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Consider the polynomial p(z) = 2+2—3z*+5z%. We show that Lags(p(z))

6 T(p(z)). Now Jw. Which of the following pairs of vector spaces are isomorphic? Justify
y .1 .

FOUT Answers.
(a) F® and P3(F).

2
01 0 0 1 4
L = 1] _{_ (b) F*and Ps(F).
AdalplE) =0 0 2 01| g =8 (©) Mass(R) and P(R).
. 5 (d) V ={A & Maxa(R): tr{A) =0} and R4,
/»/_)v D Blut since T(p(z)) = p'(2) =1 — 6z + 1527, we have 4¥ Let A and B be n X n invertible matrices. Prove that AB is invertible
n_\ and (AB)"* = B4
I ;
b e T(p(z)) = | —6 @ Let A be invertible. Prove that A is invertible and (A*)~1 = (A71)%

- 2 J Qn...TUPL] . 15 6. Prove that if A is invertible and AB = O, then B = 0.

So Lags(p(z)) = ¢4 T(p(z)). #
Try repeating Example 7 with different polynomials p(z).

7. Let A be an n x n matrix.

(a) Suppose that A% = O. Prove that A is not invertible.
(b) Suppose that AB = O for some nonzero n x n matrix B. Could A
be invertible? Explain.

EXERCISES
8. Prove Corollaries 1 and 2 of Theorem 2.18.

1. Label the following statements as true or false. In each part, V and
W are vector spaces with ordered (finite} bases o and §, respectively,
T:V — W ig linear, and A and B are matrices.

(a) ([TR)™" =[T71)2.

(b) T is invertible if and only if T is one-to-one and onto.
(¢) T =Ly, where A =[T]%. :

(d) Mays(F) is isomorphic to F°.

(e) Pn(F) is isomorphic to P, (F) if and only if n = m.
(f) AB = I implies that A and B are invertible.

(g) If Ais invertible, then (A~1)"! = A.

(h) A is invertible if and only if L4 is invertible.

(i) A must be square in order to possess an inverse.

9. Let A and B be n x n matrices such that AB is invertible. Prove that A
and B are invertible. Give an example to show that arbitrary matrices
A wba B need not be invertible if AB is invertible.

: /Hc;, Let A and B be n X n matrices such that AB = I,

(a) Use Exercise 9 to conclude that A and B are invertible.

(b) Prove A = B~* (and hence B = A™%). (We are, in effect, saying

, that for square matrices, & “one-sided” inverse is a “two-sided”
inverse. )

(c) State and prove analogous results for linear transformations de-
fined on finite-dimensional vector spaces.

2. For each of the following linear transformations T, determine whether 11. Verify that the transformation in Example 5 is one-to-one.

T is invertible and justify your answer.

(a) T:R?— R? defined by T(a1,a2) = {a1 — 2ag, as, 361 -+ 4as).

(b) T: ww — mw defined by T(a1,as) = (3a1 — az, az, 4a; ).

ﬁOv T: R® — R*® defined JU% ‘_y?_&; az, D.mu - mwm.n_. - Mqunm“ wDH |_|N._HD.MV.
(d) T:P3{R)— Pz(R) defined by T(p{z)) = p'(x).

(e) T:Mzxa{R) — Py(R) defined by T AM Mv =a+2bz + (c+d)z?

12. Prove Theorem 2.21.

13. Let ~ mean “i$ isomorphic to.” Prove that ~ is an equivalence relation
on the class of vector spaces over F.

<H%Aa a+@v“9?nmm@.
0 ¢

Construct an isomorphism from V to F2.

14. Let

() T:Maxa(R) — Maya(R) defined E,_,mg @vuﬁgi a v
c d e c+d)
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15. Let V and W be n-dimensional vector spaces, and let T: V — W be o
linear transformation. Suppose that 5 is a basis for V. Prove that T is
an isomorphism if and only if T(8) is a basis for W.

