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We consider a Hamiltonian system with two degrees of freedom which completely decouples
for ε = 0. Therefore we assume there is a Hamiltonian

Hε(z1, z2) = F1(z1) + F2(z2) + εH1(z1, z2) + O(ε2).

We also write H0(z1, z2) = F1(z1)+F2(z2). This induces a system of Hamiltonian differential
equations which we write as(

ż1

ż2

)
= Xε(z1, z2) = X(z1, z2) + εY (z1, z2) + O(ε2).(*)

For ε = 0, we write X(z1, z2) =

(
X1(z1)
X2(z2)

)
so the differential equations divide into two

subequations, ż1 = X1(z1) and ż2 = X2(z2). We write φ(t, z, ε) for the flow for Xε with

φ(0, z, ε) = z and
d

dt
φ(t, z, ε) = Xε ◦ φ(t, z, ε).

We assume further that the unperturbed system for ε = 0 has the following properties:

A1 The subsystem ż1 = X1(z1) has a fixed point at z1,0 and a homoclinic orbit to z1,0

enclosing a region filled with periodic orbits of the unperturbed system. Let Σ1 be a
single transversal for the subsystem ż1 = X1(z1). For the subsystem ż1 = X1(z1), let
ẑµ

1(t) be the family of periodic orbits with ẑµ
1(0) ∈ Σ1.

A2 The subsystem ż2 = X2(z2) has a region filled with periodic orbits. Let ẑλ
2(t, t0) be this

family of periodic orbits F2 with two parameters: the parameter λ varies the orbit and
ẑλ

2(t, t0) = ẑλ
2(t + t0, 0) so t0 indicates the phase of the periodic orbit.

Let

ẑ(t; µ, λ, t0) = (ẑµ
1(t), ẑ

λ
2(t, t0)).

Because the system decouples for ε = 0, the function ẑ(0; µ, λ, t0) makes (µ, λ, t0) into coor-
dinates on Σ1, i.e., ẑ(0; µ, λ, t0) uniquely determines a point on Σ1.

In the situation for the usual Melnikov function for a homoclinic orbit, the transverse
homoclinic orbit of the purturbation must lie on the perturbed stable and unstable mani-
folds; this determines one dimension in the phase space. In the current situation, we must
determine the points which persist in a resonance between the two oscillation. To define a
function which give this resonance, we first define the return times of the Poincaré maps.
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Using the transversal Σ1, let τ1(z1) be the return times of the Poincaré map for the periodic
orbits for the subsystem ż1 = X1(z1). For ε 6= 0, Σ1 can be considered a transversal for the
full system by letting the z2 be arbitrary. Using this extended transversal Σ1, let τ1(z1, z2, ε)
be the return times of the Poincaré map for Σ1 for the full system ż = Xε(z). Notice that
for ε = 0, τ1 can be defined for all points, but that τ1 is only defined on Σ1 for nonzero ε.

For the subsystem ż2 = X2(z2), take a family of transversals, Σ2,z2 : if the system is written
in action angle coordinates (I, θ) then the transversals can be taken to be θ = θ0. Again
Σ2,z2 can be considered a family of transversals in the full system. Let τ2(z1, z2, ε) be the
return times of the Poincaré map for Σ2,z2 with initial conditions (z1, z2).

We are interested in finding periodic orbits which are close to unperturbed orbits which
are in resonance between the two subsystems. Let (m, n) be a fixed set of positive integers.
For points on Σ1, we consider the difference of the multiples of the periods,

Ψm,n(z1, z2, ε) = nτ1(z1, z2, ε)−mτ2(z1, z2, ε).

Zeroes of Ψm,n correspond to points where the return times are in a m to n resonance. The
orbits which are in resonace are isolated; to this end we need to assume that the periods
vary within the energy surface, i.e., that the gradent of H0 and Ψm,n are independent.

