THE SUBHARMONIC MELNIKOV METHOD

CLARK ROBINSON

We consider a Hamiltonian system with two degrees of freedom which completely decouples for $\epsilon = 0$. Therefore we assume there is a Hamiltonian

$$H^{\epsilon}(\mathbf{z}_1, \mathbf{z}_2) = F_1(\mathbf{z}_1) + F_2(\mathbf{z}_2) + \epsilon H_1(\mathbf{z}_1, \mathbf{z}_2) + O(\epsilon^2).$$

We also write $H_0(\mathbf{z}_1, \mathbf{z}_2) = F_1(\mathbf{z}_1) + F_2(\mathbf{z}_2)$. This induces a system of Hamiltonian differential equations which we write as

For $\epsilon = 0$, we write $X(\mathbf{z}_1, \mathbf{z}_2) = \begin{pmatrix} X_1(\mathbf{z}_1) \\ X_2(\mathbf{z}_2) \end{pmatrix}$ so the differential equations divide into two subequations, $\dot{\mathbf{z}}_1 = X_1(\mathbf{z}_1)$ and $\dot{\mathbf{z}}_2 = X_2(\mathbf{z}_2)$. We write $\phi(t, \mathbf{z}, \epsilon)$ for the flow for X^{ϵ} with $\phi(0, \mathbf{z}, \epsilon) = \mathbf{z}$ and $\frac{d}{dt}\phi(t, \mathbf{z}, \epsilon) = X^{\epsilon} \circ \phi(t, \mathbf{z}, \epsilon)$.

We assume further that the unperturbed system for $\epsilon = 0$ has the following properties:

- A1 The subsystem $\dot{\mathbf{z}}_1 = X_1(\mathbf{z}_1)$ has a fixed point at $\mathbf{z}_{1,0}$ and a homoclinic orbit to $\mathbf{z}_{1,0}$ enclosing a region filled with periodic orbits of the unperturbed system. Let Σ_1 be a single transversal for the subsystem $\dot{\mathbf{z}}_1 = X_1(\mathbf{z}_1)$. For the subsystem $\dot{\mathbf{z}}_1 = X_1(\mathbf{z}_1)$, let $\hat{\mathbf{z}}_1^{\mu}(t)$ be the family of periodic orbits with $\hat{\mathbf{z}}_1^{\mu}(0) \in \Sigma_1$.
- A2 The subsystem $\dot{\mathbf{z}}_2 = X_2(\mathbf{z}_2)$ has a region filled with periodic orbits. Let $\hat{\mathbf{z}}_2^{\lambda}(t, t_0)$ be this family of periodic orbits F_2 with two parameters: the parameter λ varies the orbit and $\hat{\mathbf{z}}_2^{\lambda}(t, t_0) = \hat{\mathbf{z}}_2^{\lambda}(t + t_0, 0)$ so t_0 indicates the phase of the periodic orbit.

Let

$$\hat{\mathbf{z}}(t;\mu,\lambda,t_0) = (\hat{\mathbf{z}}_1^{\mu}(t),\hat{\mathbf{z}}_2^{\lambda}(t,t_0)).$$

Because the system decouples for $\epsilon = 0$, the function $\hat{\mathbf{z}}(0; \mu, \lambda, t_0)$ makes (μ, λ, t_0) into coordinates on Σ_1 , i.e., $\hat{\mathbf{z}}(0; \mu, \lambda, t_0)$ uniquely determines a point on Σ_1 .

In the situation for the usual Melnikov function for a homoclinic orbit, the transverse homoclinic orbit of the purturbation must lie on the perturbed stable and unstable manifolds; this determines one dimension in the phase space. In the current situation, we must determine the points which persist in a resonance between the two oscillation. To define a function which give this resonance, we first define the return times of the Poincaré maps.

¹⁹⁹¹ Mathematics Subject Classification. 34C35, 34C27, 54H20.

Key words and phrases. dynamical systems, subharmonic, Melnikov.

This research partially supported by grants from the National Science Foundation.