16. Let B be an n x n invertible matrix. Define ®- My sxn(F) = Mpxn (F):
by ®(A) = B~ AB. Prove that & is an isomorphism,

17.1 Let V and W be finite-dimensional vector spaces and T: V — W be an
isomorphism. Let Vi be a subspace of V.

(a) Prove that T(V,) is a subspace of W.
(b) Prove that dim(V,) = dim(T(Vp)).

18. Repeat Example 7 with the polynomial p(z) = 1+ z -+ 222 -+ 3,

19. In Example 5 of Section 2.1, the mapping T: Mays(R) — Maxa(R) de-
fined by T(M) = M? for each M < Mzx2(R) is a linear transformation
Let 8 = {E", B2, E®\ E?2) which is a basis for Max2(R), as noted in
Example 3 of Section 1.6.

(a) Compute [T].
(b) Verify that Ladg(M) = ¢ T(M) for A = [T]g and

1 2
M= ? b .
/mo.ﬂ Let T: V — W be a linear transformation from an n~-dimensional vector
space V to an m-dimensional vector space W. Let B and v be ordered
bases for V and W, respectively. Prove that rank(T) == rank(L4) and

ggh&hﬂ%iﬂwscm@ﬁrhvvérmamﬁﬂ ﬁ:m,mmwﬁbwﬁgmu@qamo:
to Figure 2.2. ’ :

4.

21. Let V and W be finite-dimensional vector spaces with ordered bases

B = {v1,v2,...,vn} and v = {ws, ws, .- +s W}, Tespectively. By The-
orem 2.6 (p. 72), there exist linear transformations TV — W such
that

w; k=7
Teslvn) =3 ° ey

First prove that {Ty:1 <i<m, 1 < J € n} is a basis for LV,W).
Then let M* be the m x n matrix with 1 in the ith row and Jth column
and 0 elsewhere, and prove that [T;;]% = M%. Again by Theorem 2.6,
there exists a linear transformation & : LV, W) — M;rxn (F) such that

®(Ti;) = M¥. Prove that ® is an isomorphism.
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Let ¢g,¢1,... ¢, be distinct scalars from an infinite field . Define

T: Po(F) P40 by T(f) = (f(ea): £e). ... (ex). Prove that T ss
an isomorphism. Hint: Use the Lagrange polynomials associated wit

€0, C1y-- 45 G
Let V denote the vector space defined in Example & of Section 1.2, and
let W = P(F). Define

n

MU o(i)zt,

F=0

where n is the largest integer such that o(n) # 0. Prove that T is an
isomorphism.

The following exercise requires familiarity with the concept of m:w&mﬁ Space
defined in Exercise 31 of Section 1.3 and with Exercise 40 of Section 2.1.

Let T: V — Z be a linear transformation of a vector space V onto a
vector space Z. Define the mapping

T:V/N(T)—Z by T{o+N(T)) =T

for any coset v+ N{T) in V/N(T).
Prove that T is well-defined; that is, prove that if v 4+ N(T)

(a) =
v’ + N(T), then T{v) = T(v'}.
(b} Prove that T is linear. .
(¢} Prove that T is an isomorphism. .
(d) Prove that the diagram shown in Figure 2.3 commutes; that is,
prove that T = Tn.
Voo 7
Y 4
A /
/ —
Y ST
X /
V/N(T)
Figure 2.3

Let V be a nongero vector space over a fleld F, and suppose ﬁma 5 is
a basis for V. (By the corollary to Theorem 1.13 (p. 60} in Section 1.7,
every vector space has a basis). Let C(5, F) denote the vector space of

all functions f € F(8, F) such that f(s) =0 for all but a finite number
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EXERCISES

1. Label the following statements as true or false.

(a) Suppose that 8 = {zy,23,...,2z,} and §' = {z],25,...
ordered bases for a vector space and @ is the change of coordinat
matrix that changes ('-coordinates into S-coordinates. Then the
Jth column of Q is [z;ia.