A3 Let (µ0, λ0) = (µ(m, n, h0), λ(m, n, h0)) be parameters of the two families of orbits for
ε = 0 for which Ψm,n(ẑ(0; µ0, λ0, t0)) = 0 and H0(ẑ(0; µ0, λ0, t0)) = h0. (Note that both
Ψm,n and H0 are independent of t0.) Assume that the gradients of H0 and Ψm,n, as
functions on Σ1 are independent at ẑ(0; µ0, λ0, t0). In terms of the parameterization
ẑ(0; µ, λ, t0), this assumption can be expressed as follows. Since the orbits ẑλ

2(t, t0) are
periodic, the gradient of F2 is nonzero and we can solve for λ = λ(µ, h0) such that

H0 ◦ ẑ(0; µ, λ(µ, h0), t0) = F1 ◦ ẑµ
1(0)) + F2 ◦ ẑλ

2(0, t0) = h0.

Using this notation, the independence of the gradients can be expressed by

∂

∂µ
Ψm,n(ẑ(0; µ, λ(µ, h0), t0), 0)

∣∣
µ0
6= 0.

Notice that Σ1∩{t0 = 0} is two dimensional, and H−1
0 (h0)∩Σ1∩{t0 = 0} is one dimensional

with a point determined by the parameter µ. Since

∂

∂µ
Ψm,n(ẑ(0; µ, λ(µ, h0), 0), 0)

∣∣
µ0
6= 0,

the set of solutions µ(m, n, h0) and λ(m, n, h0) = λ(µ(m, n, h0), h0) is a set of locally isolated
parameters.

Next we want to define the subharmonic Melnikov function which can be used to determine
a value of t0 for which the resonance persists for ε 6= 0. For z ∈ Σ1, let

Ĝm,n(z, ε) = F1 ◦ φ(nτ1(z, ε), z, ε)− F1(z).
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(It works just as well to use time mτ2(z, ε) instead of nτ1(z, ε).) For ε = 0, Ĝm,n(z, 0) ≡ 0,
so we can write

Ĝm,n(z, ε) = εGm,n(z, ε).

Using these choice of parameters, define the subharmonic Melnikov function as follows:

Mm,n(t0, h0) =
∂

∂ε
Ĝm,n(ẑ(0; µ0, λ0, t0), ε)

∣∣
ε=0

= Gm,n(ẑ(0; µ0, λ0, t0), 0).

where µ0 = µ(m, n, h0) and λ0 = λ(m, n, h0) are the parameters of the two families of orbits
for ε = 0 given above.

There are two main theorem. The first theorem relates nondegenerate zeroes of Mm,n(t0, h0)
with periodic orbits. The second theorem relates Mm,n(t0, h0) to an integral.

Theorem 1. Make assumptions (A1-A3) and define Mm,n as above. Assume there is a

(t∗0, h
∗
0) such that Mm,n(t∗0, h

∗
0) = 0 and

∂Mm,n

∂t0
(t∗0, h

∗
0) 6= 0. Then there exists a positive

number ε0(m, n, h∗0) > 0 such that for |ε| ≤ ε0(m, n, h∗0), the perturbed system (∗) has a
periodic orbit with period approximately

nτ1(ẑ
µ(m,n,h∗0)
1 (0), 0) = mτ2(ẑ

λ(m,n,h∗0)
2 (0, t∗0), 0)

with initial conditions close to ẑ(0; µ(m, n, h∗0), λ(m, n, h∗0), t
∗
0) and which stays within O(ε)

of

ẑ(t; µ(m, n, h∗0), λ(m, n, h∗0), t
∗
0)

for all time.

Theorem 2. Using these choice of parameters, the subharmonic Melnikov function is given
by the following integral:

Mm,n(t0, h0) =

∫ nτ1

0

(DF1 · Y )ẑ(t;µ0,λ0,t∗0) dt

where µ0 = µ(m, n, h0), λ0 = λ(m, n, h0), and nτ1 = nτ1(ẑ
µ0

1 (0)).

Proof of Theorem 1. We consider the function Θm,n : Σ1 × [−1, 1] → R
3 given by

Θm,n(z, ε) =


 Hε(z)

Ψm,n(z, ε)
Gm,n(z, ε)


 .

