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Abstract. We consider a dynamical system that exhibits a two-dimensional
normally hyperbolic invariant manifold diffeomorphic to an annulus. We as-
sume that in the annulus there exist transition chains of invariant tori inter-
spersed with Birkhoff zones of instability. We prove the existence of orbits
that follow the transition chains and cross the Birkhoff zones of instability.

1. Introduction

This paper is a continuation to [21], in which we describe a topological method
for proving the existence of orbits that shadow transition chains of invariant tori
interspersed with Birkhoff zones of instability. In [21] the boundaries of the Birkhoff
zones of instabilities were assumed to be smooth. In this paper we consider the
general case when all the invariant tori in the transition chains and at the boundaries
of the Birkhoff zones of instabilities are only Lipschitz. Here by a primary torus we
mean a 1-dimensional invariant torus that cannot be homotopically deformed into
a point in the annulus. Also, by a Birkhoff zone of instability in an annulus, we
mean a region between two primary invariant tori that does not contain any other
primary invariant torus in between.

We consider a discrete dynamical system whose phase space contains a hyperbolic
invariant manifold diffeomorphic to an annulus. The dynamics restricted to the
annulus is assumed to be a monotone twist map. If the twist map is close to
integrable, the KAM theorem yields many invariant tori in the annulus, close to the
integrable ones. Besides the KAM tori, there also exist other primary invariant tori.
Due to normal hyperbolicity, all primary invariant tori possess stable and unstable
manifolds. Under some generic non-degeneracy conditions on the dynamics, the
stable and unstable manifold of nearby tori intersect transversally. One can link
together nearby tori through their heteroclinic connections and form transition
chains of such tori. However, gaps are also formed between the primary invariant
tori. Some of the gaps can be large, in the sense that one may not be able to extend
the transition chains across those gaps using standard analytical arguments. Thus,
we obtain transition chains of tori alternating with gaps. In this paper we assume
that these gaps are Birkhoff zones of instability with Lipschitz boundaries, and that
the transition chains can be extended all the way to the boundaries of these gaps.
We use topological arguments to prove that there exist orbits that follow infinitely
many transition chains and also cross the Birkhoff zones of instability in between
successive transition chains.

1991 Mathematics Subject Classification. Primary, 37J40; 37C50; 37C29; Secondary, 37B30.
Key words and phrases. Arnold diffusion; correctly aligned windows; shadowing.
†Research partially supported by NSF grant: DMS 0601016.

1



2 MARIAN GIDEA AND CLARK ROBINSON

The motivation of this work resides within the Arnold diffusion problem. In
1964, Arnold [1] proposed a model of a Hamiltonian system consisting of a rotator
and a pendulum with a small periodic perturbation of special type. He proved the
existence of orbits that travel arbitrary far relative to the phase space of the rotor,
for all sufficiently small perturbations. Arnold conjectured that this phenomenon
is generic in the whole of Hamiltonian systems.

In Arnold’s example, in the absence of the perturbation, the phase space of the
rotator is a normally hyperbolic invariant manifold filled with primary invariant
tori. The stable and unstable manifolds of each torus coincide. When the pertur-
bation is added to the system, all invariant tori for the unperturbed system survive
the perturbation. (This is not the case for general perturbations.) Also, the per-
turbation makes the stable and unstable split, so heteroclinic connections between
nearby tori are formed. Thus, one can construct transition chains of tori that travel
arbitrarily far in the phase space of the rotator. Then Arnold uses the “obstruction
property” to show that there exist orbits that follow the transition chains (see also
[2]). A torus T is said to satisfy the obstruction property if for every invariant man-
ifold V intersecting transversely the stable manifold of T , the unstable manifold of
T is contained in the closure of V . Often, one applies the obstruction property by
taking an open neighborhood B of a point on the stable manifold, and inferring
that the closure of the set {φt(B) | t ≥ 0} contains the unstable manifold of T ,
where φt denotes the Hamiltonian flow. The obstruction property is used in com-
bination with simple point-set topology to provide an argument for the existence
of orbits shadowing a transition chain. We briefly describe this argument here.
Suppose that we have a sequence of invariant tori {T1, T2, . . . , Tn, . . .} such that
each successive pair of tori in the sequence is linked by a heteroclinic connection.
We choose a closed ball B1 centered at a point on the stable manifold of T1 and
contained in some small neighborhood of T1. Since Wu(T1) t W s(T2) 6= ∅, the
obstruction argument implies that the stable manifold of T2 intersects B1. Then
there exits a small closed ball B2 ⊆ B1, centered at a point on the stable manifold
of T2, that is taken by the flow φt into some small neighborhood of T2. Applying
again the obstruction argument we infer that the stable manifold of T3 intersects
the image of B2 through the flow φt. Thus, there is a smaller closed ball B3 ⊆ B2

that is taken by the flow into some small neighborhood of T3. This construction
can be repeated inductively for an arbitrarily large number of steps, resulting in a
sequence of closed balls B1 ⊇ B2 ⊇ B3 ⊇ . . .. Since the balls are compact, their
intersection is non-empty. Any point in the intersection will shadow the prescribed
sequence of tori.

The emphasis of this paper is on how to extend the obstruction argument in the
case of transition chains of tori interspersed with gaps, modeled here as Birkhoff
zones of instability. The obstruction mechanism as described above breaks down at
the zones of instability. However, there exist connecting orbits that go from near
one boundary of a zone of instability to near the other boundary of the zone of
instability. The difficulty becomes how to link orbits that shadow the transition
chains with orbits that shadow the connecting orbits, where the standard obstruc-
tion argument does not apply. To overcome this, we use a topological approach
inspired from Easton’s method of correctly aligned windows. Instead of closed
balls as in the above argument, we use closed rectangular boxes (windows) that,
under the dynamics, cross one another along some unstable-like directions. The
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unstable like-directions correspond to the hyperbolic unstable directions plus one
preferred direction in the annulus which shears under the twist map on the annulus.
One particular feature of windows is that they are robust objects, so we are able
to make adjustments to the geometry of these windows to compensate for the lack
of control on the dynamics within the zones of instability.

Topological methods were previously applied to the Arnold diffusion problem in
[31, 26, 19, 21, 22]. Transition chains of tori formed with topologically crossing
heteroclinic connections were considered in [20]. Ideas of producing diffusing orbits
by combining the dynamics along heteroclinic connections with the dynamics across
zones of instability appeared in [10, 29] through geometric methods, and in [33, 15,
16, 4, 25, 3] through variational methods.

The novelty of the approach in this paper consists of the following: we consider
transition chains of tori that are not necessarily smooth; we consider that the stable
and unstable manifolds of the consecutive tori in the chain have topologically cross-
ing intersections; we consider a non-perturbative setting, in which the dynamics on
Λ is not assumed to be nearly integrable.

2. Main Result

We describe a class of dynamical systems satisfying certain properties.
We consider a Cl-diffeomorphism F : M → M of a smooth (2n+2)-dimensional

manifold M , where l ≥ 1. We assume that there exists a compact invariant sub-
manifold Λ ⊆ M that is diffeomorphic to an annulus [0, 1] × T1. We assume that
Λ is normally hyperbolic, with n-dimensional stable and unstable manifolds W s(p)
and Wu(p) at every point p ∈ Λ. Moreover, we assume that the restriction F|Λ of
F to Λ is an area preserving monotone twist map.

For any invariant set in Λ, and in particular for any invariant primary torus
T ⊆ Λ, we can define its stable and unstable manifolds:

W s(T ) =
⋃

x∈T

W s(x), Wu(T ) =
⋃

x∈T

Wu(x).

These manifolds are not in general smooth, but their fibers W s(x), Wu(x) are as
smooth at the map. The map F applied to W s(T ) and Wu(T ) takes fibers into
corresponding fibers, i.e.

F (W s(x)) = W s(F (x)), F (Wu(x)) = Wu(F (x)).