m@n. 25 The Change of Coordinate Matrix

117

let 3 be the standard ordered basis for R?, and let

8 =

{0)6))
7

Use Theorem 2.23 and the fact that

(3 -

:5. Let T be the linear operator on P1(R) defined by T(p(z)) = p'(z),
the derivative of p(z). Let 8 = {1,z} and 8’ = {1+ 2,1 —z}. Use

(b) Every change of coordinate matrix is invertible.
{¢) Let T be a linear operator on a finite-dimensional vector space V
let 3 and 8’ be ordered bases for V, and let ¢ be the change o to find [T]g -
coordinate matrix that changes #'-coordinates mto S-coordinates
Thea [Tls = QTjp Q"
(d) The matrices 4, B € My, (F) are called similar if B = Q*AQ for
some Q € Myxn(F). Theorem 2.23 and the fact that
(e) Let T be a linear operator on a finite-dimensional vector space V

Then for any ordered bases 8 and « for V, [T|g is similar to [T,

E For each of the following pairs of ordered bases # and &' for R?, find
—— the change of coordinate matrix that changes ('-coordinates into A-
coordinates.

(a) B={e,e2} and §' = {(a1,0az), (b, bo}}
QUV \Q = AQ.IH_J wvu mw” ICW and Q.. = ﬁmou Movu mmqavv

to find juwﬁw\

2ol b
[N T

() -

6. For each matrix A and ordered basis 3, find [L4]z. Also, find an invert-
ible matrix Q such that [L4]s = Q@ 1AQ.

ﬁﬂu 8= ﬁmwu muu Alu; |wv”_r and m\ = .Tw”f mww v A = 1 3 and Q _ 1 “_.v
(d) B={(-43),(2,~1)} and §' = {(2,1),(~4,1)} (@ A=1{; 1 1)°\2
3. For each of the following pairs of ordered bases 8 and B for Py(R), (b) A= 12y 5= Qwv m i
find the change of coordinate matrix that changes (’-coordinates into 21 1/7\—-1,
F-coordinates. 11 -1 1 1 1
(a) B ={z? =1} and (c) A=[2 0 1} and B=<|1]|.{0],[2
8 = {asz® + a1z + ag, bez® + b1z + by, C2x? + €12 + ¢o} 11 0 1 1 2
(b) A= {1,z,2%} and 1\ /1
g = AQMHM +a1% -+ Q.D_.wm.ﬂm + b1z + @ounw...ﬁw +az 4o} " d) A= ”_..M “_.M_w. M and B= w. -1 1
(¢) B={22" -7,32% + 1,2%} and B’ = {1,z,z%} ) (d) 4= 4 4 10 IRRUEY AR Y AR
(d) B=A{z?—z+1,2+1,2°+1} and /
B={z*+z+ P dz? — 3z +2,22° + 3} ‘ 7. In R?, let L be the line y = mx, where m % 0. Find an expression for
() B={2*-x,2°+1,z~1}and T(z,y), where ‘
© B = {5z% — 22 — 3,~22% + Bz + 5,22% — z ~ 3} . ) 2 about
(£) B={22%~24+1,2°+32—2 -2+ 2z +1} and (a) T is the refdection of R* about L.

v Let T be the linear operator on R? defined by

(b) T is the projection on L along the line perpendicular to L. (See

"o {9r — 9, 2% + 2a ~ 2,322 £ 5+ 2 g .
F=1o v @ k5o 2y the definition of projection in the exercises of Section 2.1.)

@ Prove the following generalization of Theorem 2.23. Let T: V — W be
a linear tramsformation from a finite-dimensional vector space V fo a
finite-dimensional vector space W. Let 8 and 3’ be ordered bases for

()= (%),
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c. 2.6 Dual Spaces

V, and let v and ' be ordered bases for W. Then [T F\ = P7TI} @
where @ is the matrix that changes §'-coordinates into G- oooHQE%mg

and P is the matrix that changes v'-coordinates into -coordinates.

