See+1841 5.1

- (i) $V = M_{2\times 2}(R)$ and $T\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} c & d \\ a & b \end{pmatrix}$
- (j) $V = M_{2\times 2}(R)$ and $T(A) = A^t + 2 \cdot tr(A) \cdot I_2$
- **5.** Prove Theorem 5.4.
- 6. Let T be a linear operator on a finite-dimensional vector space V, and let β be an ordered basis for V. Prove that λ is an eigenvalue of T if and only if λ is an eigenvalue of $[T]_{\beta}$.
- 7. Let T be a linear operator on a finite-dimensional vector space V. We define the **determinant** of T, denoted det(T), as follows: Choose any ordered basis β for V, and define $det(T) = det([T]_{\beta})$.
 - (a) Prove that the preceding definition is independent of the choice of an ordered basis for V. That is, prove that if β and γ are two ordered bases for V, then $\det([T]_{\beta}) = \det([T]_{\gamma})$.
 - (b) Prove that T is invertible if and only if $det(T) \neq 0$.
 - (c) Prove that if T is invertible, then $det(T^{-1}) = [det(T)]^{-1}$.
 - (d) Prove that if U is also a linear operator on V, then $det(TU) = det(T) \cdot det(U)$.
 - (e) Prove that $\det(\mathsf{T} \lambda \mathsf{I}_{\mathsf{V}}) = \det([\mathsf{T}]_{\beta} \lambda I)$ for any scalar λ and any ordered basis β for V .
- 8. (a) Prove that a linear operator T on a finite-dimensional vector space is invertible if and only if zero is not an eigenvalue of T.
 - (b) Let T be an invertible linear operator. Prove that a scalar λ is an eigenvalue of T if and only if λ^{-1} is an eigenvalue of T^{-1} .
 - (c) State and prove results analogous to (a) and (b) for matrices.
- 9. Prove that the eigenvalues of an upper triangular matrix M are the diagonal entries of M.
- 10. Let V be a finite-dimensional vector space, and let λ be any scalar.
 - (a) For any ordered basis β for V, prove that $[\lambda |_{V}]_{\beta} = \lambda I$.
 - (b) Compute the characteristic polynomial of λl_V .
 - (c) Show that λI_V is diagonalizable and has only one eigenvalue.
- 11. A scalar matrix is a square matrix of the form λI for some scalar λI that is, a scalar matrix is a diagonal matrix in which all the diagonal entries are equal.
 - (a) Prove that if a square matrix A is similar to a scalar matrix λI , then $A = \lambda I$.
 - (b) Show that a diagonalizable matrix having only one eigenvalue is a scalar matrix.

(c) Prove that $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ is not diagonalizable.

Sec. 5.1 Eigenvalues and Eigenvectors

- 12. (a) Prove that similar matrices have the same characteristic polynomial.
 - (b) Show that the definition of the characteristic polynomial of a linear operator on a finite-dimensional vector space V is independent of the choice of basis for V.
- 13. Let T be a linear operator on a finite-dimensional vector space V over a field F, let β be an ordered basis for V, and let $A = [T]_{\beta}$. In reference to Figure 5.1, prove the following.
 - (a) If $v \in V$ and $\phi_{\beta}(v)$ is an eigenvector of A corresponding to the eigenvalue λ , then v is an eigenvector of T corresponding to λ .
 - (b) If λ is an eigenvalue of A (and hence of T), then a vector $y \in \mathbb{F}^n$ is an eigenvector of A corresponding to λ if and only if $\phi_{\beta}^{-1}(y)$ is an eigenvector of T corresponding to λ .
- 14.[†] For any square matrix A, prove that A and A^t have the same characteristic polynomial (and hence the same eigenvalues).
- 15.† (a) Let T be a linear operator on a vector space V, and let x be an eigenvector of T corresponding to the eigenvalue λ . For any positive integer m, prove that x is an eigenvector of T^m corresponding to the eigenvalue λ^m .
 - (b) State and prove the analogous result for matrices.
- (a) Prove that similar matrices have the same trace. *Hint:* Use Exercise 13 of Section 2.3.
 - (b) How would you define the trace of a linear operator on a finite-dimensional vector space? Justify that your definition is well-defined.
- 17. Let T be the linear operator on $M_{n\times n}(R)$ defined by $T(A)=A^t$.
 - (a) Show that ± 1 are the only eigenvalues of T.
 - (b) Describe the eigenvectors corresponding to each eigenvalue of T.
 - (c) Find an ordered basis β for $M_{2\times 2}(R)$ such that $[T]_{\beta}$ is a diagonal matrix.
 - (d) Find an ordered basis β for $M_{n \times n}(R)$ such that $[T]_{\beta}$ is a diagonal matrix for n > 2.
- 18. Let $A, B \in M_{n \times n}(C)$.
 - (a) Prove that if B is invertible, then there exists a scalar $c \in C$ such that A + cB is not invertible. Hint: Examine det(A + cB).