We now describe a map, called the scattering map, acting on the normally hyper-
bolic invariant manifold Λ by following the heteroclinic excursions. A detailed treat-
ment of the scattering map can be found in [13]. Assume that Wu(Λ) and W s(Λ)
have a differentiably transverse intersection along a homoclinic 2-dimensional man-
ifold Γ that is Cl-smooth. This means that Γ ⊆ Wu(Λ) ∩ W s(Λ) and, for each
x ∈ Γ, we have

TxM = TxWu(Λ) + TxW s(Λ),

TxΓ = TxWu(Λ) ∩ TxW s(Λ).

By the normal hyperbolicity of Λ, for each x ∈ W s(Λ) there is a unique point
x+ ∈ Λ such that x ∈ W s(x+); also for each x ∈ Wu(Λ) there is a unique point
x− ∈ Λ such that x ∈ Wu(x−).
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Let us assume the additional condition that for each x ∈ Γ we have

TxW s(Λ) = TxW s(x+)⊕ Tx(Γ),

TxWu(Λ) = TxW s(x−)⊕ Tx(Γ),

where x−, x+ are the uniquely defined points in Λ corresponding to x.
Then we can define the wave operators Ω+ : W s(Λ) → Λ by Ω+(x) = x+, and

Ω− : Wu(Λ) → Λ by Ω−(x) = x−. The maps Ω+ and Ω− are Cl−1-smooth. The
restrictions of the wave operators Ω+,Ω− to Γ are in general only continuous. By
restricting Γ if necessary, we can ensure that Ω+, Ω− are homeomorphisms. A homo-
clinic manifold Γ for which the corresponding wave operators are homeomorphisms
will be referred as a homoclinic channel. Thus, we can define the homeomorphism
S = Ω+ ◦ (Ω−)−1 from an open subset D− ⊆ Λ to an open subset D+ in Λ. We
will refer to S as the scattering map associated to the homoclinic channel Γ. In the
sequel we will regard S as a partially defined map, so the image of a torus A by S
means the set S(A ∩ D−). The scattering map has the following properties: If T
and T ′ are two invariant smooth tori in Λ and S(T ) has a transverse intersection
point with T ′, then Wu(T ) has a transverse intersection point with W s(T ′). If T
and T ′ are two invariant Lipschitz tori in Λ and S(T ) has a topologically crossing
intersection point with T ′, then Wu(T ) has a topologically crossing intersection
point with W s(T ′). (The precise definition of a topological crossing intersection
point will be given in Section 3.)

We now recall some facts on twist maps. We describe Λ through a system of
action-angle coordinate (I, φ), with I ∈ [0, 1] and φ ∈ T1. The fact that the
restriction F|Λ is a monotone twist map means that ∂(prφ ◦ F|Λ)/∂I > 0, where
prφ is the projection onto the φ-coordinate. By an invariant primary torus (or,
equivalently, an essential invariant circle) we mean a 1-dimensional torus invariant
under F in Λ that cannot be homotopically deformed into a point inside Λ. Since
F|Λ is a monotone twist map, each invariant primary torus T is the graph of some
Lipschitz function τ(φ) (see [5, 6]). A region in Λ between two primary invariant tori
is called a Birkhoff zone of instability provided that there is no invariant primary
torus in the interior of the region. It is known for a Birkhoff zone of instability that,
if the boundary tori are topologically transitive, then there exist Birkhoff connecting
orbits that go from any neighborhood of an arbitrary point on one boundary torus
to any neighborhood of an arbitrary point on the other boundary torus (see [5, 6]).

We now describe the assumptions for the main theorem of this paper. We con-
sider a bi-finite sequence of invariant primary tori (Ti)i∈Z in Λ. These tori are
Lipschitz tori. Below we will assume that the sequence of tori (Ti)i∈Z can be parti-
tioned into finite sequences with special properties; we will describe this partition
by considering a certain increasing bi-infinite subsequence of indices (ik)k∈Z in Z.

We assume that the tori in the sequence satisfy the following properties.

(A1) The manifolds Wu(Λ) and W s(Λ) have a topologically transverse intersec-
tion along a dynamical channel Γ, and each torus Ti in the given sequence
intersects the domain D− of the scattering map S associated to Γ (as de-
scribed above).

(A2) The restriction of F to each torus Ti is topologically transitive.
(A3) Each subsequence of tori (Ti)i=ik+1,...,ik+1 , with k ∈ Z, is a topological

transition chain in the sense following sense: there exists a curve segment
Ti ⊆ Ti in the domain of the scattering map S such that the image S(Ti) of
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Ti under S intersects Ti+1 at exactly one point, in a topologically crossing
manner, for i = ik + 2, . . . , ik+1 − 2, and for i = ik + 1, ik+1 − 1, the image
S(Ti) intersects Ti+1 at exactly three points, in a topologically crossing
manner. (Depending on the case, this implies that Wu(Ti) and W s(Ti+1)
have at least one or at least three topologically crossing points.)

(A4) The region in Λ between Tik
and Tik+1, with k ∈ Z, is a Birkhoff zone of

instability.
(A5) Each torus Ti which is not at the boundary of one of the Birkhoff zones

of instability specified by (A4), can be C0-approximated from both sides
with invariant tori from Λ, i.e., there exists two sequences of invariant
tori (Tj−l (i))l≥1 ⊆ Λ and (Tj+

l (i))l≥1 ⊆ Λ that approach Ti in the C0-
topology, such that the annulus bounded by Tj−l (i) and Tj+

l (i) contains Ti

in its interior, for all l.
The motivation for considering the above structures is given in [21]. We plan to

expand on this motivation in a future paper [22]. The main result of this paper is
the following:

Theorem 2.1. We consider a discrete dynamical system F : M → M as above.
Given a sequence of invariant tori (Ti)i∈Z in Λ satisfying the properties (A1) –
(A5) from above, for each sequence (εi)i∈Z of positive real numbers, there exist an
orbit (zi)i∈Z and positive integers (ni)i∈Z such that

zi+1 = Fni(zi), for all i ∈ Z,

d(zi, Ti) < εi, for all i ∈ Z.

Remark 2.2. One context in which the situation described by (A1)–(A5) can be
occur is that of a priori unstable nearly integrable Hamiltonian systems. These are
perturbed Hamiltonian systems for which the unperturbed integrable part possesses
separatrices (following [8]). In this context, the map F in Theorem 2.1 represents
a time discretization of the Hamiltonian flow.

In many examples of a priori unstable nearly integrable Hamiltonian systems
(see [12, 13, 14]), the phase space of the unperturbed system contains a normally
hyperbolic invariant manifold Λ0, which is diffeomorphic to an annulus, and whose
stable and unstable manifolds coincide. The restriction of F to the annulus is an
integrable twist map. When the perturbation is added to the system, Λ0 is sur-
vived by a normally hyperbolic invariant manifold Λ. Under some non-degeneracy
conditions on the perturbation, the stable and unstable manifolds of Λ intersect
transversally. These non-degeneracy condition can be verified through a Melnikov
function or potential associated to the perturbation. Melnikov theory can also be
used to verify the existence of a homoclinic channel Γ as in (A1), and to compute
explicitly the scattering map S. See Example 2.3 below.

