(bη) > bη. Since

fη(bη)− bη ≈ fη(aη − C+
η (aη − cη)Eη )− aη + C+

η (aη − cη)Eη

≈ aη − C−
η [−aη + C+

η (aη − cη)Eη + cη]Eη − aη + C+
η (aη − cη)Eη

≈ (aη − cη)Eη{C+
η − C−

η [C+
η (aη − cη)−eη − 1]Eη},

fη(bη)− bη > 0 provided

C+
η

C−
η

> [C+
η ((aη − cη)−eη − 1]Eη .

SinceEη converges to one, this is approximately the inequality

C+
η

C−
η

> C+
η (aη − cη)−eη − 1 or

1
C−

η
+

1
C+

η
> (aη − cη)−eη .

This is the second inequality we need to satisfy. Thus these two conditions are satisfied provided (approxi-
mately)

log
( 1
C+

η Eη

)
< eη log(|aη − cη|−1) < log

( 1
C−

η
+

1
C+

η

)
(4.5)

These two inequalities can be satisfied at the same time.
To check that|f ′η(bη)| > 1, we need to consider two subcases: (i)1 > C−

η0
> C+

η0
> 0 and (ii)1 > C+

η0
≥

C−
η0

> 0. First, define the comparison of the lengths of the two sides of the interval[bη, aη] by

γη =
cη − fη(aη)

aη − cη
=

cη − bη

aη − cη
.

We see below that0 < γη < 1 for subcase (i) andγη > −1 + C+
η /C−

η for subcase (ii) which can often be
greater than one. Using Lemma 4.1 and the definition ofγη,

aη − bη ≈ C+
η (aη − cη)Eη ,

aη − bη = aη − cη + cη − bη

= (1 + γη)(aη − cη), so

(1 + γη) ≈ C+
η (aη − cη)−eη .

For the first subcase (i) when1 > C−
η0

> C+
η0

> 0, using (4.5),

1 + γη ≈ C+
η (aη − cη)−eη ,

1 < C+
η (aη − cη)−eη < 1 +

C+
η

C−
η

, so

0 < γη <
C+

η

C−
η

< 1.



14 CLARK ROBINSON

Therefore for parameters satisfying (4.5),

|f ′η(bη)| ≈ EηC−
η |bη − cη|−eη

≈ EηC−
η γ−eη

η |aη − cη|−eη

>
C−

η

C+
η

γ−eη
η

>
C−

η

C+
η

> 1,

sinceγ−1
η > 1. Thus for this subcase all three conditions are satisfied for parameters satisfying (4.5).

Now consider subcase (ii) when1 > C+
η0
≥ C−

η0
> 0. Again

|f ′η(bη)| ≈ EηC−
η γ−eη

η |aη − cη|−eη .

Inequality (4.5) together with the fact that1+γη ≈ C+
η (aη−cη)−eη imply thatγη is bounded asη converges

to η0 in N ′. ThereforeEηγ
−eη
η converges to one asη converges toη0 in N ′. Therefore the inequality

|f ′η(bη)| > 1 is (essentially) equivalent to

− log(C−
η ) < eη log(|aη − cη|−1).

Since− log(C+
η ) < − log(C−

η ), this implies that all three conditions are satisfied in this subcase provided

log
( 1
C−

η

)
< eη log(|aη − cη|−1) < log

( 1
C−

η
+

1
C+

η

)
(4.6)

Notice that for these parameters

C+
η

C−
η

< C+
η (aη − cη)−eη ≈ 1 + γη < 1 +

C+
η

C−
η

so

0 ≤ C+
η

C−
η
− 1 < γη <

C+
η

C−
η

,

which can be quite large if the system is very asymmetrical. This completes the proof of the lemma and
theorem.

