NONSYMMETRIC LORENZ ATTRACTORS
FROM A HOMOCLINIC BIFURCATION

CLARK ROBINSON

ABSTRACT. We consider a bifurcation of a flow in three dimensions from a double homoclinic connection to

a fixed point satisfying a resonance condition between the eigenvalues. For correctly chosen parameters in the
unfolding, we prove that there is a transitive attractor of Lorenz type. In particular we show the existence of a
bifurcation to an attractor of Lorenz type which is semiorientable, i.e., orientable on one half and nonorientable on
the other half. We do not assume any symmetry condition, so we need to discuss nonsymmetric one dimensional
Poincag” maps with one discontinuity and absolute value of the derivative always greater than one. We also apply
these results to a specific set of degree four polynomial differential equations. The results do not apply to the actual
Lorenz equations because they do not have enough parameters to adjust to make them satisfy the hypothesis.

1. INTRODUCTION

In previous papers, [10] and [11], we proved that there is a bifurcation for differential equations in three
dimensions with a symmetry from a double homoclinic connection for a fixed point to an attractor of Lorenz
type. This attractor could either be untwisted or twisted on both sides. In this paper we consider the situation
without a symmetry: in particular, we show that there can be a bifurcation from a double homoclinic connec-
tion to an attractor which is twisted on one side but untwisted on the other side. We given basic assumptions
which are sufficient for this to take place. We also verify that specific polynomial differential equations in
three dimensions can realize this bifurcation.

A transversality assumption and the dominance of the strong stable eigenvalue are used with standard
stable manifold theory to reduce the problem to a one dimensional map just in the previous papers. The
problem of the unfolding of the bifurcation is thus reduced to a question of understanding the unfolding of a
certain type of one dimensional maps. In all the cases of the homaoclinic bifurcation of the three dimensional
flow satisfying a set of assumptions, the resulting one dimensional map can be shown to have a transitive
invariant set for correctly chosen parameter values.

The standard symmetric untwisted situation leads to a symmetric one dimension problem with is mono-
tonically increasing on both sides. In this paper, we consider one dimensional maps which are not symmetric;
in one case the map is increasing on one side and decreasing on the other side. We present the results of the
thesis of M. Byers [2] which show how to carry through the result of Williams to show that the one dimen-
sional map is transitive in these nhonsymmetric cases when the absolute value of the derivative is greater than
square root of two. We also refer to the recent result of Morales and Pujals [7], a previous work of Li and
Yorke [6], and the thesis of Choi [3] which show that if the absolute value of the derivative is greater than
one then the map has a transitive invariant set which is not always the whole original interval. One of these
transitive invariant sets has a stable set which forms a dense open subset of a neighborhood, but it does not
always have a trapping region. We are interesting in verifying that the corresponding flRWwdoes have a
trapping region so we give some conditions in Section 2 which implies its existence.

A trapping regionfor a mapf is a nonempty open sét such thatl(f(U)) C int(U). A setA is called
an attracting setprovided there is a trapping regidn such thatA = (,, f*(U). A setA is called an
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attractor provided it is an attracting set anfdA is chain transitive. These definitions follow those given in
[9]. There are other definitions of attractors including Milnor’s which only requires that there ;& eét
positive measure such that thdimit sets of points inB are contained ir, i.e., B is contained in the stable
set of A. In this paper we consider a definition between the two above: A setalled aweak attractor
provided (i) there is a neighborho@d of A and a dense open subgétof U such that for allz € U’ the
w-limit set of z is contained iM\ and (ii) f|A is chain transitive.

A weak attractor can have a 1-cycle in the terminology of Palis, i.e., there can beqppmts \ A which
are on both the stable and unstable set ofe.,w(xy) C A and there is some choice of preimagdes} <o
with f(x;—1) = x; for i < 0 and the distance from; to A goes to zero asgoes to—oc. (If f is one to one,
then it has a 1-cycle provided there is a paipte U \ A for whichw(z) C A anda(zg) C A.) An example
of such a weak attractor with a 1-cyclexs= 0 for

flz)=1+ %:ﬁ(l—x)2 for z mod1.

For any pointzy € (0,1), a(zp) = 0 andw(xg) = 1 = 0 mod 1. In Section 2, we given another type of
example of a map with a weak attractor but not an attractor.

In this paper as in [10] and [11], we consider a homoclinic bifurcation from the situation where there is
a resonance between the eigenvalues together with transversality conditions. There are two other results by
Rychlik [14] and Dumortier, Kokubu, and Oka [4] which give different homoclinic bifurcations to Lorenz
attractors than the one we analyze. These other authors assume there is no resonance of the eigenvalues, but
each also assumes that there is a type of hontransversality along the homoclinic orbit (which is different in
the two papers) while we assume there is transversality.

In Section 2, we present the results on the one dimensional maps. The main theorem about the homoclinic
bifurcation of flows is given in Section 3 together with the assumptions that are needed for this result. Section
4 contains the proof of the homoclinic bifurcation theorem. Section 5 contains some further comments about
the unfolding of the bifurcation. Finally, Section 6 proves that the assumptions for the bifurcation can be
satisfied for specific polynomial differential equationsRif,

2. ONE DIMENSIONAL RESULTS

We are interested in conditions which imply that a one dimensional map with a single discontinuity is
topologically transitive.

We consider a mag : J — R whereJ C R is an open interval and which we assume satisfies the
following conditions:

(&) The mapf has a discontinuity at a single point J.

(b) The mapf is continuously differentiable od \ {c}, with

A= inf "(z)] > 1.
e 1@

(c) The right and left limits off exist atc: let

at = lim f(z) and a = lim f(z).

r—c+ rT—Cc—

Often we act as iff is not defined at, but we could always takg(c) = a™, f(c) = a~, or f(c) = c.

We state the last two assumptions separately for the cases fiesithe same monotonicity ferless than
c andz greater tham. First, we consider the case whéiis either monotonically increasing on both sides of
¢ or monotonically deceasing on both sides.

(d1) Leta = max{a~,a’} andb = min{a~,a™}. We assume thdt< ¢ < a, so thatc is in the interior of

the intervallb, a.
(el) Finally, we assume that< f(a), f(b) < a, so that the intervdb, a] is invariant,f ([b, a]) C [b, a].
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Next, we consider the case whéiis monotonically increasing on one sideccdnd monotonically decreasing
on the other side.

(d2) Leta = max{a—,a™} andb = f(a). We assume thdt= f(a) < ¢ < a, S0 thatc is in the interior of
the intervallb, a]. (If « = min{a~,a"} < candb = f(a) > ¢, then a reversal of orientation changes
this case into the one considered here.)

(e2) Finally, we assume that< f(b) < a, so that the intervdb, a] is invariant.

It is not very hard to check that if satisfies assumptions (a-e), then there is a semall 0 such that the
slightly larger intervalb — €, a + €] is a trapping region.

