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UNIFORM SUBHARMONIC ORBITS FOR SITNIKOV PROBLEM

CLARK ROBINSON

Abstract. We highlight the argument in Moser’s monograph that the sub-
harmonic periodic orbits for the Sitnikov problem exist uniformly for the ec-
centricity sufficiently small. We indicate how this relates to the uniformity of
subharmonic periodic orbits for a forced Hamiltonian system of one degree of
freedom with a symmetry.

1. Introduction and Statement of Result. The Sitnikov problems concerns
the restricted three-body problem in space, where two primaries of mass 1

2 each
move in the (x, y)-plane and the third massless body moves on the z-axes. The
radial coordinate of one of the primaries in an elliptical orbit with eccentricity ε is

r(t) =
1

2
(1 − ε cos(2πt)) + O(ε2). (1)

Then the equation for the third body is

d2z

dt2
= − z

(z2 + r2(t))
3

2

. (2)

A good introduction into this problem is given in [4] where it is shown that for ε > 0
there exists a horseshoe Λε and so many periodic orbits. These orbits have periods
that are multiples of the forcing period and so are called subharmonic orbits. The
minimum of the periods of the orbits in Λε goes to infinity as ε goes to zero, so this
result does not imply that there are periodic orbits for all periods greater than a
fixed bound as ε goes to zero, i.e., that there uniform subharmonic orbits for the
Sitnikov problem. Jaume Llibre pointed out to me that this uniformity was proved
in Moser’s book [4]. In this paper, I want to explain how this result is contained
in [4] and how it relates to a general result about forced Hamiltonian systems with
a symmetry and Melnikov functions. Although it is implicit in [4], A. Garćıa &
Pérez-Chavela [1] showed how to put the Sitnikov problem in the framework of the
Melnikov function.

In considering the Sitnikov problem, we compare it with a periodically forced
forced Hamiltonian system with one degree of freedom where the original periodic
orbit is actually hyperbolic and all the orbits consider lie in a compact part of space.
In this situation, the geometry and uniformity is easier to understand. An example
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is the forced Duffing system which we write as an autonomous system in R
2 × S1,

ẋ = y

ẏ = x − x3 + ε cos(2 π τ) (3)

τ̇ = 1 (mod 1).

For ε = 0, we consider this as a differentiable equation in the (x, y)-space ignoring
the τ variable. This system in R

2 has a transversal Σ = {(x, 0) : x > 0}. It also

has an invariant energy function H(x, y) =
y2

2
− x2

2
+

x4

4
. The level curve H−1(0)

is made up of the hyperbolic fixed point (0, 0) and two homoclinic orbits. Let
Γ = {(x, y) : H(x, y) = 0, x > 0 } be the points on one of these homoclinic orbits

and parameterize it by q0(t) with q0(0) = (a, 0) ∈ Σ where a =
√

2. The region
inside Γ is filled with periodic orbits {qh(t)} that we can parameterize by energy,
H(qh(t)) = h < 0, and choose the initial condition so that qh(0) ∈ Σ. Letting
R(x, y) = (x,−y) be the linear reflection in the x-axis, 3 has a symmetry under
the change of variables (x, y, τ, t) 7→ (x,−y,−τ,−t) = (R(x, y),−τ,−t). Note that
Σ is the set of fixed points of the reflection.

We next identify the essential features of 3 that we use for the proof of the
uniformity of the subharmonics.

We assume that R is a linear reflection on R
2 with a line of fixed points Σ. We

assume that H(x, y) is a real-valued Hamiltonian function that is invariant under
R, H(Rz) = z, with a saddle critical point at p0 ∈ Σ, H(p0) = 0 (for notational
simplicity), and at least one branch of H−1(0) called Γ is a loop. For simplicity,
we assume that H(z) < 0 inside Γ. We assume that g(x, y, τ) is period 1 in τ and
g(Rz, τ) = g(z, τ). The forced Hamiltonian system with symmetry is given by

ẋ =
∂H

∂y
+ εg1(x, y, τ)

ẏ = −∂H

∂x
+ εg2(x, y, τ) (4)

τ̇ = 1 (mod 1).

This system is invariant under the symmetry (z, τ, t) 7→ (Rz,−τ,−t) ≡ R̂(z, τ, t).
For ε = 0, the saddle critical point p0 of H is a a hyperbolic fixed point, and the loop
Γ in H−1(0) is an orbit q0(t) that is homoclinic to p0. We take the parametrization
such that q0(0) ∈ Σ. We also let γ0 = { (p0, τ) : 0 ≤ τ ≤ 1 } be the periodic orbit
in the 3-dimensional space. For ε 6= 0, let γε be the nearby hyperbolic periodic
orbit with stable and unstable manifolds W s

ε (γε) and W u
ε (γε) in R

2 × S1.
For ε = 0, inside of Γ, there are also periodic orbits qh on level set H(qh(t)) =

h < 0 with qh(0) ∈ Σ. The points qh(0) converges to q0(0) as h < 0 goes to 0.