$$(g) \begin{pmatrix} 3 & 1 & 1 \\ 2 & 4 & 2 \\ -1 & -1 & 1 \end{pmatrix}$$

- 3. For each of the following linear operators T on a vector space V, test T for diagonalizability, and if T is diagonalizable, find a basis β for V such that $[T]_{\beta}$ is a diagonal matrix.
 - (a) $V = P_3(R)$ and T is defined by T(f(x)) = f'(x) + f''(x), respectively. tively.
 - (b) $V = P_2(R)$ and T is defined by $T(ax^2 + bx + c) = cx^2 + bx + a$
 - (c) $V = R^3$ and T is defined by

$$\mathsf{T}egin{pmatrix} a_1 \ a_2 \ a_3 \end{pmatrix} = egin{pmatrix} a_2 \ -a_1 \ 2a_3 \end{pmatrix}.$$

- (d) $V = P_2(R)$ and T is defined by $T(f(x)) = f(0) + f(1)(x + x^2)$
- (e) $V = C^2$ and T is defined by T(z, w) = (z + iw, iz + w).
- (f) $V = M_{2\times 2}(R)$ and T is defined by $T(A) = A^t$.
- 4. Prove the matrix version of the corollary to Theorem 5.5: If $A \in$ $M_{n\times n}(F)$ has n distinct eigenvalues, then A is diagonalizable.
- 5. State and prove the matrix version of Theorem 5.6.
- 6. (a) Justify the test for diagonalizability and the method for diagonal ization stated in this section.
 - (b) Formulate the results in (a) for matrices.
- **7.** For

$$A = \begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix} \in \mathsf{M}_{2 \times 2}(R),$$

find an expression for A^n , where n is an arbitrary positive integer.

- 8. Suppose that $A \in M_{n \times n}(F)$ has two distinct eigenvalues, λ_1 and λ_2 ¹ and that $\dim(\mathsf{E}_{\lambda_1}) = n - 1$. Prove that A is diagonalizable.
- Let T be a linear operator on a finite-dimensional vector space V, and suppose there exists an ordered basis β for V such that $[T]_{\beta}$ is an upper triangular matrix.
 - (a) Prove that the characteristic polynomial for T splits,
 - (b) State and prove an analogous result for matrices.

The converse of (a) is treated in Exercise 32 of Section 5.4.