According to a theorem of Williams, [15], if a mgpsatisfies conditions (a-e), has the same monotonicities
on both the subinterval$, c) and(c, a], and\ > /2, thenf is topologically transitive offa, . Theorem
2.2 below gives a generalization of this result to other cases whglincreasing on one of the subintervals
and is decreasing on the other.

There are other results which extend the results to the case of a map which satisfies conditions (a-e) for
any\ > 1. Li and Yorke, [6], proved that such maps have an ergodic measure whose support can be a subset
of the original interval. More recently, Morales and Pujals [7] proved a different generalization of the result
of Williams: they proved that that if the magpsatisfies conditions (a-e) for any> 1 then there is a closed
subsetL; C [b, a] which contains: in its interior such thaf is topologically transitive oLy and a dense
open subset of points ¢§, a] have forward orbits which eventually are contained jn(the stable manifold
of Ly is dense and open [, a].) In fact, L ; contains an interval with c in its interior andL s is the forward
orbit of I. In general, the selt ; is the support of the measure found earlier by Li and Yorke.

In [3], Y. Choi has made more explicit the propertiedgf In particular, (i)L  is the finite union of closed
intervals; (i) the maximal invariant set il(J \ Ly) is a hyperbolic repelleR;; (iii) L, is always a weak
attractor as defined in the introduction, but [3] gives an example where there is no trapping redigrséor
L is not an attractor in our strong sense of the term. The rep@|{le@an be a set of periodic orbits and their
preimages. (There are cases wligncontains wandering points which hawdimit set in one periodic orbit
in Ry andw-limit set in another periodic orbit ift;.) It is also possible for?; to be a subshift of finite type
as an example below shows. Choi has also shown that there are examples for whicl thécses not have
a trapping region (s@ ; is not an attractor); such examples have a repelling periodic point on the boundary
of Ly, i.e., a periodic orbitin?y N L. For this example, the sét; has a 1-cycle of the type discussed in the
introduction. We give a different example below for whiElh does not have a trapping region, but without
a 1-cycle. She also shows that the map can always be perturbed to a newwitlput periodic points on
the boundary of 4, so L, has a trapping region and so is an attractor for the newgnse give a different
example wherd ;, is not an attractor below.

We summarize these results in the following theorem.

Theorem 2.1. Assume thaf : J — R/ satisfies the assumptions (a-e) above with 1.
(a) (Morales and Pujals) There is@ > 0 such thatf is topologically transitive on

Ly =c{O"((c—df,c+05), )},
and
WLy, f)={x € J: f(x) € L for somei > 0}

is dense and open is.
(b) (Choi) (i) The sef is the finite union of closed intervalg];_, [z, y;] and the endpoints

{xiayi}?zl C OJr(aJra f) U OJr(aivf)'
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(if) The maximal invariant set inl(J \ Ly) is a closed hyperbolic repelling sét;. (Some of the points in
R can be wandering.) (iii) The sdi; has a trapping region foyf if and only if

RyNLy =0, ie.,

Per(f)No(Ly) = 0.

(iv) AssumePer(f) N O(Ly) # 0. Ifitis possible to perturly to g such thatPer(g) N 9(Ly) = 0, thenL,
will have a trapping region fog. More specifically, ity € Per(f) N d(Ly) with f*(a®) = 2o whereo is
either+ or —, then we need to be able to pertuflto g such thatg’*’(ag) is not in the perturbed periodic
orbit for ¢ (corresponding ta for f).

Example 1. A simple example of a functioifi for which L is not the whole intervgk, b| is given by

4

—x+10 for —6 <z <0,
flx) =43

—1.3z+10 for 0 <z <11.

Note thatf(—3) = 6, f(0) = 10, f(2.2) = 7.14 > 6, f(6) = 2.2, and f(10) = —3. Thereforela, b] =
[—3,10], and the transitive sdt; = [—3,2.2] U [6, 10].

Example 2. An example of a functio for which R, is a subshift of finite type is given by
4
§m+18 for —21 <z <0,

—gm—i—lS for 0 <z <6,

—5(x—6)+11 for 6 <z <10,
9

—g(@=10)=9 for 10 <z <20.

g(x) =

The transitive sef, = [—18, —9] U [—6,6] U [10, 18], sinceg(—18) = —6, g(—9) = 6, g(—6) = 10, g(0) =
18, g(6) = 11 > 10, g(10) = —9, andg(18) = —18. The repellerR, is determined by the images of of the
gaps and is a subshift of finite typg([—9, —6]) = [6, 10], andg([6, 10]) = [-9, 11] D [-9, —6] U [6, 10].

Example 3. If we change the functiop above so thak(6) = 10 but keeph piecewise linear with images of
—18, -9, —6, 0, 10, and18 unchanged, theh3(—9) = h%(6) = h(10) = —9 is a period three orbit which
lies on the intersection df;, andR;,. The setl;, does not have a trapping region fosince it is accumulated
on by points inR;, outside ofL;,. The stable set of,, will include [—19, 20] \ Ry, which is dense and open
in [—19, 20] but is not a neighborhood dfy, .

In the rest of this section, we give conditions from [2] for various cases which impl\_thit the whole
interval[b, a] as is the case which Williams considered.

Rather than prove directly that the m@gs topologically transitive, we verify another condition called
weakly locally eventually onto; Williams called a mgp [b, a] — [b, a] locally eventually onto provided for
any nonempty open subintervAl there is am > 0 such thatf™(K) = [b,a]. Amapf : [b,a] — [b,q]
is said to beweakly locally eventually ontghereafter abbreviatealeo) provided for any nonempty open
interval K' C [b, a] there are am > 0 and a finite set of pointd such that J;_, /*(K) = [b,a] \ 4, i.e., the
forward orbit of K misses at most a finite set of points. It is easier to verify that a map is wleo than locally
eventually onto and it still implies that the map is topologically transitivéom] by the Birkhoff Transitivity
Theorem.

In proving that these mapg are wleo, there are several cases depending on whétiseincreasing or
decreasing on the two subinterv@isc) and(c, al.

Case (i): (The original Lorenz map) The mafis increasing on both subintervdls c) and(c, al, a =
a”>c¢b=a"<c¢b< f(b),andf(a) < a.
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Case (ii): (The twisted Lorenz map) The mgpis decreasing on both subinterv@lisc) and(c, a], a =
at>c,b=a" <c¢, f(b) <a,andb < f(a).
Case (jii): (Variation of case (ii): the left end point is net but is the image ofi*+.) The functionf is
decreasing on both subintervélisc) and(c, al,a = a* > ¢, b= f(a) < c¢,b<a~,andf(b) < a
Case (iv): The functionf is increasing onb, ¢) and decreasing ofx, al,a = a™ > a~ > ¢, b = f(a) <
¢, andb < f(b).
Case (v): The functionf is increasing foifb, ¢) and decreasing oft, a], a = a~ > a* > ¢, b= f(a) <
¢, andb < f(b).
There are other cases wit, a~ < ¢ which are equivalent to cases (iv) and (v) by a change of orientation
which we do not list.
The proof of Williams shows that in cases (i - i) if> /2 thenf is leo and transitive on all b, a]. As
was shown in [2], for cases (iv) and (v) this is not tryeis not always transitive on all db, a] even when
) > /2. We state this in the following theorem.