Let Th be the period of qh. Since Th goes to ∞ as h goes to 0,
∂Th

∂h
> 0 for h near

enough to 0. For some m0 > 0 and m ≥ m0, there is an hm be such that Thm
= m.

There are Melnikov functions for both homoclinic and subharmonic orbits: The
homoclinic Melnikov function is given by

M0(τ0) =

∫ ∞

−∞

∇H
(

q0(t − τ0)
)

· g(q0(t − τ0), t) dt
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and the subharmonic Melnikov functions for each hm are given by

Mm(τ0) =

∫ τ0+m

τ0

∇H
(

qhm(t − τ0)
)

· g(qhm(t − τ0), t) dt.

A nondegenerate zero of a real-valued function M is a value τ ∗ such that M(τ∗) =
0 and M ′(τ∗) 6= 0. The following theorem summarizes the standard results about
Melnikov functions or easy results.

For a forced Hamiltonian system with symmetry given by 4, the symmetry in-
sures that M(0) = 0, but we have to assume that this zero is nondegenerate.

Theorem 1.1. Comparison of homoclinic and subharmonic Melnikov functions.

a. Mm(τ) → M0(τ) as m → ∞.
b. If τ∗ is a nondegenerate zero of M 0, then there is a nondegenerate zero τ ∗

m

for Mm as m → ∞ (uniformly in m) such that τ∗
m converges to τ∗ as m goes

to infinity.

Subharmonic Melnikov function:

c. If Mm has a nondegenerate zero τ∗
m, then there exists a period-m point (pm(ε), τm(ε))

for 0 < |ε| ≤ ε∗m such that (pm(ε), τm(ε)) converges to (qhm(τ∗
m), τ∗

m) as ε con-
verges to 0.

Homoclinic Melnikov function: Assume that M 0 has a nondegenerate zero at τ ∗.

d. There exists a transverse homoclinic point Qε for 0 < |ε| ≤ ε∗.
e. There exists a hyperbolic horseshoe, Λε, for 0 < |ε| ≤ ε∗.

Part (a) is not hard analysis because subharmonic orbit converges to the ho-
moclinic orbit and ∇H(0, 0) = (0, 0). For part (b), because the convergence is
uniform, the results about the derivatives follows. Part (c) is the standard result
about the subharmonic Melnikov function and parts (d) and (e) are the standard
results about the homoclinic Melnikov function. See [3] for these results and others.

Remark. For the proof of part (c) about the subharmonic orbits, it is necessary to
ensure that the orbit comes back with both the same energy H and the same coor-
dinate along the homoclinic orbit Γ. The subharmonic Melnikov function measure
the change in energy, so a zero determines a coordinate in the Γ direction which
returns with the same energy to first order in ε. Because the period various with
changing energy, there is a choice of the H coordinate that return with the same
same coordinate along the homoclinic orbit Γ. Combining gives a periodic orbit.
Various people have made this idea rigorous.

Theorem 1.2. Assume that there is one of the follow two types of systems: (a)
A force Hamiltonian system with symmetry (4) for which M 0 has a nondegenerate
zero at τ = 0 or (b) the Sitnikov problem (2). Then, there is an ε∗

sub
> 0 and an

m ≥ m0 such that there exists a period-m point (pm(ε), 0) for all 0 < |ε| ≤ ε∗m.

Remark. Note that the statement and the proof of our main theorem only involves
the homoclinic Melnikov function.

We do not attempt to get a uniformity out of the convergence given in Theorem
1.1(a): we would need to reverse the order of taking limits in ε and m.

The hyperbolic horseshoe Λε given by Theorem 1.1(e) has a periodic point of

period 1 and periodic points of periods j for all j ≥ Jε, where Jε ∼ ln
(

1
|ε|

)

. This

lower bound on the periods is not usually stated, but follows from the time it takes to
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Figure 1. Orbit and cross section Σ
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Figure 2. Sketch in Σ̂. a. P0(σ) for ε = 0, b. Pε(σ) for ε 6= 0

go past the fixed point. Since the subharmonic orbits for all m ≥ m0 exist uniformly
for 0 < |ε| ≤ ε∗sub, the ones for m0 ≤ m < Jε are not in Λε and are most likely
elliptic.