5. UNFOLDING OF THE BIFURCATION

To make the discussion simpler, we assume thatcη ≡ 0. We assume that0 < C±
η0

< 1 since this is the
situation that leads to an attractor of Lorenz type. In fact, the situation we verify for specific equations in this
paper and the papers [10], [11], and this paper has0 < C±

η0
<< 1. We discuss the casesν+ = ν− = ±1

andν− = −ν+ separately. In each case we take the relationship betweena+
η anda−η found in the proof of

Lemma 4.2 so there are only two parameters,eη = 1− Eη and eithera+
η or a−η

First considerν+ = ν− = 1. By equation (4.2),a+
η ≈ −|a−η |κ whereκ = log(C−

η )/ log(C+
η ). So, we

can use the two parametersaη = a−η andeη = 1− Eη.
The region of parameters labeled (ii) in Figure 1 is the regionN ′ found in Theorem 3.1 which corresponds

to systems with a attractor of Lorenz type. As a consequence of inequality (4.1) in the proof of Lemma 4.2,
the boundary ofN ′ is contained in∂N , γ1, andγ2, where the latter two are given approximately by

γ1 : eη log(|a−η |−1) ≈ log
( 1
C+

η

)
, a−η > 0

γ2 : eη log(|a−η |−1) ≈ log
( 1
C+

η

)
+ log(1 + |a−η |κ−1), a−η > 0.
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(ii)

(iii)

(iv)(v)

(v)

(i)

a

e

FIGURE 1. Bifurcation diagram

Notice that in the symmetric caseκ = 1 and

γ2 : eη log(|a−η |−1) ≈ log
( 2
C+

η

)
,

which is the form of the boundary given in [10] and [11].
Region (iii) in Figure 1: In this case the absolute value of the derivative is not greater than one at all

points in[a+
η , a−η ]. However for many of these parameters, the map is still eventually expanding and there is

a transitive attractor. We do not attempt to analyze these cases more thoroughly.
Region (i) in Figure 1: In this regiona−η > 0 andeη aboveγ2. It follows that (a)|f(a−η )| > a−η , (b) the

interval [a+
η , a−η ] is not invariant, and (c) there is a horseshoe which is separated from the fixed point of the

flow.
Region (iv) in Figure 1: In this case there is an attracting periodic orbit. See Remark 5.1 below.
Region (v) in Figure 1: Becausea−η0

< 0, the discontinuity0 is not in the image of the map; so there is no
invariant set that bifurcates off near the homoclinic orbit.

The case forν− = ν+ = −1 is very similar. By equation (4.4),a−η ≈ −|a+
η |κ where the exponent

κ = log(C−
η )/ log(C+

η ). So, we can use the two parametersaη = a+
η andeη = 1 − Eη. The interval is

[a−η , a+
η ].

Again the region of parameters labeled (ii) in Figure 1 is the regionN ′ found in Theorem 3.1 which
corresponds to systems with a attractor of Lorenz type. As a consequence of inequality (4.3) in the proof of
Lemma 4.2, the boundary ofN ′ is contained in∂N , γ1, andγ2, where the latter two are given approximately
by

γ1 : eη log(|a+
η |−1) ≈ log

( 1
C+

η

)
, a+

η > 0

γ2 : eη log(|a+
η |−1) ≈ log

( 1
C+

η

)
+ log(1 + |a+

η |κ−1), a+
η > 0.

The other regions are similar to the previous case.
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Finally we consider the case whenν− = −ν+ = 1. In this case we takeaη = a+
η = a−η . By inequalities

(4.5) and (4.6), the two boundary components of region (ii) are now given approximately by

γ1 : eη log(|a+
η |−1) ≈ max{log

( 1
C+

η

)
, log

( 1
C−

η

)}, aη > 0

γ2 : eη log(|a+
η |−1) ≈ log

( 1
C+

η
+

1
C−

η

)
a+

η > 0, aη > 0.

The other regions are very similar to the situation of the previous cases.

Remark5.1. Rovella [13] showed that there are flows withEη > 1 and ν± = 1 which have transitive
attractors. Such an attractor has a one dimensional Poincar´e map whose derivative is zero at the discontinuity.
Rovella showed that method of Benedicks and Carleson [1] could be used to show that there is a transitive
attractor for a positive set of parameter values. These results should also apply whenν± = −1, but the case
for ν− = −ν+ is very different and it is not clear that this argument applies.

These attractors do not occur in our unfolding forν− = ν+ = 1 because (in the symmetric case) in order
for fη(a+

η ) > cη it is necessary forC+
η > 1 and we consider only0 < C+

η , C−
η < 1. On the other hand, if

C+
η0

= C−
η0

> 1 andν+ = ν− = ±1, it seems likely that an attractor of the type found by Rovella occurs in
the unfolding.