Using the transversal Σ_1 , let $\tau_1(\mathbf{z}_1)$ be the return times of the Poincaré map for the periodic orbits for the subsystem $\dot{\mathbf{z}}_1 = X_1(\mathbf{z}_1)$. For $\epsilon \neq 0$, Σ_1 can be considered a transversal for the full system by letting the \mathbf{z}_2 be arbitrary. Using this extended transversal Σ_1 , let $\tau_1(\mathbf{z}_1, \mathbf{z}_2, \epsilon)$ be the return times of the Poincaré map for Σ_1 for the full system $\dot{\mathbf{z}} = X^{\epsilon}(\mathbf{z})$. Notice that for $\epsilon = 0$, τ_1 can be defined for all points, but that τ_1 is only defined on Σ_1 for nonzero ϵ .

For the subsystem $\dot{\mathbf{z}}_2 = X_2(\mathbf{z}_2)$, take a family of transversals, Σ_{2,\mathbf{z}_2} : if the system is written in action angle coordinates (I,θ) then the transversals can be taken to be $\theta = \theta_0$. Again Σ_{2,\mathbf{z}_2} can be considered a family of transversals in the full system. Let $\tau_2(\mathbf{z}_1,\mathbf{z}_2,\epsilon)$ be the return times of the Poincaré map for Σ_{2,\mathbf{z}_2} with initial conditions $(\mathbf{z}_1,\mathbf{z}_2)$.

We are interested in finding periodic orbits which are close to unperturbed orbits which are in resonance between the two subsystems. Let (m, n) be a fixed set of positive integers. For points on Σ_1 , we consider the difference of the multiples of the periods,

$$\Psi^{m,n}(\mathbf{z}_1,\mathbf{z}_2,\epsilon) = n\tau_1(\mathbf{z}_1,\mathbf{z}_2,\epsilon) - m\tau_2(\mathbf{z}_1,\mathbf{z}_2,\epsilon).$$

Zeroes of $\Psi^{m,n}$ correspond to points where the return times are in a m to n resonance. The orbits which are in resonace are isolated; to this end we need to assume that the periods vary within the energy surface, i.e., that the gradent of H_0 and $\Psi^{m,n}$ are independent.

A3 Let $(\mu_0, \lambda_0) = (\mu(m, n, h_0), \lambda(m, n, h_0))$ be parameters of the two families of orbits for $\epsilon = 0$ for which $\Psi^{m,n}(\hat{\mathbf{z}}(0; \mu_0, \lambda_0, t_0)) = 0$ and $H_0(\hat{\mathbf{z}}(0; \mu_0, \lambda_0, t_0)) = h_0$. (Note that both $\Psi^{m,n}$ and H_0 are independent of t_0 .) Assume that the gradients of H_0 and $\Psi^{m,n}$, as functions on Σ_1 are independent at $\hat{\mathbf{z}}(0; \mu_0, \lambda_0, t_0)$. In terms of the parameterization $\hat{\mathbf{z}}(0; \mu, \lambda, t_0)$, this assumption can be expressed as follows. Since the orbits $\hat{\mathbf{z}}_2^{\lambda}(t, t_0)$ are periodic, the gradient of F_2 is nonzero and we can solve for $\lambda = \lambda(\mu, h_0)$ such that

$$H_0 \circ \hat{\mathbf{z}}(0; \mu, \lambda(\mu, h_0), t_0) = F_1 \circ \hat{\mathbf{z}}_1^{\mu}(0)) + F_2 \circ \hat{\mathbf{z}}_2^{\lambda}(0, t_0) = h_0.$$

Using this notation, the independence of the gradients can be expressed by

$$\frac{\partial}{\partial \mu} \Psi^{m,n}(\hat{\mathbf{z}}(0; \mu, \lambda(\mu, h_0), t_0), 0) \Big|_{\mu_0} \neq 0.$$

Notice that $\Sigma_1 \cap \{t_0 = 0\}$ is two dimensional, and $H_0^{-1}(h_0) \cap \Sigma_1 \cap \{t_0 = 0\}$ is one dimensional with a point determined by the parameter μ . Since

$$\frac{\partial}{\partial \mu} \Psi^{m,n}(\hat{\mathbf{z}}(0;\mu,\lambda(\mu,h_0),0),0)\big|_{\mu_0} \neq 0,$$

the set of solutions $\mu(m, n, h_0)$ and $\lambda(m, n, h_0) = \lambda(\mu(m, n, h_0), h_0)$ is a set of locally isolated parameters.