Remark. We note that [2] and [3] both state that periodically forced oscillators like
3 or 4 (even without symmetry) have periodic subharmonic orbits uniformly in the
period (m ≥ m0) as ε goes to zero. They also assume that the unforced system has
a hyperbolic fixed point (which is a hyperbolic periodic orbit when τ is added), and
that the homoclinic Melnikov function has a nondegenerate zero. However, their
argument is very geometric and it is not clear if it applies to the Sitnikov problem
since the “periodic orbit at infinity” is not hyperbolic but only saddle-like due to
higher order terms.

Our proof also gives a different argument for the uniformity in periodically forced
systems with a symmetry when the original system has a hyperbolic fixed point. We
basically highlight the basic ingredients of the proof in Moser’s book [4] and indicated
why it implies the uniformity.

2. Proof of Theorem 1.2(a). In this section we consider a forced Hamiltonian
system with symmetry (4).

Let Σ̂ = Σ × {0 ≤ τ ≤ 1} be the transversal in R
2 × S1 out near q0(0) × S1.

See Figure 1. Let σ = { (qh(0), 0) : h0 ≤ h ≤ 0 } ⊂ Σ̂ ∩ {τ = 0} be a line segment

transverse to W s
0 (γ0). Let Pε : Σ̂ → Σ̂ be the Poincaré map past the closed

orbit and back to Σ̂. Since the return time Th,ε of the orbit with initial conditions
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(qh(0), 0) goes to infinity in a uniform manner with
d

dh
Th,ε > 0, and using the

λ-Lemma, we get that Pε(σ) spirals around Σ̂ and converges to W u
ε (γε) in a C1

manner. See Figure 2. Therefore, Pε(σ) intersects σ in a countably infinite number

of points {pj(ε)}j≥j0 . Because of the symmetry R̂, these points also return to σ

under P−1
ε . Therefore Pε takes {pj(ε)}j≥j0 to itself (except possibly the furtherest

point out from W u
ε (γε).) For ε = 0, the system also preserves the energy and so

P0(pj(0)) = pj(0) for each j. Because the set of points is discrete and the points
vary continuously, Pε(pj(ε)) = pj(ε) for |ε| less than some ε∗sub > 0 and these points
are all periodic. Between each pair of points pj(ε) and pj+1(ε), Pε(σ) wraps one
more time around S1 in the τ -variable, so these points lie on subharmonic orbits
of all periods above a single m0. By reindexing the points by the period m, pm(ε)
can be made a subharmonic of period m for all m ≥ m0 uniformly for |ε| ≤ ε∗sub.

Note that the C1 convergence of Pε(σ) to W u
ε (γε) is used only to show that it

is monotone in τ and crosses Σ transversally. The length of the line segment σ can
be taken for ε = 0, and then this uniform length will continue to spiral in a correct
fashion for |ε| ≤ ε∗sub.

3. Proof of Theorem 1.2(b) for the Sitnikov problem. The argument given
above for the forced Hamiltonian with symmetry is essentially the one given by
Moser in [4] for the Sitnikov problem. The details of the argument use McGe-
hee coordinates and the non-hyperbolic saddle periodic orbit at infinity (when the
massless body had z = ±∞.) We leave to the reader to check the details involving
coordinates and other details in [4].

The cross section Σ corresponds to z = 0. The Poincaré map Pε corresponds to
the return map from z = 0 back to z = 0. Moser’s proof of Lemma 3 on pages 163
– 165 of [4] shows that the homoclinic Melnikov function has a nondegenerate zero
at τ = 0. Then, Moser’s proof of Lemma 4 on pages 167 – 171 of [4] shows that

Pε(σ) spirals around Σ̂ (in our notation) with return time that goes to infinity at in
Figure 2. Lemma 5 gives C1 control of the curve Pε(σ). Moser proves the existence
of the points of intersection of Pε(σ) and σ with the argument on page 98 of [4].
In terms of our presentation, for ε = 0, the points of intersection have to come
back to themselves, so they are subharmonic periodic orbits. The length of the line
segment σ for which Pε(σ) spirals around approaching W u

ε (γε) and intersection σ

is uniform for |ε| ≤ ε∗sub.
Thus for the Sitnikov, Moser has provided a replacement for the part of the

above proof in which we used the hyperbolicity of the periodic orbit. The periods
of the orbits that are obtained are determined by the length of the line segment σ

which is uniform in ε. Therefore, his proof gives the uniformity of the subharmonics
as claimed in Theorem 1.2(b).

4. Comments on the case without symmetry. For the general hyperbolic case
without symmetry, to make the above argument apply it would be necessary to show
that near a nondegenerate zero of the homoclinic Melnikov function there is a curve
σε ⊂ Σ̂ of uniform length of points each of which Pε brings back with the same level
of energy H . The argument given above then would show that Pε(σε) ∩ σε would
be a countable set of subharmonic periodic points. In our proof, the symmetry
produced the set σ and points on the intersection Pε(σ)∩σ automatically preserve
the energy.
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