If the dynamics on Λ0 satisfies the conditions required by the KAM theorem,
then there exist many invariant primary tori surviving the perturbation. The KAM
primary tori are topologically transitive, as in (A2). Furthermore, one can use the
scattering map S associated to the homoclinic channel Γ to verify that the stable
and unstable manifolds of sufficiently close invariant primary tori intersect. More
precisely, if the image of of a curve segment of the torus Ti under the scattering
map intersects transversally (topologically crossing) another torus Ti+1, then the
unstable manifold of Ti intersects transversally (topologically crossing) the stable
manifold of Ti+1. If the scattering map can be computed in terms of some Melnikov
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potential, this condition can be verified explicitly by studying the change of sign of
some scalar function associated to the Melnikov potential. See Example 2.3 below.
Condition (A3) also requires the existence of not only one but three such intersection
points for the tori at both ends of a transition chain. The meaning of this condition
is that when the image of a curve segment of the torus Ti under the scattering map
S intersects another torus Ti+1 three times in a topologically crossing manner, it
determines two open regions bounded by S(Ti) and Ti+1 in Λ, one region on one side
and the other region on the other side of Ti+1. See The existence of these regions
is being used for applying the existence of Birkhoff connecting orbits property to
cross the Birkhoff zones of instability described by condition (A4). Figure 4. (Here
we note that the condition (A3) in the case i = ik + 1, saying that there is a curve
segment Tik+1 ⊂ Tik+1 in the domain of S such that S(Tik+1) intersects Tik+2 at
exactly three points in a topologically crossing manner, implies that there is a curve
segment Tik+2 ⊂ Tik+2 in the domain of S−1 such that S−1(Tik+2) intersects Tik+1

at exactly three points in a topologically crossing manner.)
The KAM theorem leaves between invariant primary tori some ‘large gaps’ of

an order of size larger than the order of size of the splitting of the stable and
unstable manifolds of Λ. One can form transition chains of primary KAM tori
by joining successive heteroclinic connections, and extend these transition chains
to the boundary of those ‘large gaps’, as in (A3). The tori at the boundary of
the large gaps are not in general KAM tori; they are only Lipschitz tori, they are
not smooth. Since the KAM tori form a Cantor set, we can select the tori in the
transition chain (except for the tori at the ends of the chain) so that they can be
C0-approximable from both sides by other KAM tori. Therefore we can ensure
condition (A5).

In Theorem 2.1 we assume that the ‘large gaps’ are Birkhoff zones of instability,
described by condition (A4). There exits various methods to verify the existence
of Birkhoff zones of instability; some of them can be found in [23, 24, 27, 28].

For Theorem 2.1 we would also need to know that the tori at the boundary of
the Birkhoff zones of instability are topologically transitive as in (A2). A sufficient
condition for this is that these boundary tori can be obtained as C0-limits of KAM
tori.

We point out that in this remark we do not describe a specific class of Hamilton-
ian systems for which the conditions (A1) – (A5) are automatically satisfied, but
rather we outline methods through which these conditions can be verified individ-
ually in examples.

Example 2.3. We consider a mechanical system consisting of one pendulum and
one rotator with a weak, periodic coupling. This example have been considered in
many papers, but the computation below follows [12]. This system is described by
the following time-dependent Hamiltonian:

Hε(p, q, I, φ, t) =
1
2
p2 + (1− cos(q)) +

1
2
I2 + εh(p, q, I, φ, t; ε),

where (p, q, I, φ, t) ∈ R× T1 × R× T1 × T1. The pendulum has a homoclinic orbit
to (0, 0). Let (p0(σ), q0(σ)) be a parametrization of such a homoclinic orbit, where
σ ∈ R represents the time for the motion of the pendulum. The Melnikov potential
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for this homoclinic orbit is defined by

M(τ, I, φ, t) = −
∫ ∞

−∞

[
h(p0(σ), q0(σ), I, φ + Iσ, t + σ; 0)

−h(0, 0, I, φ + Iσ, t + σ; 0)] dσ.

Assume the following non-degeneracy condition on the Melnikov potential M:
(i) For each I in some interval (I−, I+), and each (φ, t) in some open set in

T× T, the map
τ ∈ R→M(τ, I, φ, t) ∈ R

has a non-degenerate critical point τ∗, which can be parameterized as

τ∗ = τ∗(I, φ, t).

This condition implies that the unstable and stable manifolds of the annu-
lus Λ̃ = {(I, φ, t) | I ∈ (I−, I+), φ ∈ T1, t ∈ T1} intersect transversally along
a homoclinic 3-dimensional manifold Γ̃ that is described by the implicit equa-
tion τ∗ = τ∗(I, φ, t), for (I, φ, t) in some open domain in (I−, I+) × T1 × T1.
When we we discretize the Hamiltonian flow by the time-1 map F , we obtain that
Λ = {(I, φ) | I ∈ (I−, I+), φ ∈ T1, } is a normally hyperbolic invariant manifold.
Its stable and unstable manifolds intersect transversally along some 2-dimensional
homoclinic manifold Γ corresponding to Γ̃. When we restrict Γ to some appropriate
domain of (I, φ), we obtain a homoclinic channel Γ as in condition (A1). We can
associate a scattering map S associated to this homoclinic channel Γ.

Assume the following non-degeneracy condition on the Melnikov potential M:
(ii) For each (I, φ, t) as above, the function

(I, φ, t) → ∂M
∂φ

(τ∗(I, φ, t), I, φ, t)

change its sign once (three times).
The existence of a zero of the above function means that the image of each torus T
under the scattering map S has an intersection point with a torus T ′ which is O(ε)-
close to T . If the zero of the function is non-degenerate, then the corresponding
intersection of the tori is transverse. If the function changes its sign at a zero,
then the corresponding intersection of the tori is topologically crossing. Of course,
if the above function changes its sign three times, the corresponding three zeroes
determine that S(T ) intersects T ′ three times in a topologically crossing manner,
as described by condition (A3). Moreover, it follows that S(T ) and T ′ define two
open regions in Λ bounded, with one region on one side and the other region on
the other side of T ′.

3. Topological shadowing

In this section we present a simple topological method to detect orbits with
prescribed itineraries in a discrete dynamical system. This method is inspired from
the works of C. Conley, R. Easton and R. McGehee [9, 17, 18], and some of its
subsequent developments [7, 20, 32]. The proofs of the statements in this section
can be found or follow immediately from similar statements in [21, 32].

Definition 3.1. Two immersed C0-manifolds N1 and N2 in M , with complemen-
tary dimensions in M i.e., dim(N1) + dim(N2) = dim(M), are said to have a
topologically crossing provided that there exist an orientable open neighborhood U
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N2

N1

U

h1(N1)

h2(N2)

Figure 1. Topologically crossing manifolds.

of p in M , and compact embedded C0-submanifolds with boundary N̄1 ⊆ N1 ∩ U
and N̄2 ⊆ N2 ∩ U such that the following conditions hold

(i) dim(N̄1) = dim(N1) and dim(N̄2) = dim(N2),
(ii) ∂N̄1 ∩ N̄2 = ∅ and ∂N̄2 ∩ N̄1 = ∅,
(iii) N̄1 ∩ N̄2 = N1 ∩N2 ∩ U ,
(iv) there exists a homotopy h : [0, 1]×M → M such that:

(iv.a) h0(N̄1) = N̄1 and h0(N̄2) = N̄2,
(iv.b) the homotopy ht moves points by less than ε/2, where

ε = min(dist(∂N̄1, N̄2), dist(∂N̄2, N̄1)),

(iv.c) h1(N̄1) and h1(N̄2) are smooth manifolds in M ,
(iv.d) there is a choice of orientation on h1(N̄1), h1(N̄2) and U such that the

oriented intersection number relative to U is non-zero, i.e.,

#U (h1(N̄1), h1(N̄2)) 6= 0.

At the intuitive level, the above definition says that two manifolds are topologi-
cally crossing if they can be made differentiably transverse with non-zero oriented
intersection number by the means of a sufficiently small homotopy. Since the em-
bedded manifolds in the above definition are manifolds with boundaries, one has
to require that the homotopy does not let the boundary of one manifold cross the
other manifold. See Figure 1. From the above definition it follows that the compact
embedded C0-submanifolds with boundary N̄1 ⊆ N1 and N̄2 ⊆ N2 can be chosen to
be closed disks. Also, the homotopy ht can be chosen to be arbitrarily small. Since
the oriented intersection number is a homotopy invariant, topological transversality
is stable under small C0-perturbations.

Definition 3.2. A window W in M is a homeomorphism w : Bnu × Bns → M ,
together with its image w(Bnu × Bns) in M , where Bnu and Bns are the closed
unit balls in Rnu and Rns respectively, with nu + ns = dim(M).

In the sequel, we will refer to any topological disk in W of the type w(Bnu×{y0})
as an unstable-like leaf, and to any topological disk of the type w({x0} × Bns) as
a stable-like leaf, respectively.