Next we want to define the subharmonic Melnikov function which can be used to determine a value of t_0 for which the resonance persists for $\epsilon \neq 0$. For $\mathbf{z} \in \Sigma_1$, let

$$\hat{G}^{m,n}(\mathbf{z},\epsilon) = F_1 \circ \phi(n\tau_1(\mathbf{z},\epsilon),\mathbf{z},\epsilon) - F_1(\mathbf{z}).$$

(It works just as well to use time $m\tau_2(\mathbf{z}, \epsilon)$ instead of $n\tau_1(\mathbf{z}, \epsilon)$.) For $\epsilon = 0$, $\hat{G}^{m,n}(\mathbf{z}, 0) \equiv 0$, so we can write

$$\hat{G}^{m,n}(\mathbf{z},\epsilon) = \epsilon G^{m,n}(\mathbf{z},\epsilon).$$

Using these choice of parameters, define the subharmonic Melnikov function as follows:

$$M^{m,n}(t_0, h_0) = \frac{\partial}{\partial \epsilon} \hat{G}^{m,n}(\hat{\mathbf{z}}(0; \mu_0, \lambda_0, t_0), \epsilon) \big|_{\epsilon=0} = G^{m,n}(\hat{\mathbf{z}}(0; \mu_0, \lambda_0, t_0), 0).$$

where $\mu_0 = \mu(m, n, h_0)$ and $\lambda_0 = \lambda(m, n, h_0)$ are the parameters of the two families of orbits for $\epsilon = 0$ given above.

There are two main theorem. The first theorem relates nondegenerate zeroes of $M^{m,n}(t_0, h_0)$ with periodic orbits. The second theorem relates $M^{m,n}(t_0, h_0)$ to an integral.

Theorem 1. Make assumptions (A1-A3) and define $M^{m,n}$ as above. Assume there is a (t_0^*, h_0^*) such that $M^{m,n}(t_0^*, h_0^*) = 0$ and $\frac{\partial M^{m,n}}{\partial t_0}(t_0^*, h_0^*) \neq 0$. Then there exists a positive number $\epsilon_0(m, n, h_0^*) > 0$ such that for $|\epsilon| \leq \epsilon_0(m, n, h_0^*)$, the perturbed system (*) has a periodic orbit with period approximately

$$n\tau_1(\hat{\mathbf{z}}_1^{\mu(m,n,h_0^*)}(0),0) = m\tau_2(\hat{\mathbf{z}}_2^{\lambda(m,n,h_0^*)}(0,t_0^*),0)$$

with initial conditions close to $\hat{\mathbf{z}}(0; \mu(m, n, h_0^*), \lambda(m, n, h_0^*), t_0^*)$ and which stays within $O(\epsilon)$ of

$$\hat{\mathbf{z}}(t; \mu(m, n, h_0^*), \lambda(m, n, h_0^*), t_0^*)$$

for all time.

Theorem 2. Using these choice of parameters, the subharmonic Melnikov function is given by the following integral:

$$M^{m,n}(t_0, h_0) = \int_0^{n\tau_1} (DF_1 \cdot Y)_{\hat{\mathbf{z}}(t; \mu_0, \lambda_0, t_0^*)} dt$$

where $\mu_0 = \mu(m, n, h_0)$, $\lambda_0 = \lambda(m, n, h_0)$, and $n\tau_1 = n\tau_1(\hat{\mathbf{z}}_1^{\mu_0}(0))$.