Theorem 2.2. (Byers) Assume that: J — R satisfies the assumptions (a-e) above.

In case (iv) above, there is a fixed poing€ (¢, a). Assume thaf (z) < p forall z € [b, ¢). Thenf is not
transitive on[b, al.

In case (v) above, there is a orbit of period twWa,~, ¢} with ¢~ € (b,¢) andg™ € (c,a). Assume that
c<at <qgtandg = f(¢7) < f(b) = f?(a™). Thenf is not topologically transitive offb, a].

Idea of the proof.Case iv: Sincef’(x) > 1 andf[c,a] = [f(a), a], it follows that f(a) < ¢ andf[c,a] D
[c, a]. Because the interval covers itself, there is a fixed peiat(c, a). (Notice that the fixed point can not
be either of the end points.)

This fixed pointp must be repelling becaugé(z) > 1 everywhere. There is an interval aboutp which
covers itself but is not in the image of any other pointsbiru] \ K. ThereforeK is not contained in the
transitive attractoZ, and f is not topologically transitive on all db, a]. See [2] for details.

An example of such a function given in [2] is

Fa) = 1.6z +0.35 for —0.5<z <0,
) —15zx+1 foro<z<Il.

Case v: Let/(K) be the length of an intervak. If f(b) > ¢, thenf[b,c] = [f(b),a] C [e,a] and
((f[b,c]) > M([b,c]). Thenf2[b,c] = [b, £2(b)] andl(f2[b, c]) > M(f[b,c]) > )\26([ ,c]), so this interval
covers itself,f2[b, c] O [b, ¢|. Thus there is a point of period two witt € [b,¢], g7 = f(q™) € f[b,c] C

[c, a]. This proves the existence of a point of period two under the assumptioﬁ(ﬂja}

Otherwise,f(b) < c. We also have that™ > a* > ¢. Thenf[b,c] D [c,a andfz[b,c] D fle,a] =
[b,a™] D [b,c]. Again, there is a point of period two as desired.

With the assumptions of the theorem fpiin case (v)q* > at andq™ < f(b). Therefore there is a
neighborhoodX of {¢~, ¢} made up of two intervals, which covers itself but is not in the image of any
other points inb, a| \ K. ThereforeK is not contained in the transitive attractoand f is not topologically
transitive on all offb, a]. See [2] for details.

An example of such a function given in [2] is

@) 1415z + 1 for —0.815 <z <0,
xTr) =
—1.415z4+0.6 for0 <z <1.
O

Notice that the examples given of the above theorem satisfy v/2 and are still not wleo or topolog-
ically transitive. Therefore it is necessary to add further assumptions in order to insure that thfeisnap
topologically transitive.

We now combine the various results in [2] into a single theorem.
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Theorem 2.3. (Byers) Assumg satisfies assumptions (a-e) above and- /2. With the following added
assumptions in each of the cas¢fga, b] is wleo and so topologically transitive.

In cases (i) or (ii) no added assumption is needed.

In case (iii), further assume thgt(a—) > p, wherep € (¢, a) is the fixed point.

In case (iv) where™ > a~, further assume that~ > p, wherep € (c, a) is the fixed point.

In case (v) whera™ > a™, further assume that™ > ¢*, whereq™ € (c, a] is the point of period two.

Remark2.4. The M. Byers proved in [2] that in case (iv) it is sufficient to assume that v/2)a~ > at:
this condition implies that™ > a~. Similarly in case (v) it is sufficient to assume ti{at— v/2)a™ > a~:
this condition implies that™ > ¢ .

The proofs for all of the cases use the same basic construction due to Williams. Given an open interval
K C [b,a], we define inductively a sequence of intervals C [b, a] for i > 0. Define K, to be the longer
component ofX” \ {c}. (Note that ifc ¢ K thenK, = K.) If K, is defined for0 < j < ¢, then letK; be
longer component of (K;_1) \ {c}. Sincef(K;_1) is an open interval at each stage, it follows that all the
K; are open intervals.

Let ¢(K) be the length of an open intervAl.

Lemma 2.5. If A > /2, then there exists an > 0 such thate ¢ f(K, ;) andc € f(K,), soc €
O(Kn) N f(Ky).

Proof. If ¢ ¢ f(K;) thent(K;y1) > M(K;). On the other hand, if € f(X;) thenc € 9(K,41) and
K1) > %K(Kq;). Soifc ¢ f(K;—1)N f(K;) we get that

E(Kq;_,_l) > — E(Kz_l)

A2 . . -
Smce? > 1, this can not go on indefinitely, and there must beraxr 0 such thatt € f(K,_1) N

J(KR). [
In the proofs below, we take as given in the above lemma for whiete 9(K,,) N f(K,,).

Proof of Theorem for case (i)This is the case considered by Williams in [15]. We do not assumef that<
cor f(a) > c. However, by modifying the argument in [15] or [9] in ways similar to the cases below, it still
follows that f is wleo. O

Proof of Theorem for case (ii)Becausef expands lengths by a factor af> 1, it follows that f (b) > ¢ and
f(a) < c. Therefore the proof is exactly as given before. O

Proof of Theorem for case (iii)lf K,, C (¢, a], thenc € 9(K,,) N f(K,,) implies that
f(Ky) D e, a) and
F2(I0) > (b,a).
On the other hand, if,, C [b, c), then

f(Kn) D (a” ¢,
FA(Kn) D (a”,p] D [e,p],
F2(Kn) > [p,a™) = [p,a), and
FH(En) D (b, p)-
Thereforef3(K,,) U f4(K,) D (b,p] U [p,a) = (b, a). This completes the proof of this case. O
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Proof of Theorem for case (iv)This case is very similar to case (iii). We leave the details to the reader. Also
see [2] O
Proof of Theorem for case (v)f K,, C [b,¢), then
f(Kn) D [e,a™) = e, a), and
f2(K,) D (b,a™) D (b,q].
Thereforef (K,,) U f?(K,) D (b, a).
On the other hand, supposg, C

(c,al. Then
f(Kn) D [e,a™) D (e,q7),

FA(ER) D (fa*),a™) D (¢, 0),
f3(K,) D (¢h,a), and
f4(Kn) > (b,q7)
Therefore
f(Kn) U fQ(Kn) U f3(Kn) U f4(Kn) D (b, a) \ {Qi q+}-
This completes the proof of this case and the theorem. O

3. STATEMENT OF RESULTS FOR A HOMOCLINIC BIFURCATION

In this section we give the assumptions on flows in three dimensions which insure that a homoclinic
bifurcation to a Lorenz attractor can take place. The first six assumptions, (Al1)-(A6), on the parameterized
differential equations concern the properties at the bifurcation vajuelhe last assumption (A7) is on the
unfolding of the parametey which insures that there are parameter values which posses an attractor. The
parameter space needs to be big enough to verify the assumptions of the one dimensional map given in the
last section.