Definition 3.3. Let W1 and W2 be two windows in M , and w1 : Bnu ×Bns → M ,
w2 : Bnu ×Bns → M be their corresponding homeomorphisms. We say that W1 is
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W1 W2

F(W1)

F

y
0

x
0

Figure 2. Correctly aligned windows.

correctly aligned with W2 if for each x0 ∈ Bnu and y0 ∈ Bns , the unstable-like leaf
w1(Bnu , y0) topologically crosses the stable-like leaf w2(x0, B

ns), with the same
non-zero oriented intersection number for all pairs of leaves.

See Figure 2. The above definition is equivalent to Definition 6 in [32]. In that
version of correct alignment, the union of the boundaries of all unstable-like leaves
of a windows is referred as the exit set, and the union of the boundaries of all
stable-like leaves is referred as the entry set. Definition 6 in [32] requires that the
exit set of W1 is disjoint from W2, W1 is disjoint from the entry set of W2, and
there exits a homotopy, which does not alter the above conditions on the exit and
entry sets, that deforms W1 into a nu-dimensional curve that projects onto the
unstable-like direction of W2 with non-zero Brouwer degree. Here, for convenience,
we opted for a version of this definition that is expressed in terms of the topological
transversality of leaves. (This version of the definition is also closer in spirit to the
original version of correct alignment formulated in [17].)

Given two windows W1 and W2 and a homeomorphism F on M , if F (W1) is
correctly aligned with W2, we will say that W1 is correctly aligned with W2 under
F . Note that the correct alignment of windows is robust, in the sense that if two
windows are correctly aligned under a map, then they remain correctly aligned
under a sufficiently small perturbation of that map.

The following result is a topological version of the Shadowing Lemma for hyper-
bolic dynamical systems.

Theorem 3.4. Let (Wi)i∈Z be a bi-infinite sequence of windows in M , with nu-
dimensional unstable-like leaves and ns-dimensional stable-like leaves, where nu +
ns = dim(M). Let Fi be a collection of homeomorphisms on M . If Wi is correctly
aligned with Wi+1 under Fi for all i, then there exists a point p ∈ W0 such that

Fi ◦ . . . ◦ F0(p) ∈ Wi+1, for all i.

In the context of this paper, the maps Fi will represent different powers of some
map F .

We now discuss certain subsets of a window that they are themselves windows.

Definition 3.5. Let W be a window in M , and let w : Bnu × Bns → M be the
associated homeomorphism. A subset Ŵ of W is said to be a horizontal sub-window
of W if

Ŵ =
⋃

x∈Bnu

w(x,Bns
x ),

where {Bns
x }x is a family of topological disks in Bns that depends continuously

with x ∈ Bnu .
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A subset W̃ of W is said to be vertical sub-window of W if

W̃ =
⋃

y∈Bns

w(Bnu
y , y),

where {Bnu
y }y is a family of topological disks in Bnu that depends continuously

with y ∈ Bns .

Note that by restricting w to the
⋃

x∈Bnu w(x,Bns
x ) we obtain a homeomorphism

from a topological rectangle to Ŵ , thus Ŵ together with this restriction of w is itself
a window. Similarly, W̃ together with the restriction of w to

⋃
y∈Bns w(Bnu

y , y) is
also a window.

We have the following straightforward result.

Lemma 3.6. If the window W1 is correctly aligned with the window W2, and W̃2

is a vertical sub-window of W2, then W1 is also correctly aligned with W̃2. If W1

is correctly aligned with W2, and Ŵ1 is a horizontal sub-window of W1, then Ŵ1 is
also correctly aligned with W2.

It is however not true that if W1 is correctly aligned with W2, and Ŵ2 is a
horizontal sub-window of W2, then W1 is correctly aligned with Ŵ2. It is also not
true that if W1 is correctly aligned with W2, and W̃1 is a vertical sub-window of
W1, then W̃1 is correctly aligned with W2.

The following statement provides a method of construction of correctly aligned
windows about the topologically crossing intersection of two manifolds.

Proposition 3.7. Suppose that N1 and N2 are two C0-manifolds in M , of com-
plementary dimensions, that are topologically crossing at a point p. Then, for ev-
ery neighborhood V of p, there exists a pair of windows W1 and W2 contained
in V , with distinguished homeomorphism w1 : Bdim N1 × Bdim N2 → M and w2 :
Bdim N1 ×Bdim N2 → M respectively, such that the following hold true:

(i) W1 is correctly aligned with W2,
(ii) the unstable-like leaf w1(Bdim N1 , 0) is contained in N1, and each unstable-

like leaf w1(Bdim N1 , y0) topologically crosses N2, for all y0 ∈ Bdim N2 ,
(iii) the stable-like leaf w2(0, Bdim N2) is contained in N2, and each stable-like

leaf w2(x0, B
dim N2) topologically crossing N1, for all x0 ∈ Bdim N1 .

Proof. The idea is to thicken the manifolds N1 and N2 into correctly aligned win-
dows. Choose the embedded submanifolds N̄1 and N̄2 given by Definition 3.1 to be
disks contained in V . Define two homeomorphisms w1, w2 : Bdim N1×Bdim N2 → V
such that w1(Bdim N1 , 0) ⊆ N̄1 and w2(0, Bdim N2) ⊆ N̄2. By choosing w1 and w2

so that w1(x0, ·) and w2(·, y0) are sufficiently small for all x0 ∈ Bdim N1 and all
y0 ∈ Bdim N2 , the stability of topological transversality under small perturbations
implies that the image of w1(·, y0) topologically crosses N2 for each y0 ∈ Bdim N2 ,
and the image of w2(x0, ·) topologically crosses N1 for each x0 ∈ Bdim N1 . ¤

4. Proof of the main theorem

We are under the assumptions of Theorem 2.1. We are given a bi-infinite se-
quence (Ti)i∈Z of invariant primary tori in Λ. We would like to show that there is
an orbit (zi) that (εi)-shadows this sequence of tori. For this purpose, we construct
a sequence of windows along (Ti)i∈Z that are correctly aligned.
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Since Λ is normally hyperbolic, the map F is conjugate to its linearization near
Λ (see [30]). More precisely, there exists a homeomorphism h from a neighborhood
of the zero section in TΛM ⊂ Rn+1×Rn+1 to a neighborhood of Λ in M such that

F (h(x, v)) = h(F (x), (DF )x(v)),

for all x ∈ Λ and all v ∈ TxM sufficiently small. The map h induces a system of
linearized coordinates in a neighborhood of Λ in M . Such a coordinate system is
in general not smooth. The stable manifolds W s(x) will corresponds through this
linearized coordinate system to the stable fibers Es

x, and the unstable manifolds
Wu(x) will corresponds to the stable fibers Eu

x , where Es and Eu denote the
stable and unstable bundles associated to the normally hyperbolic manifold Λ,
respectively. The map h can be used to define windows in a neighborhood of Λ
in M . In our constructions below, the unstable-like leaves of the windows will
correspond to the hyperbolic unstable directions plus one extra direction from the
center directions, and the stable-like leaves will correspond to the hyperbolic stable
directions plus one extra direction from the center directions.

4.1. Construction of windows along a heteroclinic orbit. We consider two
invariant tori Ti−1 and Ti in the sequence (Ti)i∈Z, such that Wu(Ti−1) topologically
crosses W s(Ti) at a point xi−1,i in the homoclinic channel Γ. Due to normal
hyperbolicity, there exist x−i−1 ∈ Ti−1 and x+

i ∈ Ti such that xi−1,i ∈ Wu(x−i−1) ∩
W s(x+

i ). From the definition of the homoclinic channel Γ, the restriction to Γ of the
wave operators Ω± : Γ → Λ are homeomorphisms onto their images. There exists a
curve γ−i−1,i in Γ corresponding through Ω− to Ti−1, and there exists a curve γ+

i−1,i

in Γ corresponding through Ω− to Ti. These curves are topologically crossing at
xi−1,i in Γ since Wu(Ti−1) and W s(Ti) are topologically crossing at xi−1,i in M .
By the definition of the scattering map, we have that Ω+(γ−i−1,i) = S(Ti−1) and
Ω−(γ+

i−1,i) = S−1(Ti). (Note that γ−i−1,i and γ+
i−1,i are not homeomorphic to the

tori Ti−1 and Ti, but only to some curve segments of these tori, since the maps
(Ω±)−1 are not defined on the whole of Λ.)