Proof of Theorem 1. We consider the function $\Theta^{m,n}: \Sigma_1 \times [-1,1] \to \mathbb{R}^3$ given by

$$\Theta^{m,n}(\mathbf{z},\epsilon) = egin{pmatrix} H^{\epsilon}(\mathbf{z}) \ \Psi^{m,n}(\mathbf{z},\epsilon) \ G^{m,n}(\mathbf{z},\epsilon) \end{pmatrix}.$$

The function $\hat{\mathbf{z}}(0; \mu, \lambda, t_0) = (\hat{\mathbf{z}}_1^{\mu}(0), \hat{\mathbf{z}}_2^{\lambda}(0, t_0))$, induces the coordinates (μ, λ, t_0) on Σ_1 . Let

$$(\mu_0^*, \lambda_0^*) = (\mu(m, n, h_0^*), \lambda(m, n, h_0^*)).$$

Since $G^{m,n}(\hat{\mathbf{z}}(0;\mu_0^*,\lambda_0^*,t_0),0) = M^{m,n}(t_0,h_0^*)$, the derivative of $\Theta^{m,n}(\hat{\mathbf{z}}(0;\mu,\lambda,t_0),\epsilon)$ with respect to (μ,λ,t_0) for t=0, $\epsilon=0$, $\mu=\mu_0^*$, $\lambda=\lambda_0^*$, and $t_0=t_0^*$ is

$$D_{(\mu,\lambda,t_0)}(\Theta^{m,n} \circ \hat{\mathbf{z}})_{((0;\mu_0^*,\lambda_0^*,t_0^*,0)} = \begin{pmatrix} \frac{\partial (H_0 \circ \hat{\mathbf{z}})}{\partial \mu} & \frac{\partial (H_0 \circ \hat{\mathbf{z}})}{\partial \lambda} & 0\\ \frac{\partial (\Psi^{m,n} \circ \hat{\mathbf{z}})}{\partial \mu} & \frac{\partial (\Psi^{m,n} \circ \hat{\mathbf{z}})}{\partial \lambda} & 0\\ * & * & \frac{\partial M^{m,n}}{\partial t_0} \end{pmatrix}_{(0;\mu^*,\lambda^*,t_0^*,0),h_0^*}.$$

Because (i) the gradients of H_0 and $\Psi^{m,n}$ are independent and (ii)

$$\frac{\partial M^{m,n}}{\partial t_0}(t_0^*, h_0^*) \neq 0,$$

this matrix is nonsingular. By the Implicit Function Theorem, the variables μ , λ , and t_0 can be solved for in terms of ϵ , $(\mu(\epsilon), \lambda(\epsilon), t_0(\epsilon))$, such that

$$\Theta^{m,n}((\mu(\epsilon),\lambda(\epsilon),t_0(\epsilon),\epsilon) \equiv \begin{pmatrix} h_0 \\ 0 \\ 0 \end{pmatrix}.$$

Let $\mathbf{z}^*(\epsilon) = \hat{\mathbf{z}}(0; \mu(\epsilon), \lambda(\epsilon), t_0(\epsilon))$. Because $\Psi^{m,n}(\mathbf{z}^*(\epsilon), \epsilon) = 0$, $n\tau_1(\mathbf{z}^*(\epsilon), \epsilon) = m\tau_2(\mathbf{z}^*(\epsilon), \epsilon)$, and $\mathbf{z}^*(\epsilon)$ and $\phi(n\tau_1(\mathbf{z}^*(\epsilon), \epsilon), \mathbf{z}^*(\epsilon), \epsilon)$ are both points in the same $\Sigma_{2,\mathbf{z}^*(\epsilon)}$. (This means they have the same t_0 coordinate.) Also, they are both points in Σ_1 by the definition of τ_1 . Because $\hat{G}^{m,n}(\mathbf{z}^*(\epsilon), \epsilon) = \epsilon G^{m,n}(\mathbf{z}^*(\epsilon), \epsilon) = 0$, F_1 has the same value at $\mathbf{z}^*(\epsilon)$ and $\phi(n\tau_1(\mathbf{z}^*(\epsilon), \epsilon), \mathbf{z}^*(\epsilon), \epsilon)$. Because H^{ϵ} is preserved, its value is the same at these two points. Because H_0 and F_1 are independent, for small ϵ , H^{ϵ} and F_1 are independent on $\Sigma_1 \cap \Sigma_{2,\mathbf{z}^*(\epsilon)}$ and it follows that