6* DUAL SPACES

Tn this section, we are concerned exclusively with linear transformations from
‘vector space V into its field of scalars F, which is itself a vector space of di-
mension 1 over F. Such a linear ﬁmcmmoHEmﬂom is called a linear functional
| V. We generally use the letters f,g,h,... to denote linear functionals. As
¢ see in BExample 1, the definite wﬁdmm..qmp provides s with one of the most
important examples of a linear functional in mathematics. .

A 94 Prove that “is similar to” is an equivalence relation on Mpsn (F).

10.  Prove that if A'and B are similar n x n matrices, then tr(A) = tr(B
Hint: Use Exercise 13 of Section 2.3.

11. Let V be a finite-dimensional vector space with ordered bases a,

and . xample 1

Tet V be the vector space of continuous real-valued functions on the interval

(a) Prove that if @ and R are the chanee of ing tri

change a-coordinates into m-aoo&m&gmoww%pmwwﬂmvwoﬂmwﬂmwm MMM /2. Fix a function g € V. The fanction h: V = R defined by
~-coordinates, respectively, then RQ is the change of coordinate
matrix that changes a-coordinates into y-coordinates.

(b) Prove that if Q changes a-coordinates into F-coordinates, then:

Q! changes S-coordinates into a-coordinates.

2
h(z) = wlw \o x(t)g(t) dt

is a linear functional on V. In the cases that g(#) equals sin nt or cosnt, hix)
is often called the nth Fourier coefficient of z. ¢

12. Prove the corollary to Theorem 2.23.
. Example 2

Let V = My xn(F), and define f: V — F by f(A) = tr(A), the trace of A. By

13.T Let V be a finite~-dimensional vector space over a feld Foand let 8=
mu@.emm 6 of Section 1.3, we have that f is a linear goﬁoﬂ& +

{z1,22,...,2,} be an ordered basis for V. Let O beannxn Edmuﬁzm
matrix dﬁﬂw entries w,oB F. Define

Example 3

bmﬁ V be a finite-dimensional vector space, and let 8 = {1, Z32,...,Zn} be

uﬁ..M_ = M@Sn\.s forl<j < 7,
an ordered basis for V. For each i =1,2,...,n, define f; (z) = a,, s&@d

=]
and set 5" = {21,25,...,2,}. Prove that 8’ is a basis for V and hence: %
that @ is the change oH, oooa%bmdm matrix changing 3'-coordinates into a2
B-coordinates. . [l =
Qn,

14. Prove the converse of Exercise 8: If A and B are each m % n matrice
with entries from a field F', and if there exist invertible m x m and n x s‘
matrices P and @, respectively, such that B = P~ 14Q, then there exist:
an n-dimensional vector space V and an m-dimensional vector space W
(both over F), ordered bases 8 and & for V and v and ' for W, and
linear transformation T: V — W such that q

is the coordinate vector of x relative to 5. Then f; is a linear functional on V
called the ith coordinate function with respect to the basis 3. Note
that f;(z;) = di;, where &;; is the Kronecker delta. These linear functionals
E@% an important role in ?m theory of dual spaces (sce Theorem 2.24). 4

. Definition. For a vector space V over F, we define the dual space of
V to be the vector space L{V, F), denoted by V*.

A=[T]} and B=[T]}.
Thus V* is the vector space consisting of all linear functionals on V with
the operations of addition and scalar multiplication as defined in Section 2.2.
Note that if V is finite-dimensional, then by the corollary to Theorem 2.20

{p. 104)

Hints: Let V = F*, W = F™ T = L4, and 3 and v be the standard .
ordered bases for _n: and _usu respectively. Now apply the results of
Exercise 13 to obtain ordered bases 3 and ' from 3 and v via @ and
P, respectively.

dim{V*) = dim(£(V, F)) = dim(V)+ dim{F) = dim(V).