We will now construct a window Wi−1,i about xi−1,i; we will propagate Wi−1,i

backwards in time to F−m−
i−1(Wi−1,i) about a point F−m−

i−1(xi−1,i) that is (εi−1/2)-
close to F−m−

i−1(x−i−1) ∈ Ti−1; also, we will propagate Wi−1,i forward in time to
Fm+

i (Wi−1,i) about a point Fm+
i (xi−1,i) that is (εi/2)-close to Fm+

i (x+
i ) ∈ Ti.

The distance between Fm(xi−1,i) and Fm(x+
i−1,i), measured relative to W s(Ti),

tends to 0 as m → ∞. Also, the curve Fm(γ+
i−1,i) approaches Ti in the C0-

topology, and the curve Fm(γ−i−1,i) approaches Fm(S(Ti−1)) in the C0-topology,

as m → ∞. There exists m+
i sufficiently large such that Fm+

i (γ+
i−1,i) is within a

distance of (ε+
i /2) from Ti, and Fm+

i (γ−i−1,i) is within a distance of (ε+
i /2) from

Fm+
i (S(Ti−1)). Consequently, we have that Fm+

i (xi−1,i) is within a distance of
(ε+

i /2) from Fm+
i (x+

i ).
The iterate Fm+

i (Wu(Ti−1)) of Wu(Ti−1) is topologically crossing W s(Ti) at
Fm+

i (xi−1,i). We choose a topological disk Di in W s(Ti), centered at Fm+
i (x+

i )
and contained in an (ε+

i /2)-neighborhood of Fm+
i (x+

i ), such that Fm+
i (xi) is an

interior point to Di. By replacing Wu(Ti−1) with some small topological disk
centered at xi−1,i, we can assume that Fm+

i (Wu(Ti−1)) is itself a topological disk
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contained in an (ε+
i /2)-neighborhood of Fm+

i (x+
i ) ∈ Ti, and is topologically crossing

Di ⊆ W s(Ti) at Fm+
i (xi−1,i). We define a homoeomorphism wi−1,i on Bn+1×Bn+1

such that its image under Fm+
i is contained in an (ε+

i )-neighborhood of Fm+
i (x+

i ) ∈
Ti. Moreover, we require that wi−1,i(B1 × {0}, 0) ⊆ γ−i−1,i, wi−1,i(Bn+1, 0) ⊆
Wu(Ti−1), wi−1,i(0, B1×{0}) ⊆ γ+

i−1,i, and wi−1,i(0, Bn+1) ⊆ W s(Ti). By choosing
wi−1,i so that its leaves are sufficiently small, we can can ensure, by the stability of
topological crossing under small perturbations, that the image of each unstable-like
leaf wi−1,i(Bn+1, y0) under Fm+

i is a topological disk topologically crossing Di, at
a point interior to both disks, for all y0 ∈ Bn+1.

Near Λ we have a conjugacy h between F and DF . We define a homeomorphism
w+

i : Bn+1×Bn+1 → M as a rescaled restriction of h to Bn+1×Bn+1. We require
that the image of w+

i is contained in an (εi)-neighborhood of Fm+
i (x+

i ) ∈ Ti. We
can choose h, and implicitly w+

i , so that w+
i (0, Bn+1) = Di ⊆ W s(Ti). By choosing

the rescaling of h so that the leaves of w+
i are sufficiently small, we can ensure that

each leaf w+
i (x0, B

n+1) is topologically crossing the image of each unstable-like leaf
wi−1,i(Bn+1, y0) under Fm+

i , for all x0 ∈ Bn+1 and all y0 ∈ Bn+1. The image of
w+

i is a window contained in an (ε+
i )-neighborhood of Fm+

i (xi−1,i).
We require some additional condition on the construction of W+

i . The intersec-
tion between the image of w+

i and Λ is a 2-dimensional topological rectangle R+
i

that contains a segment of Ti; we require that two of the sides of this rectangle lie on
on some pair of invariant tori nearby Ti, on opposite sides of Ti. We now make this
requirement precise. Since Ti can be C0-approximated from both sides by invariant
tori, there exist a pairs of invariant tori Tj−l

(i) and Tj+
l
(i), both within a distance

of (ε+
i /2) from Ti in Λ, such that Ti is in the interior of the annulus bounded by

Tj−l (i) and Tj+
l (i). (We will use these tori to keep under control the dynamics in-

duced by the restriction of F to Λ.) Every stable-like leaf w+
i (x0, B

n+1) of W+
i is

topologically crossing at a point every unstable-like leaf w+
i (Bn+1, y0) of W+

i . The
intersection between the stable-like leaf w+

i (0, Bn+1) and Λ is a curve segment of
Ti contained in R+

i . The intersections between the stable-like leaves w+
i (x0, B

n+1)
and Λ, where x0 ∈ Bn+1, form a continuous family {T +

a(i)}a of disjoint curve seg-
ments that approach Ti in the C0 topology, with each T +

a(i) corresponding to some
w+

i (x0, B
1×{0}). The intersections between the unstable-like leaves w+

i (Bn+1, y0)
and Λ, where y0 ∈ Bn+1, form a continuous family of disjoint curve segments
{S+

b(i)}b that are topologically crossing Ti, with each S+
b(i) corresponding to some

wi−1,i(B1 × {0}, y0). We require that the curve w+
i (B1 × {0}, 0) ⊆ Fm+

i (S(Ti−1)).
Thus, one of the curves S+

b0(i)
from the family {S+

b(i)}b is contained in the image

under Fm+
i of S(Ti−1).

Since to construct W+
i we used the linearized coordinates near Λ, each stable-like

leaf w+
i (x0, B

n+1) of W+
i is a union of fibers of the form

w+
i (x0, B

n+1) =
⋃

p∈T +
a(i)

(
W s

loc(p) ∩W+
i

)
,
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for some curve segment Ta(i) in R+
i . Also, each unstable-like leaf w+

i (Bn+1, y0) of
W+

i is a union of fibers of the form

w+
i (Bn+1, y0) =

⋃

q∈S+
b(i)

(
Wu

loc(q) ∩W+
i

)
,

for some curve segment S+
b(i) in R+

i .
The last requirement that we impose on W+ is that each curve segment S+

b(i)

in R+
i has its points lying on the tori Tj−l (i) and Tj+

l (i). That is, the rectangle
R+

i has a pair of sides made of the endpoints of the curves S+
b(i) on opposite sides

of Ti in Λ, and lying on some invariant tori neighboring Ti. This completes the
construction of a homeomorphism w+

i : Bn+1 × Bn+1 → M defining a second
window W+

i contained in an (ε+
i )-neighborhood of Fm+

(x+) ∈ Ti. The stable-like
leaf w+

i (0, Bn+1) of W+
i is contained in W s(Ti). The window Wi−1,i is correctly

aligned with the window W+
i under Fm+

i .
In the case when when Ti is at the boundary of a Birkhoff zone of instability

specified in (A4), we define the rectangle R+
i in the same way as above, except that

instead of having a pair of sides lying on some invariant tori Tj+(i) with Tj−(i), we
just have them lie on opposite sides of Ti in Λ. This ends the construction of W+

i .
The above construction concerns the propagation of the window Wi−1,i forward

in time to Fm+
i (Wi−1,i) that is correctly aligned with W+

i .
In a similar fashion we propagate the window Wi−1,i backwards in time to

F−m−
i−1(Wi−1,i) about the point F−m−

i−1(xi−1,i) ∈ Wu(Ti−1), and construct a win-
dow W−

i−1 about the point F−m−
i−1(xi−1,i) ∈ Ti−1, such that W−

i−1 is correctly

aligned with the window F−m−
i−1(Wi−1,i). Moreover, the window W−

i−1 is chosen
to be inside an (εi−1)-neighborhood of Ti−1.