$$\phi(n\tau_1(\mathbf{z}^*(\epsilon), \epsilon), \mathbf{z}^*(\epsilon), \epsilon) = \mathbf{z}^*(\epsilon)$$

and $\mathbf{z}^*(\epsilon)$ is a periodic orbit for X^{ϵ} with period $n\tau_1(\mathbf{z}^*(\epsilon), \epsilon)$. (Notice that F_1 is independent from H^{ϵ} on a fixed $\Sigma_1 \cap \Sigma_{2,\mathbf{z}^*(\epsilon)}$ which is two dimensional.) Because all the variables are determined by the Implicit Function Theorem, the period, the initial conditions, and the orbits are within $O(\epsilon)$ for all time.

Proof of Theorem 2. We consider

$$\frac{d}{dt} \frac{\partial}{\partial \epsilon} F_1 \circ \phi(t, \mathbf{z}, \epsilon) \Big|_{\epsilon=0} = \frac{\partial}{\partial \epsilon} \frac{d}{dt} F_1 \circ \phi(t, \mathbf{z}, \epsilon) \Big|_{\epsilon=0}
= \frac{\partial}{\partial \epsilon} [DF_1 \cdot (X + \epsilon Y)]_{\phi(t, \mathbf{z}, \epsilon)} \Big|_{\epsilon=0}
= [DF_1 \cdot Y]_{\phi(t, \mathbf{z}, 0)} + \frac{\partial}{\partial \epsilon} [DF_1 \cdot X]_{\phi(t, \mathbf{z}, \epsilon)} \Big|_{\epsilon=0}
= [DF_1 \cdot Y]_{\phi(t, \mathbf{z}, 0)}.$$

The last equality follows because $[DF_1 \cdot X]_{\mathbf{z}} = 0$ at all points \mathbf{z} . Letting

$$\mathbf{z}_{m,n} = \hat{\mathbf{z}}(0; \mu(m, n, h_0), \lambda(\mu(m, n, h_0)), t_0)$$

and integrating from t = 0 to $n\tau_1 = n\tau_1(\mathbf{z}_{m,n}, 0)$ we get

$$\begin{split} M^{m,n}(t_0,h_0) &= \frac{\partial}{\partial \epsilon} F_1 \circ \phi(n\tau_1,\mathbf{z}_{m,n},\epsilon) \big|_{\epsilon=0} - \frac{\partial}{\partial \epsilon} F_1(\mathbf{z}_{m,n}) \big|_{\epsilon=0} \\ &= \int_0^{n\tau_1} \frac{d}{dt} \frac{\partial}{\partial \epsilon} F_1 \circ \phi(t,\mathbf{z}_{m,n},\epsilon) \big|_{\epsilon=0} dt \\ &= \int_0^{n\tau_1} [DF_1 \cdot Y]_{\phi(t,\mathbf{z}_{m,n},0)} dt \\ &= \int_0^{n\tau_1} [DF_1 \cdot Y]_{\hat{\mathbf{z}}(t;\mu(m,n,h_0),\lambda(m,n,h_0),t_0)} dt. \end{split}$$

This gives the desired result.

REFERENCES

- [1] J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcation of Vector Fields, Springer-Verlag, New York and Berlin, 1983.
- [2] C. Robinson, Horseshoes for autonomous Hamiltonian systems using the Melnikov integral, Ergodic Theory and Dynamical Systems 1988, 395–409.
- [3] S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer-Verlag, New York and Berlin, 1990

Department of Mathematics, Northwestern University, Evanston IL 60201 $E\text{-}mail\ address:\ clark@math.nwu.edu$