- 10. Let T be a linear operator on a finite-dimensional vector space V with the distinct eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_k$ and corresponding multiplicities m_1, m_2, \ldots, m_k . Suppose that β is a basis for V such that $[T]_{\beta}$ is an upper triangular matrix. Prove that the diagonal entries of $[T]_{\beta}$ are $\lambda_1, \lambda_2, \ldots, \lambda_k$ and that each λ_i occurs m_i times $(1 \le i \le k)$.
- Let A be an $n \times n$ matrix that is similar to an upper triangular matrix and has the distinct eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_k$ with corresponding multiplicities m_1, m_2, \ldots, m_k . Prove the following statements.
 - (a) $\operatorname{tr}(A) = \sum_{i=1} m_i \lambda_i$
 - **(b)** $\det(A) = (\lambda_1)^{m_1} (\lambda_2)^{m_2} \cdots (\lambda_k)^{m_k}$
- 12. Let T be an invertible linear operator on a finite-dimensional vector space V.
 - (a) Recall that for any eigenvalue λ of T, λ^{-1} is an eigenvalue of T^{-1} (Exercise 8 of Section 5.1). Prove that the eigenspace of T corresponding to λ is the same as the eigenspace of T^{-1} corresponding to λ^{-1} .
 - (b) Prove that if T is diagonalizable, then T^{-1} is diagonalizable.
- 3. Let $A \in M_{n \times n}(F)$. Recall from Exercise 14 of Section 5.1 that A and A^t have the same characteristic polynomial and hence share the same eigenvalues with the same multiplicities. For any eigenvalue λ of A and A^t , let E_λ and E'_λ denote the corresponding eigenspaces for A and A^t , respectively.
 - (a) Show by way of example that for a given common eigenvalue, these two eigenspaces need not be the same.
 - (b) Prove that for any eigenvalue λ , $\dim(E_{\lambda}) = \dim(E'_{\lambda})$.
 - (c) Prove that if A is diagonalizable, then A^t is also diagonalizable.
- 14. Find the general solution to each system of differential equations.

(a)
$$x' = x + y$$

 $y' = 3x - y$ (b) $x'_1 = 8x_1 + 10x_2$
 $x'_2 = -5x_1 - 7x_2$
 $x'_1 = x_1 + x_3$
 (c) $x'_2 = x_2 + x_3$
 $x'_2 = 2x_3$

15. Let

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

Also,

$$\langle f_n, f_n \rangle = \frac{1}{2\pi} \int_0^{2\pi} e^{i(n-n)t} dt = \frac{1}{2\pi} \int_0^{2\pi} 1 dt = 1.$$

In other words, $\langle f_m, f_n \rangle = \delta_{mn}$.

EXERCISES

- 1. Label the following statements as true or false.
 - (a) An inner product is a scalar-valued function on the set of ordered pairs of vectors.
 - (b) An inner product space must be over the field of real or complex numbers.
 - (c) An inner product is linear in both components.
 - (d) There is exactly one inner product on the vector space \mathbb{R}^n .
 - (e) The triangle inequality only holds in finite-dimensional inner production uct spaces.
 - (f) Only square matrices have a conjugate-transpose.
 - (g) If x, y, and z are vectors in an inner product space such that $\langle x,y\rangle = \langle x,z\rangle$, then y=z.
 - (h) If $\langle x, y \rangle = 0$ for all x in an inner product space, then $y = \theta$.
- **2.** Let x = (2, 1+i, i) and y = (2-i, 2, 1+2i) be vectors in C^3 . Compute $\langle x,y\rangle, \|x\|, \|y\|, \text{ and } \|x+y\|.$ Then verify both the Cauchy-Schwarz inequality and the triangle inequality.
- 3. In C([0,1]), let f(t)=t and $g(t)=e^t$. Compute $\langle f,g\rangle$ (as defined in Example 3), ||f||, ||g||, and ||f+g||. Then verify both the Cauchy Schwarz inequality and the triangle inequality.
- 4. (a) Complete the proof in Example 5 that $\langle \cdot, \cdot \rangle$ is an inner product (the Frobenius inner product) on $M_{n\times n}(F)$.
 - (b) Use the Frobenius inner product to compute ||A||, ||B||, and $\langle A, B \rangle$

$$A = \begin{pmatrix} 1 & 2+i \\ 3 & i \end{pmatrix}$$
 and $B = \begin{pmatrix} 1+i & 0 \\ i & -i \end{pmatrix}$.