We now list the key features of W−
i−1, that are analogous to the corresponding

features of W+
i . The window W−

i−1 is the image of a homeomorphism w−i−1 : Bn+1×
Bn+1 → M , which is a restriction of h to Bn+1 × Bn+1, rescaled appropriately.
The unstable-like leaf w−i−1(0, Bn+1) of W−

i−1 is contained in Wu(Ti−1). The inter-
section between the image of w−i−1 and Λ is a 2-dimensional topological rectangle
R−i−1 that contains a segment of Ti−1. The intersections between the unstable-like
leaves w−i−1(B

n+1, y0) and Λ, where y0 ∈ Bn+1, form a continuous family of disjoint
curve segments {T −a(i−1)}a that approach that approach Ti−1 in the C0-topology,
with each T −a(i−1) corresponding to some curve wi−1,i(B1 × {0}, y0). The intersec-
tions between the stable-like leaves w−i−1(x0, B

n+1) and Λ, where x0 ∈ Bn+1, form
a continuous family {S+

b(i−1)}a of disjoint curve segments that are topologically
crossing Ti−1, with each S−b(i−1) corresponding to some w−i−1(x0, B

1 × {0}). It is

also required that the curve w−i−1(0, B1×{0}) is contained in Fm−
i−1(S−1(Ti)), and

each curve segment S+
b(i−1) in R−i−1 has its points lying on a pair of tori Tj−l (i−1)

and Tj+
l (i−1), each within (εi−1/2) from Ti−1 (so the rectangle R−i−1 has a pair of

sides lying on Tj−l (i−1) and Tj+
l (i−1)).
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We have that each stable-like leaf w−i−1(x0, B
n+1) of W−

i−1 is a union of fibers of
the form

w−i−1(x0, B
n+1) =

⋃

p∈S−
b(i−1)

(
W s

loc(p) ∩W−
i−1

)
,

for some curve segment S−b(i−1) in R−i−1. Similarly, each unstable-like leaf w−i−1(B
n+1, y0)

of W−
i−1 is a union of fibers of the form

w−i−1(B
n+1, y0) =

⋃

q∈T +
a(i−1)

(
Wu

loc(q) ∩W−
i−1

)
,

for some curve segment T +
a(i−1) in R−i−1. In the special case when Ti−1 is at the

boundary of a Birkhoff zone of instability specified in (A4), the rectangle R−i−1 is
constructed to have the pair of sides made of the endpoints of the curves S+

b(i−1)

just lying on opposite sides of Ti−1 in Λ, rather than lying on some invariant tori
neighboring Ti−1.

4.2. Construction of windows along a transition chain. We consider a transi-
tion chain of tori Tik−1+1, Tik−1+2, . . . , Tik−1, Tik

, where k is some positive integer,
as prescribed by assumption (A3). We have that Wu(Ti−1) has a topologically
crossing intersection with Wu(Ti) at a point xi−1,i, where Ti−1 and Ti are any
two consecutive tori in the above sequence. The point xi−1,i lies on the unstable
manifold of x−i−1 ∈ Ti−1 and also on the stable manifold of x+

i ∈ Ti. Each torus in
the transition chain, except for the tori at both ends, can be approximated from
both sides, relative to the C0-topology, by other smooth tori.

We would like to construct a finite sequence of windows along these tori such
that any two consecutive windows in the sequence are correctly aligned under some
power of F . We will perform this construction inductively starting at Tik−1+1, at
the beginning of the transition chain.

The initial step of the construction is as described in Subsection 4.1. This consists
in constructing a window Wik−1+1,ik−1+2 about the heteroclinic point xik−1+1,ik−1+2,

and two windows, W−
ik+1 about the point F

−m−
ik−1+1(x−ik−1+1) ∈ Tik−1+1, and W+

ik+2

about the point F
−m+

ik−1+2(x+
ik−1+2) ∈ Tik−1+2, such that W−

ik−1+1 is correctly

aligned with Wik−1+1,ik−1+2 under some iterate F
m−

ik−1+1 , and Wik−1+1,ik−1+2 is

correctly aligned with W+
ik−1+2 under some iterate F

m+
ik−1+2 . Also, all points of the

window W−
ik−1+1 are within (εik−1+1) from Tik−1+1, and all points of the window

W+
ik−1+2 are within (εik−1+2) from Tik−1+2.
We now assume that we arrived with the inductive construction at some hetero-

clinic connection between Ti−1 and Ti, where the tori Ti−1 and Ti are two consec-
utive tori in the chain Tik−1+1, Tik−1+2, . . . , Tik−1, Tik

. The inductive construction
yields a window W+

i within (εi) from Ti, which is of the form

W+
i =

⋃

(I,φ)∈R+
i

Q+
i (I, φ),

where the rectangle R+
i has a pair of sides lying on some invariant tori Tj−(i)

and Tj+(i) on opposite sides of Ti, and Q+
i (I, φ) is a topological (2n)-dimensional

rectangle corresponding to the hyperbolic directions, for each (I, φ) ∈ R+
i . The
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unstable-like leaves of this window are leaves of the form w+
i (Bn × B1, y0), that

intersect R+
i along curves S+

b(i) that are topologically crossing Ti and have their
endpoints on the tori Tj−(i) and Tj+(i).

We consider the subsequent heteroclinic connection in the chain, between Ti

and Ti+1. About the corresponding heteroclinic point xi,i+1 we construct a test
window Wi,i+1. As in Subsection 4.1, we construct the windows W−

i about Ti,
and the window W+

i+1 about the Ti+1, such that W−
i is correctly aligned with

F−m−
i (Wi,i+1), and Fm+

i+1(Wi,i+1) is correctly aligned with W+
i+1. The window

W−
i is contained in an (εi)-neighborhood of Ti, and is of the form

W−
i =

⋃

(I,φ)∈R−i

Q−i (I, φ),

where the rectangle R−i has a pair of sides on Tj′−(i) and Tj′+(i), and Q−
i (I, φ) is a

topological (2n)-dimensional rectangle corresponding to the hyperbolic directions,
for each (I, φ) ∈ R−i . The stable-like leaves of this window are leaves of the form
w−i (x0, B

n×B1), that intersect R−i along curves S−b(i) that are topologically crossing
Ti and have their endpoints on the same neighboring tori Tj−(i) and Tj−(i) of Ti as
in the construction of W+

i .
We will use the twist map property of F restricted to Λ to make the windows

W+
i and W−

i correctly aligned under some iterate of F . For this purpose, we will
first make R+

i correctly aligned under R−i under some iterate of F .
By the twist condition, and by the fact that F is topologically transitive on Ti

(assumption (A2)), there exists mi such that each curve S+
b(i) in R+

i connecting
Tj−(i) and Tj+(i) is mapped by Fmi onto a curve that intersects in a topologically
crossing manner each curve S−b(i) in R−i connecting Tj−(i) and Tj+(i). Since the
curves S+

b(i) in R+
i connecting Tj−(i) and Tj+(i) represent the unstable-like direc-

tions of R+
i , and the curves S−b(i) in R−i connecting Tj−(i) and Tj+(i) represent the

stable-like directions of R−i , we obtain that the window R+
i is correctly aligned

with the window R−i under Fmi . See Figure 3. We need to impose additional
restrictions W+

i (implicitly on the (2n)-dimensional rectangles Q+
i (I, φ)), and on

W−
i (implicitly on Q−

i (I, φ)), such that the whole window W+
i is correctly aligned

with the window W−
i under Fmi . In this order, the image of each leaf of the

type w+
i (Bn × B1, x0) under Fmi should topologically cross each leaf of the type

w−i (x0, B
n × B1). The alignment in the hyperbolic direction is due to the fact

that the unstable directions will contract exponentially and the stable directions
will expand exponentially. Since we have control of the iterates of W+

i under F
only if these iterates remain close to Λ, the unstable-like leaves of W+

i may need
to be enlarged, and the stable-like leaves of W+

i may need to be shrunk, in their
hyperbolic directions.