6. SPECIFIC DIFFERENTIAL EQUATIONS SATISFYING THE ASSUMPTIONS

In the previously papers [10] and [11] we showed that there were symmetric differential equations satis-
fying Assumptions (A1)-(A7) withν+ = ν− = 1 or ν+ = ν− = −1. In this section, we show that there
is a polynomial differential equation satisfying (A1)-(A7) withν+ = −1 andν− = 1. The basic idea of
the example is the same are before, but the equations need to be modified so the twisting is different on the
two sides. Because of the difference, it is no longer possible to make the equations have a symmetry. Most
the the verification of the assumptions is very straight forward. The two things that need to be checked more
carefully, is the transversality of Assumption (A3) and the bound on the coefficientsC±

η0
in Assumption (A5).

The equations which we consider are

ẋ = y(NSE)

ẏ = x− 2 x3 − α y + β x2y + ε x3y + xyz

ż = −γ z + δ x2.

The parameters areη = (α, β, γ, δ, ε). The changes from the equations considered in the previous papers
[10] and [11] is that in thėy equation we have added the termε x3y and the termxyz replaces one which was
yz in [10] andxz in [11].

The fixed point0 is always the origin. The linearization of the vector field is given by

DX(x, y, z) =


 0 1 0

1− 6x2 + 2βxy + 3εx2y + yz −α + βx2 + εx3 + xz xy
2δx 0 −γ


 .

At the origin, the eigenvalues areλss = −α/2− (1+α2
/
4)1/2, λu = −α/2+(1+α2

/
4)1/2, andλs = −γ

giving Assumption (A1).
By picking the parameterγ0 = λu = −α0/2 + (1 + α2

0

/
4)1/2 at the bifurcation, we can insure that

λs(η0) + λu(η0) = 0 giving assumption (A6).
To obtain (A4), we need the combination of all three eigenvalues less than zero,λss(η0) − λs(η0) +

λu(η0) < 0:

0 > [−α0/2− (1 + α2
0

/
4)1/2] + 2[−α0/2 + (1 + α2

0

/
4)1/2]

> −3α0/2 + (1 + α2
0/4)1/2
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or
α0 > 2−

1
2 .

Thus to obtain aC1 foliation, it is not possible to take a small perturbation of the integrable case where
α = β = δ = 0. Given the resonance condition (A4), the second inequality in (A3) follows from the first.

To verify Assumptions (A2), (A3), and (A5), we start withδ1 = 0. By adjusting the parameter valuesβ1

andε1 we can make a double homoclinic connection withδ1 = 0. For δ1 = 0 the (x, y)-plane is invariant
andWu(0, η1) ⊂ W ss(0, η1) so (A2) is not true. Just as in [11], we can perturbδ1 to δ0 > 0 and adjust
β1 to β0 andε1 to ε0 to keep the double homoclinic connection. Because theδ0x

2 terms is positive inż,
the unstable manifoldWu(0, η0) is pushed upward andW ss(0, η0) is pushed downward giving Assumption
(A2), Wu(0, η0) ∩ W ss(0, η0) = ∅. Following the argument in [11], Lemma 6.1 below proves that after
this perturbation withδ0 > 0 but small, the transversality condition of Assumption (A3) is satisfied and that
0 < Cη0 < 2 as required in Assumption (A5). It also proves thatν+ = −1 andν− = −1.

The unfolding Assumption (A7) is satisfied because changingγ varieseη while β andε can adjusta±η
independently. Thus all that is left to prove is the following lemma.

Lemma 6.1. For δ0 > 0 but small,W eu(0, η0) is transverse toW s(0, η0), 0 < C±
η0

<< 1, andν+ = −1
andν− = −1.

Proof. A normal vector toW eu(0, η), orP (q±η (t)), is a covector and satisfies the adjoint differential equation

ṗ = −pDX(q±η (t)).

(Note that in this equation,p is written as a row vector.) We denote the solution which is perpendicular to
P (q±η (t)) by p±η (t) = (p±1 (t, η), p±2 (t, η), p±3 (t, η)) Note that together,(q±η (t),p±η (t)) lies on the unstable
manifold of(0,0) in the space of positions and covectors,T ∗

R
3.