(A1) We consider aC? vector field X,, on R* which depend on the parametgand which has a fixed
point Q,, for all parameter values negs. We assume that the eigenvaluesiak’, (Q,,) are all real with
Ass(1) < As(n) < 0 < Ay (n), and with respective eigenvectar®’, v®, andv",

With this assumption, there are several invariant manifolds for the fixed point at the origin. We denote the
one-dimensional unstable manifold tangenttoby W*(Q,,,n), and the two-dimensional stable manifold
tangent to thev® andv®® by W*(Q,,,n). Next, there is a one-dimensional strong stable manifold tangent
to v*° which we denote byV**(Q,,,n). This latter manifold is made up of points which converg&)p
at an asymptotic rate determined by the eigenvalye All of these manifolds ar€™ if the vector field is
C", and are even real analytic if the vector field is real analytic. Finally, there is a two-dimensional manifold
tangent to the two most expanding direction$,andv?®, which we denote by**(Q,,,n). This manifold
is local in the stable direction but can be extended along the unstable manifold by flowing forward in time.
We call this theextended unstable manifoleven though it is not expanding in all directions. (Some people
call this the center unstable manifold.) This manifold is at l&€&s{and C? with assumption (A2) on the
dominance of the contraction toward®*(Q,,, ) given bye*:: in comparison with the greatest contraction
within We*(Q,,, ) given bye*:.) With this notation we can make the second assumption about the existence
of a homoclinic orbit. Without a symmetry assumption on the differential equations it is a codimension two
condition to have a double homoclinic connection.

(A2) For the bifurcation valuey, there is adouble homoclinic connectiamith the unstable manifold of
Q,,, contained in the stable manifold but outside the strong stable manifold,

I'= W Qs m0) €W (Quys10) \ W (Qyg ) 10)-
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(The fact thafl® misses the strong stable manifold can be expressed as a transversality condition by stating
thatW*(Q,,, no) is transverse tdV**(Q,,,,7m0).) In fact, we assume that the two branchésof I'\ {Q,,, }
are contained in the same componenti6f(Q,,,, 70) \ W**(Qu,m0): T = {Qu } UTTUT ™.

(A3) For 1, the two-dimensional extended unstable manifdid“(Q,,,, 7o) is transverse to the two-
dimensional stable manifold*(Q,,, , 70) alongT.

The transversality condition in (A3) is generically satisfied and so does not add a codimension to the
bifurcation. Let

P(q) = TqW*(Qypy,m0)  forqeT.

The transversality condition in (A3) together with the condition #&t(Q.,,,70) N W**(Qy;,,70) = 0 in
Assumption (A2) implies thaP(q) converges taP(Q,,,) asq converges td),,, alongI" by the Inclination
Lemma (Lambda Lemma). Therefof@(q) : q € I'} is a continuous bundle ovér. Considering one half

of the homoclinic connectiofi* U Q,,, letv* = 1 if the bundle{P(q) : q € I'" U Q,,} is orientable

(not twisted) and/™ = —1 if this bundle is nonorientable (twisted). In the same way considering the other
half of the homoclinic connectiofi~ U Q,,,, letv~ = +1 whenever the bundléP(q) : q € T~ U Q,;, }

is orientable or nonorientable respectively. If the bundle is orientable, then the resulting one-dimensional
map (which is discussed in the next section) is increasing on the corresponding subinterval; if the bundle is
nonorientable then the resulting one-dimensional map is decreasing on the corresponding subinterval.

(A4) We assume that fafy the strong stable eigenvalue dominates the other two eigenvalues in the sense
that

Ass (10)+F[Au(m0) — As(m0)] <0 and
/\88(770) <2 Xs(m0)-

This is an open condition and so does not add a codimension to the bifurcation. The second inequality in
(A4) is what assures that the manifdld“(Q,,,, o) is C?. Itis also redundant with the following resonance
assumption (but sometimes we want to assume (A4) but not necessarily assume (A6).) These conditions are
used to prove that the one dimensional Poiraadp is differentiable.

The next assumption on the equations is a restriction on the total change in area with{g tldérections
(“within the attractor directions”) when a solution travels the whole length of one of the Idbms I'~.

(A5) Let g*(t) be a parameterization of the solution alofig. Let dive(q®(t)) be the infinitesimal
change of area within the two dimensional plafig™(¢)) as the solutiony™ (t) moves along’, i.e., the
“two dimensional divergence iff(q)” alongT". DefineCf,f) by

Cf,f) = exp (/00 diva(qF (1)) dt).

We assume thax < Cf]f) < 1. The quantit)Cf]f) is the change in area within the plare&y) along the whole
length of '+,

Assumption (A5) is an open condition.(l]‘;g ~ C,  then we can take the interval in a symmetric fashion
and we only need’;: < 2.

Lemma 4.1 in the next section shows tﬁ&t has meaning in terms of a one-dimensional Poiacaap,
fno» @s the coefficient of the lowest order nonconstant term. Therefore, in a limiting sengg that+) =
vE Cﬁ]g. The fact thaCE]g < 2 means thaf,, stretches lengths by a factor less than two and there is a hope
thatn nearn, for f,, to map the appropriate intervial,, a,,] inside itself (since there is one discontinuity). We
restrict toC,ﬂ,f) < 1 because the in the proof this give§ < 1. The fact tha’CﬁlE > 0 means that it is possible
to make the derivative of the one dimensional map to have derivative with absolute value greater than one.
Lemma 4.2 gives conditions on unfolding parametgrsa, , ande, =1 — E, = 1 — [As(1)|/ Au(n) which
insures that this interval is invariant and absolute value of the derivative is always bigger than one.



NONSYMMETRIC LORENZ ATTRACTORS 9

If \u(n0) + As(m0) # 0, thendive(q®(t)) # 0 for |¢| large, the integral in Assumption (A5) would be
+o0, C,j]g would beco or 0, and the total change of area alohig would beco or 0. Therefore, the final
resonance assumption fgg is one which makes Assumption (A5) possible. This resonance condition is a
codimension one condition; in total, the conditiong@fire codimension three. (Two codimensions are from
the double homoclinic connection and resonance condition gives the third and final codimension.)

(A6) There is a one-to-one resonance between the unstable and weak stable eigenyglue for

Au(n0) + As(no) = 0.
Letting E,, = |As(n)|/Au(n) ande,, = 1 — E,, this condition can be expressed by saying thgt = 1 or
=0.

The final assumption relates to the unfolding of the bifurcation.