Changing (adjusting) the size of the leaves in W+
i imposes similar changes in

the test window Wi,i+1 and the corresponding window W+
i+1 (without changing the

order of the iterates m−
i and m+

i+1 of F ). This completes the induction step.
Thus, these adjustment get propagated forward along the transition chain

Tik−1+1, Tik−1+2, . . . , Tik−1, Tik
. When the upper boundary of the Birkhoff zone

of instability between Tik
and Tik+1 is reached, we need to cross it.
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Ti

Tj+(i) 

R+
i F

mi(R+
i ) R-

i 

Tj-(i) 

S
+

b(i) S 
-
b(i)T  

-
a(i)T 

+
a(i)

Figure 3. Windows in the annulus correctly aligned under the
twist map.

We emphasize that this construction uses as an essential feature the fact that
the tori in the transition chain can be approximated from both sides, relative to the
C0-topology, by other tori. We note that this type of tori also play an important
role in the variational method in [15, 16] for proving the existence of drift orbits.

4.3. Construction of windows across a Birkhoff zone of instability. We
consider a Birkhoff zones of instability bounded by the tori Tik

and Tik+1 for some
k, as prescribed in assumption (A4).

The torus Tik
is the last torus in a transition chain Tik−1+1, Tik−1+2, . . . , Tik−1, Tik

.
We assume that correctly windows have already been constructed inductively along
this transition chain. These windows form a sequence of the type:

W−
ik−1+1,Wik−1+1,ik−1+2,W

+
ik−1+2, . . . ,W

−
ik−1,Wik−1,ik

, W+
ik

,

where each window is correctly aligned with the subsequent window in the sequence
under some iterate of F .

We consider the torus Tik+1 at the other boundary of the Birkhoff zone of insta-
bility. Corresponding to the heteroclinic connection between Tik+1 and Tik+2, the
next invariant torus in the sequence (Ti)i∈Z, we can construct the correctly aligned
windows W−

ik+1 near Tik+1, Wik+1,ik+2 near xik+1,ik+2, and W+
ik+2 near Tik+2, as

in Subsection 4.1.
We want to make the window W+

ik
on the one side of the Birkhoff zone of in-

stability correctly aligned with the window W−
ik+1 on the other side of the Birkhoff

zone of instability, under some iterate of F . We will use the existence of Birkhoff
connecting orbits that go from near one boundary of the Birkhoff zone of instability
to near the other boundary of the zone.

For this reason, we first consider the topological rectangles in R+
ik

corresponding
to W+

ik
, and R−ik+1 corresponding to W−

ik+1, both rectangles being in Λ. First we
want to have make these rectangles correctly aligned. By construction, the rectangle
R+

ik
contains a curve segment Sb0(ik) (corresponding to some curve w+

ik
(B1×{0}, y0)

contained in a unstable-like leaf of W+
ik

) that is contained in F
m+

ik (S(Tik−1)). Also,
the rectangle R−ik+1 contains a curve segment Sb0(ik+1) (corresponding to some
curve w+

ik+1(x0, B
1 × {0}) contained in a stable-like leaf of W+

ik
) that is contained

in F
m−

ik+1(S−1(Tik+2)).
Condition (A3) implies that the intersection between S(Tik−1) and Tik

encloses
an open neighborhood in Λ of some curve segment of Tik

. It follows that in-

tersection of the iterate F
m+

ik (S(Tik−1)) of S(Tik−1) and Tik
also encloses an open
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Birkhoff

Zone of
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R+
ik

R-
ik+1

S 
-
b0(ik+1)

S
+

b0(ik)

Tik

Tik+1

Fmik

Fmik

S(Tik-1)

S-1(Tik+1)

Figure 4. Birkhoff connecting orbits.

neighborhood in Λ of some curve segment of Tik
; let us call this latter neighborhood

U . The boundary part of U inside the annulus bounded by Tik
and Tik+1 is en-

tirely contained in F
m+

ik (S(Tik−1)). Similarly, the intersection between S−1(Tik+2)
and Tik+1 encloses an open neighborhood in Λ of some curve segment of Tik+1.

Therefore the intersection of the iterate F
m−

ik+1(S−1(Tik+2)) of S−1(Tik+2) and
Tik+1 encloses an open neighborhood V in Λ of some curve segment of Tik+1. The
boundary part of V inside the annulus bounded by Tik+1 and Tik+2 is entirely

contained in F
m−

ik+1(S−1(Tik+2)). By condition (A2) the map F is topologically
transitive on both boundary tori Tik+1 and Tik+2. This implies that there exits a
Birkhoff connecting orbit from U to V in Λ, i.e., there exist x ∈ U and mi > 0
such that Fm(x) ∈ V . Thus, there exist a point xik

∈ F
m+

ik (S(Tik−1)) whose image

Fmik under Fmik
is a point xik+1 ∈ F

m−
ik+1(S−1(Tik+2)). Moreover, the point xik

can be chosen so that the intersection at yik+1 between Fmik (Fm+
ik (S(Tik−1))) and

F
m−

ik+1(S−1(Tik+2)) is topologically crossing (otherwise there will be no point in
the open set U that goes inside the open set V ). See Figure 4.

We now need to perform a series of adjustment to the rectangles R+
ik

and R−ik+1

in Λ, so that R+
ik

is correctly aligned with R−ik+1 under Fmik . First, if necessary,
we need to extend the original rectangle R+

ik
along the curve S+

b0(ik) such that R+
ik

contains the point xik
∈ S+

b0(ik). We shall similarly extend the rectangle R−ik+1 along
the curve S+

b0(ik+1) such that R−ik+1 contains the point yik+1 ∈ S+
b0(ik+1). Thus the

point xik
∈ R+

ik
is taken by Fmik to the point yik+1 ∈ R−ik+1. We already know,

from above, that the image of S+
b0(ik) under Fmik intersects S+

b0(ik+1) at yik+1 in a
topologically crossing manner. Then, if necessary, we shrink R+

ik
along its stable-

like leaves, and shrink R−ik+1 along its unstable-like leaves, such that the image
of each of the curves S+

b(ik) under Fmik intersects each of the curves S−b(ik+1) in
a topologically crossing manner. This is possible due to the stability property of
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Figure 5. Correctly aligned windows across a Birkhoff zone of instability.

topological crossing. Moreover, we construct the rectangle R̂+
ik

such that its stable-

like leaves T +
a(ik) have their endpoints lying on the images under F

m+
ik ◦ S of some

invariant tori T ′j−(ik−1) and T ′j+(ik−1) neighboring Tik−1. Such neighboring tori that
are sufficiently close to the torus Tik−1 exist due to condition (A5). In summary,
the rectangle R+

ik
has a pair of edges on opposite sides of Tik

in Λ, and the other
pais of edges lying on some iterate of the images under the scattering map of a pair
of tori near the previous torus in the sequence. Similarly, the rectangle R̂−ik+1 is
constructed such that its unstable-like leaves T −a(ik+1) have their endpoints lying on

the images under F
−m−

ik+1 ◦ S−1 of some tori T ′j−(ik+2) and T ′j+(ik+2) neighboring
Tik+2.