We start withδ1 = 0 andβ1 andε1 adjusted so there are double homoclinic orbits. Ast goes to infinity,
we want to show thatp±3 (t, η1) goes to−∞ andp±η1

(t) approaches the direction given by−v∗s along the
negativez-axis. The equations foṙp1 andṗ2 are independent ofp3 and so can be solved independently for a
solution(p±1 (t, η1), p±2 (t, η1)) that is perpendicular to the homoclinic orbit in the(x, y)-plane, and so it limits
on the eigendirectionv∗u for the eigenvalue−λu. Therefore(p1(t, η1), p2(t, η1)) → 0 ast goes to infinity.

We parameterize the homoclinic connectionsq±η (t) so thaty±(0, η) = 0, sox±(t, η)y±(t, η) is positive
for t < 0 and negative fort > 0. Since

ṗ±3 (t, η) = −x±(t, η) y±(t, η) p±2 (t, η) + γ p±3 (t, η),

p±3 (t, η) = eγ(t−t0)p±3 (t0, η)−
∫ t

t0

x±(s, η) y±(s, η) p±2 (s, η) eγ(t−s) ds.

As t0 goes to−∞, since(q±η (t0),p±η (t0)) is in the unstable manifold inT ∗
R

3, p±η (t0) goes to zero expo-
nentially at a rate given byλss, e−|λss||t0|. Since this is faster decay than the growth given byγ, we can let
t0 → −∞ and obtain

p±3 (t, η) = −
∫ t

−∞
x±(s, η) y±(s, η) p±2 (s, η) eγ(t−s) ds.

BecauseX(q±η1
(0)) points in the direction of(0, 1, 0), p±2 (0, η1) = 0 and we can takep±2 (t, η1) > 0 for

t < 0 andp±2 (t, η1) < 0 for t > 0, sox±(t, η1)y±(t, η1)p±2 (t, η1) ≥ 0 and

−p3(t, η1) > eγt

∫ t

0

x±(s, η1) y±(s, η1) p2(s, η1) e−γs ds.

As t goes to infinity, the integral is positive andeγt goes to infinity, so−p3(t, η1) goes to infinity. Since we
showed above that(p1(t, η1), p2(t, η1)) → 0, p±(t, η1) has a limiting direction along the negativez axis, i.e.,
in the direction of the co-eigenvector−v∗s for the eigenvalue−λs. Therefore the limiting planeP (q±η1

(∞))
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is spanned by the directions{vu,vss} andW eu(0, η1) is transverse toW s(0, η1). Since transversality is an
open condition, it remains true forη0 with δ0 > 0 small. This given Assumption (A3).

We now want to show thatν+ = −1 andν− = 1. The limiting direction ofp±η0
(t) as t goes to−∞

is −v∗ss, with negative first coordinate. To understand the behavior ast goes to∞, notice that forη1, the
limiting direction ofp±η1

(t) is−v∗s which is contained in the space spanned by{v∗ss,v
∗
s}. Since it is an open

condition not to have a component in thev∗u direction for the eigenvalue−λu, it will continue to be true for
η0. (This is the openness of the transverse intersection of Assumption (A3).) Forη0 with δ0 > 0 but small,
there is still a homoclinic connection, but now the homoclinic orbitq±η0

(t) approaches0 along the weak
stable direction. Sincep±η0

(t) must remain orthogonal toX , the limiting direction ofp±η0
(t) is contained in

the space spanned by{v∗ss,v
∗
u}. Combining the two arguments, the limiting direction must be in the±v∗ss

direction. (This shows that the bundle of planes{P (q) : q ∈ Γ} is continuous, and so is a second way of
seeing that Assumption (A3) is true.) Because of the trajectory bends upward and then down asymptotic to
the z-axis, the limiting direction ofp+

η0
(t) is v∗ss while that ofp−η0

(t) is −v∗ss. Thereforeν+ = −1 and
ν− = 1.

As argued in [10], forη1 with δ1 = 0, the integral of Assumption (A5) is−∞ and C±
η1

= 0. By
the perturbation argument given in [10], forδ0 > 0 small, the integral is still very negative but finite, so
0 < C±

η0
<< 1. This proves Assumption (A5). Notice that since we do not calculate the integrals, we have

no way of knowing whetherC+
η0

is nearly equal toC−
η0

.
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