5. In C^2 , show that $\langle x, y \rangle = xAy^*$ is an inner product, where

$$A = \begin{pmatrix} 1 & i \\ -i & 2 \end{pmatrix}.$$

Compute $\langle x, y \rangle$ for x = (1 - i, 2 + 3i) and y = (2 + i, 3 - 2i).

- 6. Complete the proof of Theorem 6.1.
- 7. Complete the proof of Theorem 6.2.
- 8. Provide reasons why each of the following is not an inner product on the given vector spaces.
 - (a) $\langle (a,b),(c,d)\rangle = ac bd$ on \mathbb{R}^2 .
 - (b) $\langle A, B \rangle = \operatorname{tr}(A+B)$ on $M_{2\times 2}(R)$.
 - (c) $\langle f(x), g(x) \rangle = \int_0^1 f'(t)g(t) dt$ on P(R), where ' denotes differentia-
- 9. Let β be a basis for a finite-dimensional inner product space.
 - (a) Prove that if $\langle x, z \rangle = 0$ for all $z \in \beta$, then x = 0.
 - **(b)** Prove that if $\langle x, z \rangle = \langle y, z \rangle$ for all $z \in \beta$, then x = y.
- 10. Let V be an inner product space, and suppose that x and y are orthogonal vectors in V. Prove that $||x+y||^2 = ||x||^2 + ||y||^2$. Deduce the Pythagorean theorem in \mathbb{R}^2 .
- Prove the parallelogram law on an inner product space V; that is, show that

$$||x+y||^2 + ||x-y||^2 = 2||x||^2 + 2||y||^2$$
 for all $x, y \in V$.

What does this equation state about parallelograms in R²?

12. Let $\{v_1, v_2, \ldots, v_k\}$ be an orthogonal set in V, and let a_1, a_2, \ldots, a_k be scalars. Prove that

$$\left\| \sum_{i=1}^k a_i v_i \right\|^2 = \sum_{i=1}^k |a_i|^2 \|v_i\|^2.$$

- Suppose that $\langle \cdot, \cdot \rangle_1$ and $\langle \cdot, \cdot \rangle_2$ are two inner products on a vector space V. Prove that $\langle \cdot, \cdot \rangle = \langle \cdot, \cdot \rangle_1 + \langle \cdot, \cdot \rangle_2$ is another inner product on V.
- 14. Let A and B be $n \times n$ matrices, and let c be a scalar. Prove that $(A+cB)^* = A^* + \overline{c}B^*.$
- 15. (a) Prove that if V is an inner product space, then $|\langle x,y\rangle| = ||x|| \cdot ||y||$ if and only if one of the vectors x or y is a multiple of the other. *Hint*: If the identity holds and $y \neq 0$, let

$$a = \frac{\langle x, y \rangle}{\|y\|^2},$$

and let z = x - ay. Prove that y and z are orthogonal and

$$|a| = \frac{||x||}{||y||}.$$

Then apply Exercise 10 to $||x||^2 = ||ay + z||^2$ to obtain ||z|| = 0.

- (b) Derive a similar result for the equality ||x + y|| = ||x|| + ||y||, and generalize it to the case of n vectors.
- 16. (a) Show that the vector space H with $\langle \cdot, \cdot \rangle$ defined on page 332 is an inner product space.
 - (b) Let V = C([0,1]), and define

$$\langle f, g \rangle = \int_0^{1/2} f(t)g(t) dt.$$

Is this an inner product on V?