Since the unstable-like leaves of R+
ik

are the curves S+
b(ik), and the stable-like

leaves of R−ik+1 are the curves S−b(ik+1), then it follows that R+
ik

is correctly aligned
with R−ik+1 under Fmik . We will denote the rectangles R+

ik
and R−ik+1 adjusted as

above by R̂+
ik

and R̂−ik+1. See Figure 5.
The adjustment of the rectangle R−ik+1 requires an appropriate adjustment of

the corresponding test window W−
ik+1. Namely, the window W−

ik+1 will be replaced
by a window Ŵ−

ik+1 of the form

Ŵ−
ik+1 =

⋃

(I,φ)∈R̂−ik+1

Q−
ik+1(I, φ),

where the rectangle R̂−ik+1 is the adjusted rectangle from above, and, for each
(I, φ) ∈ R̂−ik+1 the (2n)-dimensional topological rectangle Q−ik+1(I, φ) is the same
rectangle as the one corresponding to the original window W−

ik+1. Consequently,
the windows Wik+1,ik+2 near xik+1,ik+2, and W+

ik+2 near Tik+2 have to be replaced
by corresponding windows Ŵik+1,ik+2 and Ŵ+

ik+2 respectively, so that Ŵ−
ik+1 is cor-

rectly aligned with Ŵik+1,ik+2 under F
m−

ik+1 , and Ŵik+1,ik+2 is correctly aligned

with Ŵ+
ik+2 under F

m+
ik+2 . We stress that the orders of the iterates F

m−
ik+1 and
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F
m+

ik+2 for these correct alignments do not change from the ones for the test win-
dows W−

ik+1, Wik+1,ik+2 and W+
ik+2, since the adjustments do not involve the hyper-

bolic directions of these windows. At this stage, the construction of windows about
the heteroclinic connection between Tik+1 and Tik+2 is completed. To simplify the
notation, we drop the ̂ symbol from the notation of the adjusted windows, so from
now on we will denote them still by W−

ik+1, Wik+1,ik+2 and W+
ik+2. Then, beginning

with Tik+2, the construction of correctly aligned windows is continued inductively
forward along the transition chain Tik+1, Tik+2, . . . , Tik+1−1, Tik+1 .

We have also performed an adjustment of the rectangle R+
ik

about the torus
Tik

at the other boundary of the Birkhoff zone of instability. This requires an
appropriate adjustment of the corresponding test window W+

ik
. The window W+

ik

will be replaced by a window Ŵ−
ik

of the form

Ŵ+
ik

=
⋃

(I,φ)∈R̂+
ik

Q+
ik

(I, φ),

where, for each (I, φ) ∈ R̂+
ik

the (2n)-dimensional topological rectangle Q+
ik

(I, φ)
is the same rectangle as the one corresponding to the original window W+

ik
. The

previously constructed windows Wik−1,ik
near xik−1,ik

, and W−
ik+2 near Tik+2 will

be replaced by corresponding windows Ŵik−1,ik
and Ŵ−

ik−1 respectively, so that

Ŵ−
ik−1 is correctly aligned with Ŵik−1,ik

under F
m−

ik−1 , and Ŵik−1,ik
is correctly

aligned with Ŵ+
ik

under F
m+

ik . The orders of the iterates F
m−

ik−1 and F
m+

ik remain
the same as before. The intersection between Ŵ−

ik−1 and Λ is a topological rectangle
R̂−ik−1. Since on R̂+

ik
we imposed that its stable-like leaves lie on some iterate of the

images under the scattering map of a pair of tori near Tik−1, in order to ensure the
correct alignment of windows, we choose the rectangle R̂−ik−1 such that its stable-
like leaves S−b(ik−1) have their endpoints lying on a pair of invariant tori T ′′j−(ik−1)

and T ′′j+(ik−1) neighboring Tik−1, that are sufficiently close to Tik−1. This is possible
due to condition (A5).

Now we consider the rectangle R+
ik−1 corresponding to the window W+

ik−1. By
construction, its unstable-like leaves S+

b(ik−1) have their endpoints lying on op-
posite sides of Tik−1, on a pair of invariant tori Tj−(ik−1) and Tj+(ik−1). If the
annulus bounded by Tj−(ik−1) and Tj+(ik−1) is contained in the annulus bounded
by T ′′j−(ik−1) and T ′′j+(ik−1), then the rectangle R−ik−1 can be made correctly aligned

with the rectangle R̂+
ik−1 under some sufficiently large iterate Fm′

ik−1 , as in Sub-
section 4.2. Consequently, the window W−

ik−1 is correctly aligned with the window

Ŵ+
ik−1 under Fm′

ik−1 . Note that here we use the fact that F restricted to Tik−1 is
topologically transitive, as specified in (A2). If the annulus bounded by Tj−(ik−1)

and Tj+(ik−1) is not contained in the annulus bounded by T ′′j−(ik−1) and T ′′j+(ik−1),
then the rectangle R+

ik−1 needs to be shaved-off so that its unstable-like leaves have
their endpoints lying on T ′′j−(ik−1) and T ′′j+(ik−1). Hence R+

ik−1 will be replaced with

a rectangle R̂+
ik−1 whose unstable-like leaves Ŝ+

b(ik−1) have their endpoints lying on

T ′′j−(ik−1) and T ′′j+(ik−1). Thus R̂−ik−1 is correctly aligned with the rectangle R̂+
ik−1

under some sufficiently large iterate Fm′
ik−1 . An important remark in this case is
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Figure 6. Correctly aligned windows across a Birkhoff zone of instability.

that the rectangle R̂−ik−1 can be chosen as a stable-like sub-rectangle of Rik
, since

we only need to shrink the unstable-like leaves of Rik
. See Figure 6. Consequently,

the window W−
ik−1 will be adjusted to a window Ŵ−

ik−1 that is a vertical sub-window
of W−

ik−1. The key observation now is that the series of adjustments stops here as
we do not need to modify any of the previously constructed windows. Indeed, by
Lemma 3.6, since Wik−2,ik−1 is correctly aligned with W+

ik−1, replacing W+
ik−1 by

a vertical sub-window Ŵ+
ik−1 does not destroy the previous correct alignment. So

we have W−
ik−2 correctly aligned with Wik−2,ik−1, and Wik−2,ik−1 correctly aligned

with Ŵ+
ik−1; also Ŵ−

ik−1 is correctly aligned with Ŵik−1,ik
, and Ŵik−1,ik

is correctly
aligned with Ŵ+

ik
. To simplify the notation, we drop the ̂ symbol from the notation

of the adjusted windows.
In conclusion, at the end of this step, we have obtained the following:

(i) A sequence of correctly aligned windows

W−
ik−1+1,Wik−1+1,ik−1+2,W

+
ik−1+2, . . . ,W

−
ik−1,Wik−1,ik

, W+
ik

,

along the transition chain Tik−1+1, Tik−1+2, . . . , Tik−1, Tik
.

(ii) A sequence of correctly aligned windows

W−
ik+1,Wik+1,ik+2,W

+
ik+2, . . . ,W

−
ik+1−1,Wik+1−1,ik+1 ,W

+
ik+1

,

along the transition chain Tik+1, Tik+2, . . . , Tik+1−1, Tik+1 .
(iii) The window W+

ik
by one boundary of the Birkhoff zone of instability be-

tween Tik
and Tik+1 is correctly aligned with the window W−

ik+1 by the
other boundary of the Birkhoff zone of instability.

4.4. Construction of windows along the transition chains and across the
Birkhoff zones of instability. To summarize, in Subsection 4.1, we described
the construction of correctly aligned windows about a topologically crossing hetero-
clinic connection. In Subsection 4.2 we described the inductive construction along a
topological transition chain Tik−1+1, Tik−1+2, . . . , Tik−1, Tik

, starting at Tik−1+1 and
moving forward along the transition chain. In Subsection 4.3 we continued this in-
ductive construction across a Birkhoff zone of instability and along the subsequent
transition chain Tik+1, Tik+2, . . . , Tik+1−1, Tik+1 . This process required the revision
of the last windows about Tik−1 and Tik

, while the rest of the windows remained
unchanged. Thus starting from some initial torus Tik−1+1 and moving forward, we
can construct correctly aligned windows along infinitely many topological transi-
tion chains interspersed with Birkhoff zones of instability. Such construction does
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not need to revise the windows constructed at the initial step by Tik−1+1. Thus,
a similar construction can be performed backwards in time, along infinitely many
topological transition chains interspersed with Birkhoff zones of instability. In con-
clusion, one obtains a bi-infinite sequence of correctly aligned windows of the type
W−

i ,W+
i ,Wi,i+1, with the windows W−

i ,W+
i contained in an (εi)-neighborhood of

Ti. The Shadowing Lemma-type of result Theorem 3.4 implies the existence of an
orbit (zi) that (εi)-shadows the tori (Ti).
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