(A7) We need to assume that the parameter space is big enough &g thgt, andE,, = [As(n)]/Au(n)
can be varied independently fpmearr,. (If the equation have a symmetry as was the case in [10] and [11],
then we need only assume th@t andE, can be varied independently fpmearr,.)

It is now possible to state the main theorem.

Theorem 3.1. Assume that vector field iR®, depending on a parameteris C? and satisfies assumptions
(A1)-(A7). Let\V be a small neighborhood af, in parameter space. Then, there exists a sufSett
with nonempty interior such thag € cl(N”), and such that fo, € A’ the flow forn has a topologically
transitive weak attractor which contains the fixed paif. In fact the weak attractor is determined by a
one-dimensional Poincarmapf, which is wleo on a finite union of closed intervdlg containing a single
point of discontinuity in its interior. The values ot determine whether the attractor is orientable or not on
the two branches. If the vector field@&® then the resulting one-dimensional Poineanapf,, for n € N’
has an ergodic invariant measure with support equal to the whole invariadt,sahd which is equivalent to
Lebesgue ot,,.

The proof of the theorem is contained in the next section.

Remark3.2 The fact that the flows satisfies Assumptions (Al)-(A4) means that standard stable manifold
theory applies to show that that the problem can be reduced to a one dimensionaldwiapar Thus with

the given assumptions, the proof of the theorem reduces to analyzing the unfolding of the one dimensional
map and showing that we can get the situation discussed in Theorem 2.1. The three unfolding parameters
of the one dimensional map arg and the two constant termsg™ which are defined in Lemma 4.1. The

proof indicates more fully what part of the parameter space yields an attractor. This is discussed more fully
in Section 5.

Remark3.3. Although we call these Lorenz attractors for the differential equations, if the equations are
very nonsymmetric@,” andC, have very different values) then the one dimensional Poineap will be
transitive on a set made up of a finite number of intervals and not just one. In other words, the results of
Morales/Pujals and Choi apply rather than Byers’ extension of the result of Williams. Therefore all we verify
is that the invariant set is a weak attractor. We believe that for a dense and open set of)valés the
invariant set is an attractor and not just a weak attractor. To prove this would require showing that changing
the parameters,, anda% it is possible to realize the type of perturbations of the one dimensionalfinap
indicated in Theorem 2.1b(iv).

Remark3.4. If the equations are nearly symmetric in the sense that
Cr 1
\/E - 1 < T) < )
Coy  V2-1
then it is possible to insure that the derivative is greater ffarn absolute value. For these parameters the
equations have an attractor and the one dimensional map is topologically transitive on a singlefinterval
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Remark3.5. The existence of an ergodic invariant measure follows as in [11] using the result of Keller [5].

4. PROOF OF THETHEOREM FROM THEASSUMPTIONS

We begin the proof by discussing the construction of the Poeo@p from the homoclinic connection
and its form as given in [11].

Let X be a transversal to bofff= out a short distance along the local stable manifol@gf. There is a
neighborhood” C X of I' N X such that points i’ \ W*(Q,,) return toX, defining a Poinca map

F,:VA\WQ,,n) CX—X.

In [11], it was shown that assumption (A4) implies that the flow has an invariant continuous bundle of strong
stable directions over, {E%°(q) : q € T'}, with E°°(Q,,,,m0) = (v*®). These conditions are open so this
bundle exists not only ovét for )y but also over a neighborhoodBffor nearbyy. Then the Stable Manifold
Theory implies that there is@'** (C*! plusu-Holder for someu > 0) invariant strong stable foliation in a
neighborhood of” for  nearn,. If we take the union of these locally along an orbit and then intersect these
with 3, we get a one-dimensional foliation &f which is invariant byF,,. The projection along the leaves
of the strong stable manifolds of orbits defines a map ¥ — X!. By changing the orientation of! if
necessary, we can insure that we do not have= —1 andv™ = 1. (This last case can be changed into
v~ =1landv™ = —1.) The projectionr, can be used to define a one-dimensional map

fo: VI {e,} B - 24
by f,,(m,q) = 7, F,(q) whereV! = 7, (V) andc,, = m,(W*(Q,,,n) N V) is the point of discontinuity.

We need to analyze the one dimensional map well enough to show that for correctly chosen parameter
values it has a transitive invariant set containing the point of discontinuity. The next lemma which was
proved in [10] and [11] gives an expansion of the map which is used to prove the existence of such a set. First
we label the constant terms of the expansiorf,ofiet
? = limsup f, (7).

T—cCpt

a

This quantity corresponds to the signed distancEnjbfc W*(Qy,n) fromW+#(Q,,n) as measured i&'.

Lemma 4.1. Assume Assumptions (Al)—(A4) are satisfied. H,eand C;,{) be defined as in Assumptions
(A6) and (A5). Let,, = 7(W*(Q,,n)NV). LetJ C X! be afixed small interval about,, . Fornin a small
neighborhood ofjy, the induced one-dimensional Poinéamapf,, : J \ {¢,} € ' — X! has continuous
derivative onJ \ {c, }, and f, and f, have the following form:

Ao
fnm:{%” Cilr = e

En 4+ o(|1 — ¢y|Fn) forT > ¢y,
En 4 o(|T — c7,|E") forr < ¢,

ay; —v-Cr|T — ¢y

En=t 4 o(lr — ¢
En=t 4 o(lr — ¢

En=1y forr > ¢,
Ea=1y forr < ¢,

+ .
f,;(T) _ {1/ E,C, |7 — ¢y

v E,CrlT — ¢y

The constanté‘,]i depends continuously an

See [11] for its proof. The proof uses either linearization near the fixed point or the analysis of the follow
in terms of some normal form.
Leta, = max{a, ,qa,}} andb, = min{a,, a;}, f(a,)}. We are interested in parameter valyder which
b, < ¢, < ay. Inorder to have an expanding attractor for these parameter values, we alsf) tepceserve
the intervalb,, a,] and the absolute value of the derivative to be greater than one for points in the interval.
The three unfolding parameters which we use c&feand ey. The parameters% measure the extent
to which the homoclinic connections are broken (and to which sides). The quantityl — £, = 1 —

|As(n)]/Au(n) measures the extent to which the two eigenvalues are no longer in resonance.
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For the three allowable cases of, if we take parameter valuesfor which vt(a; —¢;) < 0and
v~(a, —cy) >0, thena, > c,.