- 17. Let T be a linear operator on an inner product space V, and suppose that $\|T(x)\| = \|x\|$ for all x. Prove that T is one-to-one.
- 18. Let V be a vector space over F, where F = R or F = C, and let W be an inner product space over F with inner product $\langle \cdot, \cdot \rangle$. If T: V \rightarrow W is linear, prove that $\langle x,y\rangle'=\langle \mathsf{T}(x),\mathsf{T}(y)\rangle$ defines an inner product of V if and only if T is one-to-one.
- 19. Let V be an inner product space. Prove that
 - (a) $||x \pm y||^2 = ||x||^2 \pm 2\Re \langle x, y \rangle + ||y||^2$ for all $x, y \in V$, where $\Re \langle x, y \rangle$ denotes the real part of the complex number $\langle x, y \rangle$.
 - (b) $||x|| ||y|| \le ||x y||$ for all $x, y \in V$.
- 20. Let V be an inner product space over F. Prove the polar identities. For all $x, y \in V$,
 - (a) $\langle x, y \rangle = \frac{1}{4} ||x + y||^2 \frac{1}{4} ||x y||^2$ if F = R:
 - (b) $\langle x, y \rangle = \frac{1}{4} \sum_{k=1}^{4} i^k ||x + i^k y||^2$ if F = C, where $i^2 = -1$.
- 21. Let A be an $n \times n$ matrix. Define

$$A_1 = \frac{1}{2}(A + A^*)$$
 and $A_2 = \frac{1}{2i}(A - A^*)$.

- (a) Prove that $A_1^* = A_1$, $A_2^* = A_2$, and $A = A_1 + iA_2$. Would it be reasonable to define A_1 and A_2 to be the real and imaginary parts. respectively, of the matrix A?
- (b) Let A be an $n \times n$ matrix. Prove that the representation in (a) unique. That is, prove that if $A = B_1 + iB_2$, where $B_1^* = B_1$ and $B_2^* = B_2$, then $B_1 = A_1$ and $B_2 = A_2$.

22. Let V be a real or complex vector space (possibly infinite-dimensional), and let β be a basis for V. For $x, y \in V$ there exist $v_1, v_2, \ldots, v_n \in \beta$ such that

$$x = \sum_{i=1}^{n} a_i v_i$$
 and $y = \sum_{i=1}^{n} b_i v_i$.

339

Define

$$\langle x, y \rangle = \sum_{i=1}^{n} a_i \overline{b}_i$$

- (a) Prove that $\langle \cdot, \cdot \rangle$ is an inner product on V and that β is an orthonormal basis for V. Thus every real or complex vector space may be regarded as an inner product space.
- (b) Prove that if $V = \mathbb{R}^n$ or $V = \mathbb{C}^n$ and β is the standard ordered basis, then the inner product defined above is the standard inner product.
- Let $V = F^n$, and let $A \in M_{n \times n}(F)$
 - (a) Prove that $\langle x, Ay \rangle = \langle A^*x, y \rangle$ for all $x, y \in V$.
 - (b) Suppose that for some $B \in M_{n \times n}(F)$, we have $\langle x, Ay \rangle = \langle Bx, y \rangle$ for all $x, y \in V$. Prove that $B = A^*$.
 - (c) Let α be the standard ordered basis for V. For any orthonormal basis β for V, let Q be the $n \times n$ matrix whose columns are the vectors in β . Prove that $Q^* = Q^{-1}$.
 - (d) Define linear operators T and U on V by T(x) = Ax and U(x) = Ax A^*x . Show that $[\mathsf{U}]_\beta = [\mathsf{T}]_\beta^*$ for any orthonormal basis β for V .

The following definition is used in Exercises 24–27.

Definition. Let \forall be a vector space over F, where F is either R or Regardless of whether V is or is not an inner product space, we may still define a $norm \| \cdot \|$ as a real-valued function on V satisfying the following three conditions for all $x, y \in V$ and $a \in F$:

- (1) $||x|| \ge 0$, and ||x|| = 0 if and only if x = 0.
- (2) $||ax|| = |a| \cdot ||x||$.
- $||x + y|| \le ||x|| + ||y||.$
- 24. Prove that the following are norms on the given vector spaces V.
 - (a) $V = M_{m \times n}(F); \quad ||A|| = \max_{i,j} |A_{ij}| \quad \text{ for all } A \in V$
 - (b) $V = C([0,1]); \quad ||f|| = \max_{t \in [0,1]} |f(t)| \quad \text{for all } f \in V$