The function ẑ(0; µ, λ, t0) = (ẑµ
1 (0), ẑλ

2(0, t0)), induces the coordinates (µ, λ, t0) on Σ1. Let

(µ∗0, λ
∗
0) = (µ(m, n, h∗0), λ(m, n, h∗0)).
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Since Gm,n(ẑ(0; µ∗0, λ
∗
0, t0), 0) = Mm,n(t0, h

∗
0), the derivative of Θm,n(ẑ(0; µ, λ, t0), ε) with re-

spect to (µ, λ, t0) for t = 0, ε = 0, µ = µ∗0, λ = λ∗0, and t0 = t∗0 is

D(µ,λ,t0)(Θ
m,n ◦ ẑ)((0;µ∗0 ,λ∗0,t∗0,0)

=




∂(H0 ◦ ẑ)

∂µ

∂(H0 ◦ ẑ)

∂λ
0

∂(Ψm,n ◦ ẑ)

∂µ

∂(Ψm,n ◦ ẑ)

∂λ
0

∗ ∗ ∂Mm,n

∂t0




(0;µ∗,λ∗,t∗0,0),h∗0

.

Because (i) the gradients of H0 and Ψm,n are independent and (ii)

∂Mm,n

∂t0
(t∗0, h

∗
0) 6= 0,

this matrix is nonsingular. By the Implicit Function Theorem, the variables µ, λ, and t0 can
be solved for in terms of ε, (µ(ε), λ(ε), t0(ε)), such that

Θm,n((µ(ε), λ(ε), t0(ε), ε) ≡

h0

0
0


 .

Let z∗(ε) = ẑ(0; µ(ε), λ(ε), t0(ε)). Because Ψm,n(z∗(ε), ε) = 0, nτ1(z
∗(ε), ε) = mτ2(z

∗(ε), ε),
and z∗(ε) and φ(nτ1(z

∗(ε), ε), z∗(ε), ε) are both points in the same Σ2,z∗(ε). (This means
they have the same t0 coordinate.) Also, they are both points in Σ1 by the definition

of τ1. Because Ĝm,n(z∗(ε), ε) = εGm,n(z∗(ε), ε) = 0, F1 has the same value at z∗(ε) and
φ(nτ1(z

∗(ε), ε), z∗(ε), ε). Because Hε is preserved, its value is the same at these two points.
Because H0 and F1 are independent, for small ε, Hε and F1 are independent on Σ1 ∩Σ2,z∗(ε)
and it follows that

φ(nτ1(z
∗(ε), ε), z∗(ε), ε) = z∗(ε)

and z∗(ε) is a periodic orbit for Xε with period nτ1(z
∗(ε), ε). (Notice that F1 is independent

from Hε on a fixed Σ1 ∩ Σ2,z∗(ε) which is two dimensional.) Because all the variables are
determined by the Implicit Function Theorem, the period, the initial conditions, and the
orbits are within O(ε) for all time.

Proof of Theorem 2. We consider

d

dt

∂

∂ε
F1 ◦ φ(t, z, ε)

∣∣
ε=0

=
∂

∂ε

d

dt
F1 ◦ φ(t, z, ε)

∣∣
ε=0

=
∂

∂ε
[DF1 · (X + εY )]φ(t,z,ε)

∣∣
ε=0

= [DF1 · Y ]φ(t,z,0) +
∂

∂ε
[DF1 ·X]φ(t,z,ε)

∣∣
ε=0

= [DF1 · Y ]φ(t,z,0).



THE SUBHARMONIC MELNIKOV METHOD 5

The last equality follows because [DF1 ·X]z = 0 at all points z. Letting

zm,n = ẑ(0; µ(m, n, h0), λ(µ(m, n, h0)), t0)

and integrating from t = 0 to nτ1 = nτ1(zm,n, 0) we get

Mm,n(t0, h0) =
∂

∂ε
F1 ◦ φ(nτ1, zm,n, ε)

∣∣
ε=0

− ∂

∂ε
F1(zm,n)|ε=0

=

∫ nτ1

0

d

dt

∂

∂ε
F1 ◦ φ(t, zm,n, ε)

∣∣
ε=0

dt

=

∫ nτ1

0

[DF1 · Y ]φ(t,zm,n,0) dt

=

∫ nτ1

0

[DF1 · Y ]ẑ(t;µ(m,n,h0),λ(m,n,h0),t0) dt.

This gives the desired result.
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