Lemma 4.2 proves thag can be approximated by parameter valyder which f,([b,,, c;))) C [by, ay],
Fal(eysay)) C [by,an), | f5(an)| > 1, and| f}(by)| > 1. Since|f}(a,)| > 1and|f;(b,)| > 1. the form
of f, given in Lemma 4.1 implies that there is\a> 1 such thaf)(7)| > A for all 7 € [b,, a,]. By the
result of Morales and Pujals [7] summarized in Theorem 2.1(a) above, this implies that there is a transitive
invariant setly, containingc, which is a weak attractor. Because the one dimensional map can be varied
by changing the flow, if there is a periodic point on the boundary, gfthen it seems likely that it can be
perturbed away. If this is indeed the case, then by the results of [3] summarized in Theorem 2.1(b) above,
either L, is an attractor forf,, or n can be perturbed tg’ for which L,, is an attractor forf,,. Because
of the relationship between the flow and the one dimensional P&moap, this shows that the flow fgr
has a transitive weak attractor as claimed in the theorem. Most likely it can be approximated by a parameter
1’ which has a transitive attractor as discussed in Remark 3.3. The claim about the ergodic measure for the
one dimensional map follows just as in [11] using the result of Keller [5]. Thus we only need to prove the
following lemma.

Lemma 4.2. Assume the system satisfies (A1)-(A7). Alebe a small neighborhood af, in parameter
space. Let

N ={ne~N:e, >0, Z/Jr(a:]r —¢y) <0, v (a, —cy) >0,
F by, cy)) C [by,anl, f((cn,an]) C [by,ayl,
[falan)l > 1, [f;(by)] > 1}
ThenN’ # @ andn, € cl(N’). The conditions or, anda; which insure that) € N’ are given by
inequality (4.1) below whent = v~ = 1 and by inequality (4.3) whem" = v~ = —1.
Remarkd4.3. Whenv™ = v~ = £1, the interval found for; € N’ extends fromu, to aj; and satisfies

log|a$ — ¢y _ log(C;r)

log |lay, —c,|  log(Cy)’
Note that forC,~ # C.,', the interval is not symmetric abouy.

Whenv~ = —v* = 1, the parameters found for € N’ satisfiess,” ~ a, . One end of the interval is
ay = max{a,},a, }, and the other end is, = f, (a,). In the proof below we show that
Cr — Cr
max{0, = — 1} < €0 = by < L.
Cy ap—cy Oy

Again, the interval is not symmetric abattwhenC,~ # C;]f.

Proof. First consider the case wherf = v~ = 1. These maps fall into case (i). To get a transitive attractor,

we take parameter values such that= a, > ¢, andb, = a7 < ¢,. If C;F = C, (as in the symmetric

case), we can takﬁ;;r — ¢y = —(a, — ¢y); this is the situation considered in Lemma 2 of [11]. We need to

allow C;f to have a value very different fro,~ even though both are in the interv@, 2). We want the
derivative to be greater than one:

1 <|fl(ay)| = E,Cif lay — ¢y P71 and
1 <|f,'7(bn)| ~ Encrﬂa:]r — ¢, B,—1
Also we need the intervab,, a,,] to be invariant, so
lay — cql + leg — at] > |fulay) — af| = CFla, — cyl ™ and

E,

la, — cnl + |en — af | > | fy(at) —ay | = C la) — ¢y
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Thus the conditions omﬁ, a, , ande, are approximately the following:

a, — C; _
4.1) —log(EyCyy) <eylog(la — g ™) < log(1 + | 4——) ~ log(C),
n — Cn
) at —cy
—log(E,C;}) <eylog(la, —cyl ™) <log(1+ | |) —log(C;h).
an — ¢y

SinceFE,, goes to one ag goes tony, these conditions can be solved at the same time, with
log(lay —cyl™") _log(Cy)
log(lay — g 1) ™ log(Cyf)’
C,, < 1, the resulting value of,, can be made positive. {f;,;) ~ C,, then the interval is

(4.2)

When bothC;!

T —cn

nearly symmetriclog (1 + |=+—"|) ~ log(2), and we only need < 2.

Next consider the case whert = v~ = —1. These maps could fall into cases (ii) or (iii) but we just use
case (ii) to show that parameter values exist. Again the symmetric case was considered in [11]. In the general
(possibly nonsymmetric) case, we choose parameter values mthatz; > ¢y andb, = a, < c¢,. We
want

1 <|fylan)| = EnCillay —cy Bt and
1 <|f)(by)| = EnC, la, — ¢y Ey—1
Also we need the intervdb,, a,,] to be invariant, so
la, — el + leg — at| > |fy(a)h) — af | = CF|af — ¢y and

lay = eal +leq = a| = [ folay) = ay | = Oy lay — eyl ™

Thus the conditions o/, a, , ande,, are approximately the following:

a

—C
Z_ — C’]‘) _1Og(cr-;_)a

(4.3) —log(E,C}) <eylog(la, — ey ™1 < log(1 + |an ,

af —¢
~1oB(E, ) <eqlox(lay —o|) < los(1 + ] 0)) ~log(C;).
n —Cpy

Again when boter]f, C,” <1, these conditions can be solved at the same time ayith 0 and
log(lay —cyl™") _ log(Cy)
log(lan —cyl=1)  log(Cy)

We could enlarge set of allowable parameter values to include those which give one dimensional maps
which fall into case (iii) as long ag, — f,(a;;) is small enough.

Finally, we consider the case wher = —1 andv~ = 1. (The case with™ = 1 andv~ = —1 can be
reduced to this case by reversing orientatiortéf) These maps fall into in cases (iv) or (v). We first take
parameter values so thata,, = a, = a,} > c,. After we obtain the result in this case, the interval remains
invariant with absolute value of the derivative greater than on@ifpr- a, | small anda,, = max{a, , a; }.

Setb,, = fy(ay). Thusf,lc,,a,] = [by, a,;] maps inside the relevant interval. We need to check that
|fr(an)| > 1, |f7(by)| > 1, andf,(b,) > b,. The last condition insures th#t[b,, a,)] C [by, ay].

The derivative at;,, must satisfy

1< |ffl,(an)| ~ ET,C,ﬂan =y,

(4.4)

or

- IOg(C;rEn) < ey log(la, — Cn|71)-
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Next, we need, (b,) > b,. Since

fa(by) = by =~ folay — C;r(a,] —¢y)) —ay + C;r(a,] —cp)P
~ ay — C, [—an + C)f (a, — )+ B —ay + Cl(ay — en)E

~ (ay — CW)E"{C;_ -Cy [C;;_(an — ) = 1]En},

fy(by) — by, > 0 provided

C_;r CJF — —en _ 1 Ey
- > | n ((an — cp) 5.
n

SinceE,, converges to one, this is approximately the inequality

+
C_:‘ >ClH(ay—cy) =1 or
L"‘L >(a —c )*en
Cy G C
This is the second inequality we need to satisfy. Thus these two conditions are satisfied provided (approxi-
mately)

1 . 1 1
(4.5) log (m) < eplog(lay, —cy| ™) < log (C_'r]_—’_c_r—;i_)
These two inequalities can be satisfied at the same time.
To check thatf, (b,)| > 1, we need to consider two subcases1(} C, > Gl > 0and (i)1 > C} >
C,, > 0. First, define the comparison of the lengths of the two sides of the intgval,] by

cn — fulay) _ &~ bn.

Tn = — —
ay — ¢y ay — ¢y

We see below that < v, < 1 for subcase (i) and,, > —1 + C,J{/C; for subcase (ii) which can often be
greater than one. Using Lemma 4.1 and the definition,of

ay — by = CF (ay — )P,

ay — by =ay — ¢y +cy — by
=1+ m)(ay —cy), so

(L+) = C;;'_(an —cy)

For the first subcase (i) whan> C, = > C;g > 0, using (4.5),

14+, = C’;r(a77 —cy) o,
+
1< Cf(ay—ey) ™ <1+ C—n_, S0
n
0 O 4
< < — < 1.
Tn Cy
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Therefore for parameters satisfying (4.5),
[ f(bn)| = EyCy by — cp] =

~ EnCyyy M lan — cn =
n
> C_’;i],’}/n o
-
> -1 >1,
Cyf
sincey;1 > 1. Thus for this subcase all three conditions are satisfied for parameters satisfying (4.5).
Now consider subcase (ii) whédn> C;g > C,, > 0. Again

|frl;(bn)| ~ EUC;’V;e"'|an _ Cn|76",
Inequality (4.5) together with the fact that- v, ~ C; (a, — ;)" imply that, is bounded ag converges

to no in N’. ThereforeE,~, “" converges to one ag converges tay, in N”. Therefore the inequality
| f5(by)| > 1is (essentially) equivalent to

—log(C;) < ey log(la, — Cn|71)-

Since—log(C;f) < —1log(C, ), this implies that all three conditions are satisfied in this subcase provided

1 . 1 1
(4.6) log (C_{) < enlog(la, —c,y| ™) < log (C_{ + C—TJ{)
Notice that for these parameters

i Cy

C—;<C;L(an—cn) e"m1+~yn<1+c—r7 so
0 Gy

0< C _1<%<C’_{’
which can be quite large if the system is very asymmetrical. This completes the proof of the lemma and
theorem. O

5. UNFOLDING OF THE BIFURCATION

To make the discussion simpler, we assume that 0. We assume thdt < Cf < 1 since this is the
situation that leads to an attractor of Lorenz type. In fact, the situation we verify for specific equations in this
paper and the papers [10], [11], and this paper(has C;,{) << 1. We discuss the cases = v~ = +1
andv~ = —vT separately. In each case we take the relationship betm@amda; found in the proof of
Lemma 4.2 so there are only two parametefs= 1 — E, and eithew,” or a,’

First consider™ = v~ = 1. By equation (4.2)a," ~ —|a, | wherex = log(C,")/log(C,}). So, we
can use the two parameters = a,” ande;, = 1 — E,,.

The region of parameters labeled (ii) in Figure 1 is the regi@riound in Theorem 3.1 which corresponds
to systems with a attractor of Lorenz type. As a consequence of inequality (4.1) in the proof of Lemma 4.2,
the boundary of\’ is contained irdA/, 1, and~., where the latter two are given approximately by

- 1 -
71 67]10g(|a‘7]| 1)%10g(c+)7 an >O
n

. 1 e _
Y2 eylog(lay| 1)%bg(CJF)+log(1—i—|0Ln|"i Y, a, >0.

n
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e
® (i)

v)
(iii)

v) (iv)

FIGURE 1. Bifurcation diagram

Notice that in the symmetric cage= 1 and

o 2
Y21 eplog(la,|™") ~ log (F)’
n

which is the form of the boundary given in [10] and [11].

Region (iii) in Figure 1: In this case the absolute value of the derivative is not greater than one at all
points in[aj,, a, ]. However for many of these parameters, the map is still eventually expanding and there is
a transitive attractor. We do not attempt to analyze these cases more thoroughly.

Region (i) in Figure 1: In this region,” > 0 ande,, abovey,. It follows that (a)|f(a;, )| > a,;, (b) the
interval [a;, a, | is not invariant, and (c) there is a horseshoe which is separated from the fixed point of the
flow.

Region (iv) in Figure 1: In this case there is an attracting periodic orbit. See Remark 5.1 below.

Region (v) in Figure 1: Because, < 0, the discontinuity) is not in the image of the map; so there is no
invariant set that bifurcates off near the homoclinic orbit.

The case for~— = v+ = —1 is very similar. By equation (4.4n, ~ —|aj,|"”~ where the exponent
r = log(C; )/ log(C;F). So, we can use the two parametefs= o, ande, = 1 — E,. The interval is
[a, s a;ﬂ.

Again the region of parameters labeled (ii) in Figure 1 is the reginfound in Theorem 3.1 which
corresponds to systems with a attractor of Lorenz type. As a consequence of inequality (4.3) in the proof of
Lemma 4.2, the boundary ¢f” is contained ird, 1, andys, where the latter two are given approximately

by

_ 1
Y1t eplog(laf|™") & log (F), a; >0
n

_ 1 _
Y21 eplog(laf|™") =~ log (F) +log(1+ laf[*71), ab >0.

n

The other regions are similar to the previous case.
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Finally we consider the case when = —v™ = 1. In this case we take, = aﬁ = a, . By inequalities
(4.5) and (4.6), the two boundary components of region (ii) are now given approximately by
1 1
moey 1og(|a$ 1) ~ max{log (—+), log(=—)}, a,>0
Cy Cy

1 1
Y21 eplog(laf|™") mlog (= + =) af >0, a;>0.
n

cr o C
The other regions are very similar to the situation of the previous cases.

Remarks.1 Rovella [13] showed that there are flows wilf), > 1 and v* = 1 which have transitive
attractors. Such an attractor has a one dimensional Peintap'whose derivative is zero at the discontinuity.
Rovella showed that method of Benedicks and Carleson [1] could be used to show that there is a transitive
attractor for a positive set of parameter values. These results should also apply¥ken 1, but the case
for v— = —vT is very different and it is not clear that this argument applies.

These attractors do not occur in our unfoldingfor = v = 1 because (in the symmetric case) in order
for f,(a}) > ¢, itis necessary fo€’;f > 1 and we consider onlg < C,,C,~ < 1. On the other hand, if
C:]g =Cp > 1 andv™ = v~ = £1, it seems likely that an attractor of the type found by Rovella occurs in
the unfolding.

6. SPECIFICDIFFERENTIAL EQUATIONS SATISFYING THE ASSUMPTIONS

In the previously papers [10] and [11] we showed that there were symmetric differential equations satis-
fying Assumptions (A1)-(A7) witvt™ = v~ = 1 orvt = v~ = —1. In this section, we show that there
is a polynomial differential equation satisfying (A1)-(A7) withh = —1 andv~ = 1. The basic idea of
the example is the same are before, but the equations need to be modified so the twisting is different on the
two sides. Because of the difference, it is no longer possible to make the equations have a symmetry. Most
the the verification of the assumptions is very straight forward. The two things that need to be checked more
carefully, is the transversality of Assumption (A3) and the bound on the coeffi(mg*pis Assumption (A5).

The equations which we consider are

(NSE) T=y
y=x—22°—ay+ 2’y +exdy+ zyz
Z=—yz+ 0z

The parameters amg = («, 5,7, 9,¢). The changes from the equations considered in the previous papers
[10] and [11] is that in the) equation we have added the term’y and the termxyz replaces one which was
yz in [10] andxz in [11].

The fixed poin® is always the origin. The linearization of the vector field is given by

0 1 0
DX (x,y,2) = | 1—622+28zy + 3ex’y +yz —a+ Bz +ex® +a2z ay
20z 0 —

Atthe origin, the eigenvalues akg, = —a/2— (1 +a?/4)1/2, X, = —a/2+ (1 + a2 /4)1/2, and), = —
giving Assumption (Al).

By picking the parametefy = A\, = —ao/2 + (1 + a3 /4)/? at the bifurcation, we can insure that
As(m0) + Au(no) = 0 giving assumption (A6).

To obtain (A4), we need the combination of all three eigenvalues less than)zgfgy) — As(mo) +
Au(n0) < 0:

0> [~ao/2 — (L+ad /4] + 2[~an/2 + (1 + ad /4)"/?]
> —3ap/2 + (14 ad/4)'/?
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or
oy > 2_%.

Thus to obtain aC' foliation, it is not possible to take a small perturbation of the integrable case where

a = [ = = 0. Given the resonance condition (A4), the second inequality in (A3) follows from the first.

To verify Assumptions (A2), (A3), and (A5), we start with = 0. By adjusting the parameter valugs
ande; we can make a double homoclinic connection with= 0. Ford; = 0 the (z, y)-plane is invariant
andW¥(0,n,) C W#%(0,7n:) so (A2) is not true. Just as in [11], we can pertdrhto 69 > 0 and adjust
B1 to By ande; to €y to keep the double homoclinic connection. Becauseighe terms is positive irg,
the unstable manifol&/“ (0, 7 ) is pushed upward arid **(0, no) is pushed downward giving Assumption
(A2), W“(0,10) N W*5(0,m9) = 0. Following the argument in [11], Lemma 6.1 below proves that after
this perturbation withy, > 0 but small, the transversality condition of Assumption (A3) is satisfied and that
0 < Cy, < 2 as required in Assumption (A5). It also proves that= —1 andv™ = —1.

The unfolding Assumption (A7) is satisfied because changingriese, while 5 ande can adjustﬁ
independently. Thus all that is left to prove is the following lemma.

Lemma 6.1. For o > 0 but small,W<*(0, 7o) is transverse tdV*(0, 1), 0 < C,% << 1,andvt = -1
andv~ = —1.

Proof. A normal vector td¥v<*(0,n), orP(quE (t)), is a covector and satisfies the adjoint differential equation

p = —pDX(q; ().
(Note that in this equatiorp is written as a row vector.) We denote the solution which is perpendicular to
P(a(t) by piE(t) = (p1 (t,n), p3 (t,n), p5 (t,n)) Note that togetherq: (t), p(t)) lies on the unstable
manifold of (0, 0) in the space of positions and covect@rsR3.

We start withd; = 0 and3; ande; adjusted so there are double homoclinic orbits.tAg®es to infinity,
we want to show thapi (¢,71) goes to—oo andpﬁ1 (t) approaches the direction given byw?* along the
negativez-axis. The equations fgr andp, are independent gf; and so can be solved independently for a
solution(pli (t, m),in (t,m)) thatis perpendicular to the homoclinic orbit in the y)-plane, and so it limits
on the eigendirection;, for the eigenvalue-\,,. Thereforgp; (¢, 1), p2(t, 1)) — 0 ast goes to infinity.

We parameterize the homoclinic connectiegigt) so thaty=(0,7) = 0, soz=(t,1)y*(t, ) is positive
for t < 0 and negative fot > 0. Since

p3(t,n) = —aE(t,n) y=(t,n) p3 (t,n) + 3 (t,n),

t
p3 (t,m) = 7 p(to, ) —/ w*(s,m) y* (s,m) py (s,m) €07 ds.

to
As ty goes to—oo, since(q;: (to), p; (f0)) is in the unstable manifold iff*R?, p;(ty) goes to zero expo-

nentially at a rate given by, e~1*Il*ol Since this is faster decay than the growth givenybye can let
to — —oo and obtain

t
pa(t,n) = —/ a® (s,m) y* (s,m) pi (s,m) 7 ds.

BecauseX (q;;, (0)) points in the direction of0, 1,0), pE(0,m1) = 0 and we can takez (t,7;) > 0 for
t < 0andps (t,m) < 0fort > 0, soz® (t,m )y~ (t,m)ps (t,m) > 0and

t
ps(tom) > / 2 (5,m) y* (5, m) pa(s,m) e~ ds.
0

As t goes to infinity, the integral is positive ard’ goes to infinity, so-ps3(¢, n1) goes to infinity. Since we
showed above thédb (¢, m1), p2(t,m1)) — 0, p~(¢,71) has a limiting direction along the negativexis, i.e.,
in the direction of the co-eigenvectetv; for the eigenvalue- ;. Therefore the limiting plan@(q$1 (00))
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is spanned by the directiofs*, v®*} and1W°*(0, ) is transverse t®1*(0, r; ). Since transversality is an
open condition, it remains true fgg with §, > 0 small. This given Assumption (A3).

We now want to show that™ = —1 andv~ = 1. The limiting direction ofp,f0 (t) ast goes to—oo
is —vZ,, with negative first coordinate. To understand the behavigrgaes tooo, notice that for,, the
limiting direction ofp (¢) is —v} which is contained in the space spannedy,, v;}. Since itis an open
condition not to have a component in thg direction for the eigenvalue A, it will continue to be true for
1o- (This is the openness of the transverse intersection of Assumption (A3, Fath 5, > 0 but small,
there is still a homoclinic connection, but now the homoclinic odj&;n(t) approache® along the weak
stable direction. Sincpﬁo(t) must remain orthogonal t&, the limiting direction ofpﬁo(t) is contained in
the space spanned Ky?,, v} }. Combining the two arguments, the limiting direction must be indhe,
direction. (This shows that the bundle of plaqé3(q) : q € I'} is continuous, and so is a second way of
seeing that Assumption (A3) is true.) Because of the trajectory bends upward and then down asymptotic to
the z-axis, the limiting direction ob,’ () is vi, while that ofp, (t) is —v},. Thereforevt = —1 and
v- =1.

As argued in [10], forp; with §; = 0, the integral of Assumption (A5) is-co and Cni1 = 0. By
the perturbation argument given in [10], fa&y > 0 small, the integral is still very negative but finite, so
0< Cf]f) << 1. This proves Assumption (A5). Notice that since we do not calculate the integrals, we have

no way of knowing whethe@’;,g is nearly equal t@’; . O
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